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Operational Algebra and Regression ¢-Tests

Peter C. B. Phillips

Introduction

In an article published by Econometrica, Rex Bergstrom (1962) derived the exact
sampling distributions of least squares and maximum likelihood estimators of the
marginal propensity to consume in a two-equation Keynesian model of income
determination. This article emphasized the importance of a mathematical study of the
small-sample behavior of econometric estimators. Bergstrom’s objective was to
evaluate the performance characteristics of the new simultaneous equations estimators
in relation to least squares and his conclusion, at least for the model studied, was
unambiguous: “. .. for samples of ten or more observations. .. the maximum likeli-
hood estimator of the marginal propensity to consume is the ‘better’ general purpose
estimator of this parameter.”

The Bergstrom article, together with a related paper by Basmann (1961), created
a field of research that became known as finite-sample theory in econometrics.
Progress in the field was intermittent through the 1960s and 1970s, with few
spectacular advances. This is in part explained by the mathematical difficulty of the
research, but another factor was the rapid development in computer technology
during this period. This opened the way to large-scale simulation exercises that
provided quick and easy numerical information about the sampling characteristics
of estimators and tests in stochastic environments similar to those in which they were
to be used. The 1980s witnessed even greater enhancements in computer technology.
With the advent of cheap personal computers and workstations capable of 32-bit
arithmetic and with simulation-based statistical methods like the bootstrap, it seems
likely that attention will continue to move away from mathematical studies of the
Bergstrom type.

Nevertheless, mathematical studies remain fascinating and have continued to
attract a few dedicated researchers. Perhaps the biggest obstacle to research in the
field is the specificity of individual studies. Each new estimator or test seems to bring
with it a new set of mathematical difficulties that sustained effort, ingenuity, and
technical skill are not always sufficient to resolve. As a result, graduate students and
young researchers are naturally more easily drawn into asymptotic analyses where
there is the rich reservoir of theorems and methods from probability theory to draw
upon when there is a need to demonstrate hard quantitative conclusions, and into
simulation exercises when there is a need to illustrate sampling performance. The
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latter exercises have themselves been facilitated by the widespread availability of
matrix programming languages such as GAUSS (1989), which is one of the more
popular packages among econometricians. Software packages like GAUSS allow
formulas to be programmed much as they are written down in-matrix format, so that
the transition from econometric formula to computer program is enormously
simplified. Moreover, the graphics facilities that GAUSS supports are sophisticated
and easy to use. With such software, it is nowadays usual practice to have simulations
up and running with accompanying graphics within a few days of developing the
theory or, indeed, as work on the theory is itself under way. What might have taken
six months developmental work in the 1960s is now done in a week. And the
programming skills that support the use of software like GAUSS are now as much
a part of the econometrician’s tool kit as linear algebra.

The model that I have just described of theoretical quantitative research under-
pinned by asymptotics and simulation has become widespread in recent years. It
might easily be taken as the standard research paradigm of today’s young econometric
theorist. It seems likely that it will become almost universal during the 1990s.

This combination of asymptotics and simulation is usually highly productive and
informative, but it is not without drawbacks, perhaps the most important of which is
that it diverts attention from some vital issues. Econometrics, like statistics, is
concerned with data reduction. Estimators and test statistics are summary measures
and the formulas that give rise to them carry with them certain characteristics. The
characteristics of the mapping from data to statistics are often of primary importance
in understanding the statistical properties of a given procedure. Indeed, the physical
form of the statistic as a function of the data itself induces an operation on the
probability law of the sample from which the statistic is derived. The situation is
exhibited in the following scheme:

data . data v — sample moments - estimators and
reductions ° y m(y) tests r(m)
induced
reductions |
of probability ° L Hom - Hr
measures

In many cases, the probability measure u, of the data will be absolutely continuous
with respect to Lebesgue measure and the transition at the second level can be
formulated in terms of probability densities as PDF (y) — PDF (m) — PDF (r). The
fundamental question addressed in a mathematical study that seeks to derive PDF (r)
is this: can the operations on PDF (y) that are induced by the data mapsy - m — r
be formalized algebraically and reduced to give a solution in a closed form or a series
representation?

