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PRESENCE OF DETERMINISTIC TRENDS*
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I. INTRODUCTION

The most commonly used tests of the null hypothesis of a unit root in an
observed time series are derivatives of the Dickey-Fuller tests (Dickey (1976),
Fuller (1976), Dickey and Fuller (1979)). The Dickey-Fuller tests were
developed for simple Gaussian random walks and the derivative procedures
(notably Said and Dickey (1984), Phillips (1987) and Phllhps and Perron
(1988)) are intended to detect the presence of a unit root in a general
integrated process of order one (I(1) process). The Dickey-Fuller tests are
based on the regression of the observed variable (say, y) on its one-period
lagged value, with the regression sometimes including an intercept and time
trend; that is, they are based on regressions of the form:

YI=ﬂYI—l+ (1)
yl=a+ﬂyl-l+€l (2)
y=a+ﬂ)’l l+6t+€n (3)

for t=1,2,...,T. The 3, §,, and B, tests are based on the statistic T(f-1),
where B is the OLS estimator of B in (1), (2) and (3) respectively, while the 7,
t,and 7, tests are based on the r-statistics for the hypothesis =1 in the same
three regressions. The former are coefficient tests, and the latter are tratio
tests. Both types of test have time series extensions by the semiparametric
correction method of Phillips (1987) and Phillips and Perron (1988). Only
the t-ratio test is extended in the long autoregression method of Said and
Dickey (1984).

Following the empirical work of Nelson and Plosser (1982), a common
motivation for testing for a unit root is to test the hypothesis that a series is
difference stationary against the alternative that it is trend stationary. That is,
one wishes to test for a unit root in the presence of deterministic trend.
Economists are especially interested in such tests because under the alterna-
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tive hypothesis of stationarity time series exhibit trend reversion charac-
teristics, whereas. under the null they do not. Unfortunately, the
parameterizations in (1)-(3) above are not convenient for this purpose,
because they handle level and trend in a clumsy and potentially confusing
way. Equation (1) does not allow for non-zero level or trend either under the
null hypothesis nor under the alternative, of course. Equations (2) and (3) do,
but they suffer from the serious problem that the meanings of the parameters
a and 0 differ under the null and the alternative. For example, in equation (2)
the parameter a represents trend when g=1 (since the solution for y, then
includes the deterministic trend term at), but it determines level when <1
(since y is then stationary around the level a/(1 - B)). Similarly, in equation
(3), when B=1 the parameter a represents trend and o represents quadratic
trend, while under the alternative a determines level and 6 determines trend.
This confusion over the meanings of the parameters shows up in the
properties of the Dickey-Fuller tests based on (2) and (3). The distributions of
the Dickey-Fuller tests based on equation (2) depend on the nuisance
parameter a, even under the null hypothesis (Evans and Savin (1984),
Nankervis and Savin (1985), Schmidt (1990), Guilkey and Schmidt (1992)),
and they are inconsistent against trend stationary alternatives (West (1987))
because equation (2) does not allow for trend under the alternative. The
distributions of the Dickey-Fuller tests based on equation (3) are independent
of a, but they do depend on ¢ under both the null and the alternative. The
tests based on equation (3) therefore constitute similar tests with regard to the
nuisance parameter a and they are consistent against trénd stationary
alternatives. But they allow for trend under the alternative by introducing a
variable (7) that is irrelevant under the null and this is the price that is paid for
the property of similarity with regard to a. The role of irrelevant regressors in
achieving test similarity is considered more fully in the present context in
Kiviet and Phillips (1992).