Of course, understanding the transition y - m — r and what this reduction loses
in the way of information in the sample is critical to virtually all statistical theory.
But solutions are available only in specific instances and no one seems yet to have
attempted a general theory. The present paper is designed to offer some thoughts on
how to tackle this general problem and to illustrate an algebraic approach that seems
promising. Let it be clear at the outset that I am not proposing an operational
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procedure for practical applications. So what I have to say will in no way be
competitive with the ongoing research paradigm of “asymptotic theory plus illustrative
simulatiops™ that I described above. However, the idea that I am going to put forward
has the merit of providing a general mathematical framework for solving distributional
problems. In this sense, it follows the spirit of the original Bergstrom (1962) study and
eschews the research direction that has been followed by much of the profession
since then.

On matters of notation I shall use the symbol “=" to signify equivalence in
distribution, and * ~ ” to signify asymptotic equivalence. Lt () and PDF (-) represent
the Laplace transform and probability density of a distribution, I'(-) is the gamma
function and B(-,-) the beta function. y?(-) is the density of the chi-squared
distribution with n degrees of freedom and N(0, 1) is the standard normal density,
usually with argument r, viz. (21)~ /2 e~""/2,

Functions of Differential Operators, Pseudodifferential and
Fourier Integral Operators

At the outset it is useful to start with a space of functions that have nice properties,
not all of which are really needed. Accordingly, we let C,, be the space of infinitely
differentiable functions f(x) on the real line (— o0, o). If D = d/dx represents the
usual operation of differentiation then D may be interpreted as the mapping
D: C, — C, defined by Df(x) = f'(x)e C,, VfeC,. In a similar way we may
attach a meaning to polynomial functions of D such as p,(D): C, = C,, p.(D) =
Y 7=0aD' which are defined according to the relation p,(D)f(x) = Y’ a,f(x)
setting /@ = f and using f to signify the ith derivative of f. Such a class of
operators is useful in solving ordinary differential equations with constant coefficients.

It is also useful to attach a meaning to nonintegral powers of D. This leads to the
concept of fractional differentiation (and integration). The simplest approach is to
rely on the gamma integral for a complex power which yields the formula

D™ *f(x) = I'(x)"* jm [e"Df(x)]t*" dt = T(2)~! jm fix—=0r"tde, (D
0 0

which is valid for complex « with Re (a) > 0 provided the integral converges. Note
that the final integral representation in (1) is induced via the Taylor formula
exp (= Dn)f(x) = f(x — 1), which holds for f(-) analytic; but this final representation
takes on an independent life as a definition of D~*f(x) provided the integral
converges. Moreover, quite general complex powers such as D* may now be defined
by setting D*f(x) = D™*{D"f(x)} with 4 = m — «, Re () > 0 and m a non-negative
integer. Fractional operators defined this way forma a2 Weyl calculus (see for example
Miller (1974)) and can be easily extended to matrices using the multivariate gamma
integral in place of (1). Such extensions were introduced independently by the author
(1985) and by Richards (1984) in quite different contexts. The use of such operators
in resolving problems of distribution theory is illustrated in the author’s papers (1984,
1985, 1986, 1987).

More general functions than powers of D can be accommodated through use of
Fourier transforms. Suppose g(z) has Fourier transform §(p) = fg €7*g(z) dz. Then
we define the operator g(D) by its action on f through the inverse transform as
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follows:

o

[e™"2/(x)14() dp=(2n)“r fx = ip)g(p) dp. (2)

gD)f(x) = 2m)~! J

provided the integral converges.
It is easy to see that with this definition g(D) e** = e g(a), as in elementary
calculus. Moreover

g(D) e f(x) = eg(D + a)f(x), 3)

just as when g(D) is a polynomial. These rules for operating on exponentials can then
be employed to deal with other elementary functions. For instance, if Re (8) > 0 we
have

f@X1 - %) = (1/TB) Jw exp [—(1 = x)t] 72 f(1) e, (4)
0

which for f(D) = D* leads to
D¥1 —x)" = [TB+w/TEIL —x)7P7* = (B)(l —x)7*7%, ()

where (), = (B +1)...(B + u— 1) is the forward factorial, with the convention
that (0), = 1. Note that the final formula then holds by analytic continuation
irrespective of the values of § and p.