These difficulties can be avoided by regarding the equations (1)-(3) not as
data generating processes (DGP's), but simply as regression equations used to
generate test statistics. In this paper we consider the DGP to be as follows:

Yr=w+€t+Aan=ﬂ‘Xl—l+€l' (4)

This DGP (or parameterization) has previously been considered by Dickey
(1984), Bhargava (1986), and others in the context of unit root tests and it
corresponds to the conventional components representation of a time series.
Once again the unit root corresponds to f=1. This paper will present tests
that are extracted from the score or LM principle applied to (4) under the
assumption that the ¢, are iid N(0, o?). However, it should be stressed that the
advantages of the parameterization in (4) are deeper than just that it leads to
“our new tests. This parameterization allows for trend under both the null and
the alternative, without introducing any parameters that are irrelevant under
either. Indeed, the important attraction of this parameterization is that the
meaning of the nuisance parameters ¥ and & does not depend on whether the
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unit root hypothesis is true: y represents level and & represents deterministic
trend, whether 8= 1 or not. As a result, the parameterization in (4) is useful
in studying the properties of our new tests and also those of the Dickey-Fuller
tests. In particular, the distributions of our tests and of the Dickey-Fuller tests
under both the null and alternative hypothesis are independent of the
nuisance parameters ¥, § and g,.

The plan of the paper is as fOIIOWS. Section Il defines the new test statistics
and compares them to the Dickey-Fuller 6, and 7, statistics. Section III gives
results on the finite sample distributions of the statistics under the assumption
of iid errors. Section 1V provides the asymptotic distribution of the statistics
under more general error assumptions, and gives extensions along the lines of
Phillips (1987) and Phillips and Perron (1988) that are asymptotically robust
to error autocorrelation and heteroskedasticity. Section V extends the tests to
the case of deterministic trend that follows a higher order polynomial in time.
Section VI provides some Monte Carlo evidence on the power of the tests.
Finally, Section VII contains our conclusions.

II. UNIT ROOT TESTS BASED ON THE SCORE PRINCIPLE

We begin with the model as given in (4) above, where the errors ¢, are
assumed to be iid N(0, ;) and where the initial condition X, is taken as fixed.
We wish to derive the LM test of the hypothesis 8=1 in this model. The
derivation is given in Appendix 1, and here we will give only a brief summary.
The restricted MLE's (that is, the MLE's when we' impose g=1) of § and
Yy=y+ X, are as follows:

§=mean Ay=(y;—y,)(T-1) (5)

I/;X = g (6)

(The parameters i and X, are identified separately under the alternative
hypothesis, but not under the null hypothesis that 8 equals one.) Note that, as

expected, the estimate of & comes from estimation of (4) in differences. Now
define the ‘residuals’

S=y—wx—&, 1=1,..,T. (7)

These are the residuals from the model (4) in levels, but where the
parameters have been estimated from the model in differences. We note that
S, = $;=0. Alittle algebra reveals the following alternative expressions for S;:

§=2(Ay—By)(t22) (8A)
i=2

=y =y, —(t=1)Ay (8B)
=[(T—-1)y,~(¢t= Dy~ (T—12)y,] (8C)
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!

=2 (w=w), w=F" - 1)X,+¢

j=2

+(ﬂ—1)li Ble; (12 2). (8D)

i=0
In Appendix 1 we show that the score vector evaluated at the restricted
MLE’s is proportional to

2 (By,=8)S-1. . (9)

Lo=2

This is the numerator of the estimated regression coefficient of S,_, in the
regression

Ay,=intercept + @S,_, +error (t=2,...,T). (10)

Denote the least squares estimate of ¢ by . We then define the test statistics
p=T¢ (11)
7= usual s-statistic for ¢=01in (10). (12)

It is instructive to compare these statistics to the Dickey-Fuller statistics 4,
and 7, based on regression (3). This is a regression of y on intercept, time
trend and lagged y; equivalently, it is a regression of Ay on the same variables.
By the standard algebra of least-squares regression, it follows that this is in
turn equivalent to the regression :

Ay,=intercept+ p$,_, +error (t=2,...,T), (13)

where $,_, is the residual from an ordinary least squares regression of y,_, on
an intercept and time trend. We then have 0, as the estimated coefficient of
S,-,in(13), and %, as the ¢-statistic for the hypothesis o = 0. Comparing (13)
to (10), the only difference the new tests 6 and 7 and the Dickey-Fuller tests
0, and £, is the nature of the residual upon which Ay, is regressed. Both S, _,
in (10) and $,_, in (13) are residuals in the levels equation for y,_ , but the
parameters used to calculate the residuals are estimated differently: the para-
meters used to calculate $,_, are estimated from the model in differences,
while the parameters used to calculate S,_, are estimated from the model in
levels. Given that -y, is I{1) under the null hypothesis, the regression of y,_, on
intercept and time in levelsis spurious in the sense of Granger and Newbold
(1974) and Phillips (1986), so that the regression coefficients for the intercept
and time trend do not converge to constants, but remain random even
asymptotically. This ‘extra’ randomness makes $,_; complicated in a way that
S,_, is not. Tests based on S,_, will have simpler properties than tests based
on $,_,, and (depending on one’s intuition) may also be expected to be more
powerful.
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Since Ay, — £ = AS,, the score vector given above in (9) can be rewritten as

T

Score= Z (AY,“'E)S,-l = Z ASISI"l = Z (ASI—E)SI-I’ (14)

t=2 1=2 (=2

where the last equality follows from mean AS =($;—S,)/(T—1)=0. Thus the
score vector is also the numerator of the estimated regression coefficient in
the regressions

AS,=intercept + ¢S, _, +error (15A)
AS,= ¢S,_, +error. (15B)

Equation (15A) is identical to (10) above and yields the same test statistics, 6
and . However, if 6 is the least squares estimate of ¢ in (15B), ¢+ ¢7; the
numerators are the same, but the denominators are different, because the
sample mean of S,_, is non-zero. Let 6 and 7 be the test statistics from (15B),
defined analogously to (11) and (12) above. These statistics are analysed by
Schmidt and Lee (1991), who show that their power properties are generally
inferior to those of 6 and £, as will be explained more precisely below.

The tests 5 and 7 are closely related to earlier tests of Bhargava (1986). We
show in Appendix 2 that the score vector in (9) or (14) can also be rewritten
as follows:

T .

: 1
AS;=—-=
5857,

~

7
SCO!‘C= Z ASIS—! = -

=2

(Ay, - Ky). (16)

N | =
A

Using this result, it is not hard to show that 0 is almost equal to — 7/2 times
Bhargava's statistic R, defined in Bhargava (1986, p. 376, equation (40)), and
that o equals — 7/2 times Bhargava’'s statistic N, (p. 377, equation (47)). See
Appendix 2. Note also that since the model (4) has been estimated in
differences S, is a partial sum process (see (18) below). Hence, the score (16)
can be interpreted as a functional of this partial sum process S, and its
component elements AS, As such, tests like 6 and 7 that are based on S, are
related to the generic class of tests for a unit root developed recently by Stock
(1990).

An interesting fact that also follows from (16) is that 7 is a monotonic
transformation of g. Specifically, we show in Appendix 2 that

[ -21 1 }”“ﬁ<0
. (T-3)p (T-3) 17)

[ 2T 1 }““_>0
(-3 (1-3)] °
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Thus the tests are equivalent. However, we will continue to discuss both tests,
because the tests are not equivalent after various types of corrections for
error autocorrelation (to be discussed later).

Il FINITE SAMPLE DISTRIBUTION THEORY

The finite sample distributions of the test statistics 6 and 7 are complicated
and will be tabulated by simulation. However, we first note the simple but
important fact that the distributions of the test statistics under the null hypo-
thesis are independent of the nuisance parameters y, §, X, and o,. Thus the
distributions of the test statistics under the null hypothesis depend only on
the sample size (7). Bhargava derived his statistics R, and N, as best
invariant tests, and this guarantees invariance with respect to », £ and o..
However, a direct approach is simple and perhaps more revealing. Using
equation (8D) above, we have, under Hg,

=5 (62 (18)

(]

This does not depend on &, y or X,,. Since  and 7 can be written as func-
tions of S, ¢=1,..., T, their distributions are invariant to £, ¥ and X,,. Finally,
the scale factor o, also cancels out of all expressions for 6 and 1, so that their
distributions are independent of o, as well as the other nuisance parameters.

King (1981) and Dufour and King (1991) have similarly used the theory of
invariance to yield test statistics independent of nuisance parameters. Their
tests are designed to be point optimal and hence they are of rather different
form than this paper’s tests or Bhargava's.