Formula (2) has a natural muitivariate extension. Suppose x € R" and let 6x = &/6x.
We define

g(5X)f(X)=(27r)"'[ [e™# % f(x)]4(p) dp=(27t)""J‘ f(x —ip)§(p) dp, (6)
R" Rn

where g and § are again a Fourier transform pair. Since the Fourier transform of a
generalized function always exists, it is often useful to work with generalized functions
or ordinary functions that are used as generalized functions in this representation.
For example, suppose in (6) that g(z) =exp (¥'z) and z is an n-vector. Then
d(p) = (2n)"d(p — 1b) where 6(-) is the dirac generalized function (cf. Gelfand and
Shilov (1964), pp. 169-90). We deduce from (6) that

g(0x)f(x) = j f(x —ip)d(p — 1b) dp. @)
RN
Upon deforming the contour of integration from R" to ib + R" in C", we obtain

9(0x)f(x) = J f(x —ip)d(p — ib) dp = f(x — i) = f(x + b), (®)

ib+R"

which corresponds with the usual Taylor formula, viz. €% %*f(x) = f(x + b). The same
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result can be obtained by using the Fourier transform f(p) of f() rather than g(*)
in the definition (6). We would then have

g(éx) e™"*f(p)dp = (2n)~" f e~ " *g(—ip)f(p) dp. (9)
Rn

g(6x)f(x) = 2m)™" j

Rn

When g(z) = exp (b'z) the right-hand side of (9) is trivially f(x + b). Note finally that
we can invert the Fourier transform in (9), giving us the representation

9(6x)f(x) = (27r)'"'[ e TP 0g(—ip) f(£) d¢ dp. (10)
R2n

As given above, (2), (6), and especially (9) are all closely related to the concept of
a pseudodifferential operator. Suppose f has Fourier transform f in R" Then a
pseudodifferential operator k(x, i 0x) is usually defined as

k(x,i0x)f(x) = 2n)~" J k(x, p)f(p) e~ **"? dp. (11)

Rn

Again the representation retains its meaning for generalized functions and their
transforms. The operator k(x, i 6x) is generally noncommutative in its arguments and
the action of the operators x and Jx is taken in the given order, ie. k(x, i ¢x), with
the elements of x acting before those of x. Note that in contrast to (6) we are now
employing the Fourier transform of the operand f in (11) as distinct from that of
the operator as in (6). Thus, (11) may be interpreted as a natural extension of (9).

There is now a vast literature on the properties of such operators and they are
extensively used in the theory of partial differential equations. Treves (1982, volume
1) and Dieudonné (1988) provide a detailed study. An example of the use of a special
case of (11) is the Laplace equation

V2y(x) = f(x), V?=éx'éx, (12)
which is solved by
yx)=V73f(x) = —(Zn)'"j e"="(p'p) "1 f(p) dp. (13)
Rﬂ

Partial differential equations with variable coefficients then lead to solutions that
involve noncommutative operators of the form given in (9).

Further extensions of operators based on (9) are available in which x'p in the
exponent is replaced by a real-valued C, function ¢(x, p). Such extended operators
are known as Fourier integral operators and they are discussed in Treves (1982,
volume 2). We shall have no need for them in the present work.

We end this section with the following lemma that reports two useful results on
nonlinear functions of operators induced by the standard normal density. We employ
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the notation

N, 1/6y) = (2m)™'2(6y)'"? exp [ —3r* 9y]. (14)

N(Q, 1/6y)&y" = N, 1) & i (?)(— Y(=Hy —r32" (15)

j=0
[N(O, n/éx’ &x) €™}, o = [N(0, n/Gy)(1 — 2y) "], o0; (16)
where y is a scalar in (15) and x is an n-vector in (16).
Proof. To prove (15) we introduce the auxiliary variable « and write

N(0, 1/6y) €™ = [N(O, 1/2y) 8a™ €71,
= [EO"N(O, 1/2) € ,e, = [82" €*N(O, 1/2)],
= [@I"{evm) 12 e Y,
= @0 V[Ean@ R e,

= (2n)~ 12 i (m) (aafaﬂl)(éam—j e,(,-,z,z)}
<o \J

a= 1

=@o=2| ¥ (m) (= (=B iy = vy e’“"'z'ﬂ
=0 J

z2=1

= Q)" e e i (W.l)(—l)"(—%),(y = r¥2m- amn
J

j=0

as stated. To prove (16) we let ¢ = N(0,I) so that E(e**) = e**? is the Laplace
transform. Then

N(O, n/ox’' ¢x) eX*2 = N(0, n/ox’ OX)E(e*?)
= E[N(0, n/ox’ x) e**]
= E[N(0, n/&'E) e¥*]. (18)

Next write £ in polar coordinates as & = r'/?h where r = &¢ = y? and h is uniformly
distributed on the unit sphere in R". Then, upon evaluation at x = 0, (18) becomes

ELN(O, n/r) €77, .o = E[N(0, n/oy) e *xm] _ o
= [N(O, n/8y)E(€™)], =0
= [N, n/3y)(1 — 25)™"*],., (19)

as required.
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The Regression r-Statistic: 1

The operational algebra can be illustrated in the case of conventional regression test
statistics such as the z-ratio. We shall proeéed under the usual Gaussian assumptions
and show how to use the methods to extract the exact distribution theory, the
asymptotic distributions and the full asymptotic series expansions. It will be assumed
that the reductions from the original data to appropriate sample moments have
already been performed.

The sample moments that appear in the usual regression ¢ statistic are assumed
to have been centered and scaled and we write them as X = N(0, 1), s = y2. Then,
by independence and in an obvious notation, we have

, = X - N©, 1)
(s/m)*?  (g3/n)*2

t, (20)

We write the conditional density of r given s and the marginal density of s as
PDF (r|s) = N(O, n/s), PDF (s) = x2(s).
The density of r is

PDF (r) = J. N(O, n/s)x2(s) ds

>0

= J‘ [N(Os 72_/6‘2) c:l]z=013(s) dS
>0

= [N (0, n/62) j e*yi(s) ds}
>0 =0
= [N(0, n/éz) Lt (2)]. =0

= [N(0, n/62)(1 — 2:)™"*].
= [N(0, n/2 8u)(1 — w)™"*],=0, @1

setting u = 2z so that dz = 2 du, and

PDF (r) = (2r) ™ 12[e™ @M 3(2/m)12 ul2(1 — u)~"?],
= (an)™*2[e M (T ((n + 1/2)T(/2)}(1 — )=+ V2],
= {n*2B(n/2, 1/2)} "}(1 + r¥/n)~* 172 (22)
using (5) above.

The asymptotic distribution as n — o can be derived from (21) by noting that
(1 —u)™™2 ~ e"™/2 and then

PDF (r) ~ [N(0, n/2 0u) e™™"],.o = N(0, 1) (23)

directly from (3).
To develop a complete asymptotic series expansion about the limit (23), we start
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by writing (21) in the form
PDF(r) = [N(0, 1/6v)(1 — 2v/m)™"?], 0 (24)

using the transformation u — v = nu/2. Next, we expand the operand in (24) in the
conventional way for large n, viz.

(1 = 2v/n)™™? = exp [—(n/2) In (1 — 2v/n)]

= exp [+ (n/2) ki (1/k)2v/ ")k}
=1

= e’ exp l: i 2 i+ 1)}

j=1

© /O\K k ki )
=c"[1 +k§1 (;) IZ U” 2+ DG ¥ 1)}"‘} (25)

=1

where ) * signifies summation over all j,,...,j; (>1) for which ¥4 ji = k. Direct
application of the operator in (24) now yields

@ 2 k k
PDF (r) ~ N(O, 1) + Z (;) ‘Z [N, 1/év) e“zf‘“]ﬁo%z* {Gi+ D (y+ D!

k=1
(26)
which by result (15) of the lemma reduces to
x 2 k k
PDF (r) ~ N(O, 1)]:1 + ) (Z) > Pw(r)} 27)
k=1 I=1

where

k+1 i I\k+1~j
p,‘+,(r)=[},z* G+ 1) Gt 1)}'*} 5 (";’ )(—1)’(—%),-( ’) 28)

j:o 2

Expression (27) gives a full asymptotic series representation of PDF (r) about its limit
density, the standard normal N(0, 1). Note that we use the asymptotic equivalence
symbol “~” in place of “="7, since the series is asymptotic and not convergent.
Including terms up to order n~2 in (27), we have

PDF(r) ~NQO,D[1 + @4n)"(r* = 2r* - 1)
+ (96n*) 7 (3r® — 28r% + 30r* + 12r* + 3) + o(n™3)], (29)
which is the same as the expression to this order that was originally found by Fisher