Critical values for the test statistics 6 and 7 are given in Table 1A. These
are calculated by a direct simulation using 50,000 replications. Random
deviates were generated by the routines GASDEV and RAN3 of Press,
Flannery, Teukolsky and Vetterling (1986); more detail on this random num-
ber generation scheme can be found in Guilkey and Schmidt (1992). We note
in passing that the lower tail critical values are smaller in absolute value than
the corresponding lower tail critical values for the Dickey-Fuller 6, and 7,
tests.

Under the alternative hypothesis that 8 is not equal to one, the distribu-
tions of o and 7 are independent of ¥, & and o,, but they depend on
Xr=X,/o. (They also depend on $ and 7, of course.) To show this, we make
use of the representation of S, in (8D) above. From (8D) it is clear that S, _, is
independent of 3 and &. It depends on X, unless =1, and, given T, 8 and
X(T , it has the same scale as o,. Since both 6 and its associated ¢-statistic
depend only on the S, they are independent of y and &, but their distribution
depends on X, when B#1. Also, since the scale factor o, enters the
numerator and denominator of 6 and the #-statistic in exactly the same way,
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the distributions of 6 and the r-statistic (for given 7, 3 and XY are also
independent of .. Furthermore, from (8D) it is also clear that, if the errors ¢,
are symmetrically distributed, the distributions of 6 and 7 depend only on
IX5], T and B.

De Jong er al. (1989) have proved the same invariance results for the
Dickey-Fuller g, and 7, tests. (Dickey (1984 ) had earlier noted the invariance
of p, and 7, to y and &, based on numerical results.) Under the null
hypothesis, their distributions depend only on 7, while under the aiternative,
they depend on T, 8 and X, . If the ¢, are symmetrically distributed, depen-
dence of the distributions on X, is replaced by dependence on | X; |.

Simulation evidence on the powers of the tests will be given in Section V.

IV ASYMPTOTICS

Following Phillips (1987) and Phillips and Perron (1988), we can relax the
assumption that the ¢, are iid by considering the asymptotic distribution of the
test statistics and correcting for serial dependence. We assume the same
regularity conditions as Phillips and Perron (1988, p. 336); these put some
limits on the degree of heterogeneity and autocorrelation allowed in the ¢
sequence but are otherwise fairly general. We define the two nuisance
parameters

"
o, =lim T"E(Z ef) (19)
I~ =1
T 2.
o° = lim T_‘E(Z e,) (20)
[~ =]

and assume that o7, 02> 0. We also define the ratio w>= o o

The basic insight behind the asymptotic distribution theory is simple. From
(18) we see that under the null hypothesis the $ process is the cumulative sum
process of the deviations from means of the ¢ process. Therefore S (appro-
priately normalized) converges to a Brownian bridge, and our statistics
converge to simple functions of a Brownian bridge. The asymptotic distribu-
tion theory for our tests is accordingly simpler than the asymptotic distribu-
tion theory for the Dickey-Fuller 6, and 7, tests.

In Appendix 3 we derive the following asymptotic results for our tests:

p‘*—(zj 1/2)— w’ (21)

1 -1/2,
- —(1/2) (J yz) w. (22)

0
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Here V (r)is a standard Brownian bridge on the interval [0, 1] and V(r)is the
demeaned Brownian bridge

¥in= V(r)—Jl V(rdr. (23)

The symbol * =" in (21) and (22) signifies weak convergence of the associated
probability measures.

Schmidt and Lee (1991, Section 2) demonstrates analogous results for the
statistics 0 and 7. The only difference is that the Brownian bridge V(r)
replaces the demeaned Brownian bridge ¥ () in (21) and (22). The result in
(21) is also equivalent to the result of Nabeya and Tanaka (1990) for their
statistic R, which equals 1/(T ‘Bhargava’s R,) and is therefore almost equal
to — 1/(26). However, their algebraic expression is rather different, and so
are their regularity conditions in the presence of error autocorrelation.