(1925).
In a similar way, we can extract an alternate asymptotic series based on Appell
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polynomials that was suggested by Dickey (1967). In place of (21) we now use (22)
for the calculation of the expansion. Specifically, we have

[emtma(1 — w)=@*2], g

=[e""M¥exp[—((n + 1)/ In (1 = w)]]u=o

= e~ M exp [(n + 1)/2) i u"/k]}
k=1

u=0

| e exp [+ 1)2) T, (HHNn + 1))*3] ’
k=1

v=0

= (n + I)U/Z, h= (n + 1)/"

2 ‘5 v"‘” = Joo4 : -1
n+1> Z Z {(.11 t 1)...(}14.1)} }}

= e-(r’h/Z)Ev Cv[l + i <

=1 !

L k=1 v=0
D) (__2 )kA (—hr?/2) (30)
B r=o\n + 1 . ’
where
k k
A) =Y @MY R{Gi+ ) G D) = ‘Z B, (31
I=1 =1
say.

In this case the series (30) is convergent for r? < n. The polynomials A4,(x) are .
called Appell’s polynomials and the coefficients B, ; may be computed by simple
recursion formulas (see Erdélyi (1953) p. 256). Expression (30) leads to a correspond-
ing expansion for the density in terms of Appell polynomials. Dickey (1967) concludes
that the accuracy of this expansion is about the same as that of the Edgeworth series
(27). The present development helps to show how closely related the two expansions
are,

Similar operational methods may be used in the case of the regression F statistic.
Some of the calculations leading to the exact density and distribution function, the
x? asymptotics and full asymptotic series are given in a paper by the author (1987)
on fractional operators.

The Regression 7-Statistic: I1

The results of the previous section can be derived by conventional methods. The
main role of the operational algebra is therefore to simplify the derivations and the
final formulas, to bring them all within the same analytical framework and to codify
the operations on the probability densities that are induced by the data reductions
from sample moments to test statistic.

As a nontrivial application of the techniques, we shall now consider the linear
model

y=XBp+u, u=NOQ (32)
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whose error covariance matrix Q = Q(8) is generally nonscalar and depends on a
p-vector 8 € © < R?, which is variation-independent of the parameter vector p and
whose true value is denoted 6,. It will be assumed that X is-honrandom and of full
column rank k <»n and Q(B) is nonsingular V8 € © and analyticc We shall use
V(8) = Q(8)"! to represent the precision matrix. The model is the same as that
studied by Rothenberg (1984a, 1984b).

The minimum variance unbiased estimator of B in (32) is given by generalized least
squares (GLS) when 8, is known, i.e.

B=[X'VX]I'[X'Vy], V="V@). (33)

When 6, is unknown, it is usual to employ a feasible GLS procedure based on a
preliminary estimator 8 of 8,, i.e. f = [X' V(0)X]~![X’ V(8)y].

Let ¢’/p be some linear combination of p for some known vector ¢ # 0. Then the
corresponding GLS estimate is ¢’'B and its asymptotic z-ratio is

=B — B/{C[X V®)X] 1c} . (34)

Our object is to derive a distribution theory for ¢ ‘B and r,. To make headway we
need to be more explicit about 6. Since 8 is _usually estimated from the residuals of
a first-stage regression on (32), we could let § be some function of the residuals from
this regression. In fact, it will be more general if we allow 8 to be a function, say

8=06(0u), Qu=(-X(X'VX)"'X'Vu (35)

of the residuals, Qu, from the GLS regression leading to (33). Here @ = Q(8,) depends
on the true vector 8, Note that the representation (35) includes all estimators of 8
that rely on the least squares residuals since & = (I — Py)u = (I — Py)Qu.

The formulation (35) also includes the maximum likelihood estimator of 6. In this
case the log likelihood, after concentrating out B, is

L(8) = 11n | V(8)] — 2y'Q(8) V(6)Q(0)y

= 41In |V(8)] — y'Q'Q(B) V(8)Q(6)Qy. (36)

Since L(8) depends on y only through Qy, so too does its optimum and hence (35)
applies in this case also.