The asymptotic formulae (21) and (22) require only simple corrections to
remove the effects of dependent and heterogeneous errors. Multiplying o by
a consistent estimate of 1/ w?=(0%/0}) yields a corrected test statistic whose
asymptotic distribution is identical to the asymptotic distribution that 5
would have under iid errors, so that the critical values given in Table 1 are
asymptotically correct. Similarly, multiplying 7 by a consistent estimate of
1/w=(0/0,) yields a corrected test statistic for which the critical values in
Table 1 are asymptotically correct. These corrections are very simple in
comparison with the corrections given in Phillips (1987) and Phillips and
Perron (1988) for the Dickey-Fuller tests.

Estimation of ¢? and o can be performed along the lines suggested in
Phillips (1987), Phillips and Ouliaris (1990), and Phillips and Perron (1988).
In particular, the arguments given in Phillips and Ouliaris (1990) apply and
the con51stency of both tests requires that ¢° and o] be estimated from
regression residuals rather than first differences. Thus, let ¢, be the residuals
from a least squares regression on (3). Then by arguments analogous to those
of Theorem 4.2 in Phllhps (1987) we find that the following estimates are
consistent for the variance parameters under the null:

.
s=T"' 2 é=,0} (24)
1= 1
and
=7 Ze+2T ZZ&,&,‘ o (25)
s=1 1=5+1

In the case of s*(I) we require that the lag truncation parameter /— % as
T— . The rate /=0(T"?) will usually be satisfactory, as for the case of
stationary sequences ¢, Of course, many other consistent estimates of o° are
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available using a variety of lag windows (see Andrews (1991) for a discussion
and analysis of alternatives, including data based choices of /).
~ With these estimates we construct @° = s*/s*(/) and the test statistics

Z(p)=p/d*, Z{1)= i/ . (26)
Under the null hypothesis we have

{ -1 H -1/2
Z(p)~—(2J yz) , Z(1)—= —(1/2) U yz) . (27)

)

These limit distributions are free of nuisance parameters and they are
negative almost surely. Under the alternative hypothesis that | | <1 we find
that Z(0)=0,(T), Z(r)= O,(T'") as in Theorem 5.1 of Phillips and Ouliaris
(1990). Thus, the statistics diverge under the alternative and the two tests are
consistent, but at different rates as T— <. ,

REMARK. As observed above, the construction of a consistent test
requires the use of regression residuals rather-than first differences. This
means that a regression such as (3) is needed, at least at this stage, to remove
nuisance parameters. Although this does not cause any loss in asymptotic
local power, it seems likely that it will have finite sample effects in terms of
some size distortion and power loss.

V EXTENSIONS TO HIGHER ORDER POLYNOMIAL TRENDS
We now wish to replace the linear deterministic trend in (4) with a higher
order polynomial trend. To do so, we first consider the more general model
n=a+Zo+X,X=pX_,+e¢, (28)

where Z, is at this point a general row vector of explanatory variables. The
null hypothesis is §=1, as before, and to construct the LM statistic we need
to consider the différenced version of (28), namely -

Ay,=AZb+u, (29)

(where u,=¢, under the null hypothesis). Define the restricted MLE's:
0 =OLS estimate of 6 from (29), =y, — Z, 6; and define

$=y,~vx=Z0. (30)
Finally, run the regression
Ay=AZy+oS,_, +error. (31)

We again define 6= Tg, where 4 is the least squares estimate of ¢ in(31), and
7= usual ¢ statistic for the hypothesis ¢ = 0.

We are specifically interested in the case Z,=[¢, ..., #’], so that the m >del
allows a p™ order polynomial trend. In this case the differenced model is
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equivalent to a (p— 1) order time trend, and it is convenient to rewrite the
above general expressions as follows. The model is

p .
y=2 at+X,X,=pX._+¢. (32)
j=0
The differenced model can be written as
-
Ay=2 bti+u, (33)

j=0

Define 11, =0 and u,=OLS residual from (33), t=2,..., T. Then it is easy to
show that S as defined in (30) can be calculated as the partial sum of the a:

S=2 4, o (34)

and the regression (31) that defines the test statistics is simply
i
Ay= 2. ¢;jt/+ ¢S, + error. . (35)
j=0
From the limit theory given in Appendix 3(ii) we have

{ -1 1 =172
p—»—,(zj yﬁ) w? = =(1/2) U _yf,) . (36)

)

In the above formulae ¥,(r)is a détrended p-level Brownian bridge; i.e.

Gin= Vi T &7 37)
and
d=argmin.,J (I{,(r)—% ajr/') dr. (38)

Here V(r) is a Gaussian process which we call a p-level Brownian bridge. It
can be defined in terms of standard Brownian motion W(r) as: :

Vi(r)=Wr)- (J dW(S)g(S)') Q™ 'q(r), (39)

where g(s) =(1,s,...,s"7"), Q is p X p with (i,/)" element’g;=1/(i+— 1) and
g(r) is px1 with i™ element ri/i. An alternative but more complicated
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expression is given by MacNeill (1978, p. 426); our V,(r) is MacNeill's
B,_ (1), which he terms a generalized Brownian bridge. As noted in
Appendix 3(ii), V,(r) is tied down in the [0,1] interval with V,(0)=V,(1)=0
just like a Brownian bridge. In fact when p=1 we have V,(r)= V{r), a simple
Brownian bridge; and when p= 0 we have V(r)= W(r), a-standard Brownian
motion. Also as shown in (A3.8) of Appendix 3(ii), V/,(r) is the weak limit of a
standardized partial sum of detrended innovations. Thus, writing ¢, as the

residual in the regression of ¢, on a time trend of order p — 1, viz.

p—1
&= 2. 5,11+§,, (40)
j=0
we have
17
REDWEY A) (41)

=1

The detrended process ¥,(r) is most easily interpreted as a Hilbert projection
in L,[0,1] of the process V,(r) on the orthogonal complement of the space
spanned by the trend functions {#/;j=0,1,..., p—1}. )

The nuisance parameter w, or variance ratio w°, that appears in the limit
formulae (39) may be eliminated by transformation as discussed in the
preceding section, leading to test statistics Z(p) and Z(z).

Table 1B gives the critical values for the test statistics 0 and 7, for p=2, 3
and 4 (where p is the order of the deterministic polynomial trend in the
model (32)). These are calculated as described in Section I11.

VI POWER OF THE TESTS

In this section we perform some Monte Carlo experiments to compare the
power of the tests proposed in this paper with the power of the Dickey-Fuller
tests. In the Monte Carlo experiment we consider the performance of five
tests: the Dickey-Fuller tests 6,, 7,, 4, and 7,, and the test 6 proposed in this
paper. We do not display results for the test 7 because, in the absence of
corrections for error autocorrelation, 6 and 7 have exactly the same power.
The focus of the experiments will be on power against trend stationary
alternatives, and we do not expect the 6, and 7, tests to have much power
against such alternatives. These tests would be expected to be more powerful
than the other four tests against level stationary alternatives, and it is interest-
ing to see how much trend or how large a sample size it takes before the 5,
and 17, tests are dominated by the other tests. However, the main focus of the
experiments is to compare the power of the new test 6 with the power of the
Dickey-Fuller 6, and 7, tests.

The parameters that are relevant are sample size (T ), 8, standardized
trend (£*) and standardized initial condition X} =X,/o.. Under the null
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hypothesis that S=1, the tests o, 6, and 7, have distributions that are
mdependent of the nuisance parameters y, &¥, Xt , and o,, whlle the dlstrlbu-
tions of 6, and 7, depend on &* but are mdependent of v, X and o-. When
B is not equal to one the distributions of the 4, 6, and 7, tests depend only on
7, B and X5 and when the ¢, are symmetrically dlstrlbuted they depend only
on T, fand | X}

The results of our experiments are given in Tables 2-3. The results were
generated by a simulation using 20,000 replications; the random number
generator was described in Section III. The tables give percentages of
rejections for 5 percent lower tail tests. Other significance levels would tell
essentially the same story.