We now write the estimator B in terms of B and Qu as B B+ (B B) = B +d,

whered = [X” V(6)X]~ X' V(0)Qu = d(Qu), say, is statistically independent of p. Let
r=c¢ B = ¢B + c’'d and we have the conditional density

PDF(r|Qu) = N(c'B + ¢d, (X' VX)) (37

Next Qu is singular N(0, @V~ !Q) and using P(-) to represent the probability measure
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of this distribution, we deduce that
PDF (r)_ = J N(cB + ¢'d, (X' VX)) 'c) dP(Qu)
= J [N(CB + cd(@w), ¢(X'VX) ') e*' ], ., dP(Qu)

= [N (B + cd(éw), (X' VX) L) J\ ev'o dP(Qu):|

w=0

= [N(c'B + cd(éw), (X' VX) ‘c)eweviewy _ . (38)

Note that in this formula d(éw) and hence N(c'B + c'd(éw), ¢'(X' VX))~ *¢) are analytic
functions of the differential operator éw and can be interpreted according to the
definition (6).

Expression (38) shows the distribution of ﬁ to be a form of normal mixture. There
is no linear term in the exponent of the operand exp (w'QV ~*Qw/2) since this is the
Laplace transform of the distribution of Qu, whose mean is zero. Upon replacement
of this operand with the approximation exp (0'w) = 1 we see that (38) reduces to

N(EB, (X' VX) '), 39)

which is the usual first-order asymptotic approximation to the distribution of c'p.
Higher order approximations may also be obtained. Note that when 6 = 8(Qu) is
taken to be an even function of Qu, as it is in most practical situations, it is easy to
show from (38) that the next term in the expansion leads only to an adjustment in
the asymptotic variance term in (39). The normal approximation itself is retained.
This corresponds with the main conclusion of Rothenberg (1984a). X

The distribution of the z-ratio ¢, in (34) may be handled in the same way as .
With ¢, we have the additional dependence of the denominator on 8. However, this
presents no further complication in the operational algebra. Following the same steps
as those employed in deriving (38), we find

PDF (1) = [N(c'd(dw), ¢'(X' VX))~ 1c/c/(X' V(@w)X) ™ lc) ew @V T'Q%2] _  (40)

This formula can be interpreted as an extension to the general regression case of
formula (21) given earlier for the distribution of the usual t-ratio. In that case the
error covariance matrix Q = ¢2] was scalar. Writing V(8) = (1/6*)I with ¢* = @'a/n
and n = T — k, we see that d(éw) = 0, V(éw) = (1/6w’ éw)I and formula (40) above
reduces to

[N(oa na’z/&w' aW) cczw'qan]wth (41)
where Qy = I — Py. Let C be an orthogonal matrix for which C’'Q,C = diag (I,, 0).

Transform w — z = ¢C’'w and note that the operators transform according to the
relation 0w = ¢C 0z.
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Under this transformation (41) becomes
[N(0, njdz 8z) e*1*/2], .o = [N(O, n/dz} 6z,) €512}, _,, (42)

where z is partitioned as (z3, 23)’, conformably with the block diagonal decomposition
of C’'QxC. The expression on the right-hand side of (42) now simplifies by a change
of dummy variables to [N(0, n/du)(1 — 2u) ~"?], ., as in result (16) of the lemma in
the second section. The density given in (42) therefore reduces to that of the usual
t-ratio in this case.

In general, of course, the symbolic representations (38) and (40) rely on the form
of the dependence of ¥(8) on 6. In models with heterogencity, the dependence is
straightforward. In finite-order autoregressive error models, ¥(8) has the usual
finite-band matrix format associated with the inverse of the covariance matrix. For
more general ARMA models the dependence is more complex but formulas are
known (Zinde-Walsh 1988).

Conclusion

The methods introduced in this paper belong to a class of operational techniques
that have been used for some time by mathematicians in studying solutions to systems
of partial differential equations. The literature in this field is vast; but it is also rather
abstract, as is evident in the works of Hormander (1971), Treves (1982) and
Dieudonné (1988). Little attention seems yet to be have been given to the development
of practical rules for working with nonlinear functions of operators in specific cases
of interest. Nevertheless, it would appear from the regression examples studied here
that the methods offer some prospect for dealing with rather complex distributional
problems in an economical and efficient way. Indeed, as is apparent from the previous
section, the regression estimator and t-statistic in the general linear model with a
nonscalar covariance matrix are as easy to handle with the operational algebra as
are the OLS estimator and t-ratio in the classical regression model.

Notes

My thanks go to a referee for helpful comments, to Glena Ames for her talents in word-
processing this essay and to the NSF for research support.
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