Our first experiment, called Experiment 1 in Table 2, studies the size of the
various tests under the null hypothesis. We set 7=100, f=1, X: =0 (its
value is irrelevant anyway), and varied &*. Specifically, we considered values

TABLE 2
Size and Power, 5% Lower Tail Tests, T= 100
Expno. T B & Xy i, B £, b, b
100 1 0 0 0049 0.048 0.048 0.050 0.052
100 1 0.02 0 0.050 0046 0.048 0.050 0.052
100 1 0.05 0 0.046 0.045 0.048 0.050 0.052
100 1. 0.10 0 0041 0034 0.048 0050 0.052
100 1 0.20 0 0022 0.008 0048 0.050 0.052
100 1 0.50 0 0006 0000 0048 0050 0.052
100 090 O -10 0.686 0.317 0304 0.120 0.033
100 090 0O -5 0413 0421 0211 0.198 0.165 .
100 0950 -0 -2 0334 0459 0191 0234 0252
100 090 0O —1 0322 0465 0188 0239 0.267
100 090 O 0 0321 0467 0.186 0239 0270
100 090 O 0.321 0467 0186 0239 0270
100 050 0.02 0.281 0409 0186 0239 0.270
100 090 005 0.140 0.198 0.186 0.239 0.270
100 090 0.10 0.016 0014 0.186 0.239 0270

W WWWW NN o = e e s

0
0
0
0 .
100 050 0.20 0 0000 0000 0.186 0.239 0270
0
0
0
0

4A 100 -1 0 0.049 0.048 0.048 0.050 0.052
4A 100 095 O 0.126 0.190 0.082 0.098 0.108
4A 100 090 O 0.321 0467 0.186 0239 0.270
4A 100 080 O 0.871 0.950 0644 0.734 0.765
4B 100. 1 0 -2 0049 0046 0048 0050 0.052
4B 100 095 O -2 0121 0.181 0082 0095 0104
4B 100 0950 0O —2 0334 0459 0191 0234 0.252
4B 100 080 O -2 0886 0952 0658 0732 0.707
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TABLE 3
Size and Power, 5% Lower Tail Tests, T= 200, 500

Exp.no. T B & Xy i b, % B, F;

5 200 090 0 0 0858 0946 0617 0724 0.763
5 200 090 0 -1 0860 0947 0620 0720 0752
5 200 090 0 -2 0868 0947 0627 0719 0720
5 200 090 0 -5 0908 0949 0.677 0710 0526
6A 200 1 0 0 0048 0.048 0048 0048 0.050
6A 200 095 0 0 0310 0460 0178 0233 0.266
6A 200 090 0 0 0858 0946 0617 0724 0763
6A 200 080- 0 0 100 100 0999 100  0.997
6B 500 1 0 0 0053 0051 0051 0051 0051
6B - 500 095 0 0 0967 0994 0819 0897 0914
6B - 500 090 0 0 100 100 1.00 100 100

0, 02, 0.05, 0.10, 0.20 and 0.50 for £*. All tests except 0, and 7, should have
size equal to the nominal critical value (0.05), and this is so apart from
randomness. (With 20,000 replications, a 95% confidence interval around
0.05 is approximately [0.047, 0.053].) When §* =0, the 6, and 7, tests should
also have size equal to the nominal critical value, and they do apart from
randomness. However, the size of the ,oﬂ and 17, tests should decrease to zero
as £* increases, for fixed T, or as T increases for fixed £* For T= 100, we
can see in Table 2 that the size of these tests does go to zero as £* increases; it
is nearly zero for &* as large as 0.50. Results for T=200 and T=500
(presented in earlier versions of the paper, and available on request) confirm
that the size distortion of the 6, and 1, tests is larger for larger sample sizes;
the larger 7, the smaller the value of & x required to produce substantial size
distortions, and conversely.

The values of £* considered here are empirically relevant. Recall that .E *is
standardized trend, equal to &/o. We can estimate & by &=mean
Ay=(yr—y,)/(T— 1), this is the MLE subject to 8= 1, but it is a consistent
estimate of & even if § is not equal to one. Similarly, i 1mposmg the unit root,
" the MLE of o7 is the empirical variarice of the Ay'’s, and this is a consistent
estimate even 1f y is stationary. Thus a consistent estimate of £* is just the
mean of the Ay’s divided by the standard deviation of the Ay’s. Schmidt
(1990) provides values of this measure (which he calls ‘standardized drift’) for
the Nelson-Plosser data, and values in the range [0.2, 0.5] are the norm.
Smaller values of 5* might be expected in higher-frequency data, or in
financial data, but it is nevertheless clear that the size distortions for the o,
and 7, tests are potentlally very serious for values of sample size and trend
encountered in economic data.
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Experiment 2, reported in Table 2, explores the effect of the initial
condition Xff on the power of the various tests. We set 7= 100, 8=0.90, and
&*=0.(The value of £* would matter only for 6, and 7,.) We consider values
of X} ranging from —10 to zero; positive values of X, are unnecessary
because only | X§| matters when the errors are symmetrically distributed. The
0, and 1, tests are more powerful than the other four tests, because experi-
ment 2 has £*=0 (no trend). A more interesting comparison is between the
powers of the Dickey-Fuller 6, and 7, tests and o test. All three tests have
power that is monotonic in | X}, but not all in the same direction: as |X}]
increases, the power of 7, increases, while the powers of 0, and o decrease.
The power of the g, test is higher than the power of the 7, test (the conven-
tional wisdom), except when X7 is large, in which case this ranking reverses.

Comparing the new test o to the Dickey-Fuller g, and 7, tests, we see that
the new test is more powerful than the Dickey-Fuller tests for |X3/<2 and
less powerful for |X}|= 5. A more detailed picture of the power curves for
this case is given in Figure 1, which displays power (for T=100 and 8=0.9)
as a function of | X}, for | X}| between zero and five, for the 6, 4, and 7, tests.
As in Table 2, the o test is most powerful for small X}. The g, test is more
powerful than 6 for | X}|> 2.6, and the #, test is more powerful than 6 for
IX%1>3.6. To put this into perspective, note that under stationarity the
standard deviation of X7 is (1 — 82)~ "2, which equals 2.29 for =0.9. Thus
0 is more powerful than 4, except when | X4 is about 1.1 standard deviations
(of X7%) away from zero, so that under normality 6 is more powerful than 6,
with a probability of about 0.73. Similarly, o is more powerful than 7, with a
probability of about 0.88. Our summary of these results is that the new o test
dominates the Dickey-Fuller 6, and 7, tests except for values of Xj, that are
unreasonably large, but the reader is of course free to draw his or her own
conclusions. :

Experiment 3 systematically varies the trend parameter &*, for X: =0 and
B=0.90. The results are consistent with the conclusion that £*>0.05 is
sufficient to make the power of the o, and 17, tests less than the power of the
tests that explicitly allow for trend. It should be stressed that, empirically, this
is a very small value of £*, and these results argue strongly that it is a mistake
to apply the 6, and 17, tests to data with noticeable trend. Accordingly, we will
not discuss the results for the 6, and 7, tests further.

Experiment 4, made up of parts 4A and 4B, is also reported in Table 2.
This experiment varies § over the range from one to 0.80, for X3 =0 and
- 2. There are no surprises in the results. Over this range of X:',‘, we expect
the 6 test to be more powerful than the 6, and 7, tests, and it is for all three
values of S# 1.

Table 3 gives the results of some experiments done for T=200 and 500.
The experiments consider power under the alternative: Experiment 5 varies
X} for T=200, £*=0 and 8= 0.90; and Experiment 6 varies f for T= 200
and 500 and X: = £*=0. The results are in line with the previous discussion
and so their detailed analysis is left to the reader.
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Fig. 1. Power of various tests, =100, 8=0.9

The results of Experiments 1-6 can be well summarized by a numerical
response surface. We ran separate response surface regressions for each test
(6, £,and §) using the 17 distinct observations (combinations of T, 8 and X))
in Experiments 1-6. After some experimentation we settled on the functional
form:

In[(Power —0.05)/(1 — Power)]= a,+ a, In T+ a, In(1 - )+ a,| X}
*2
+a,X, .

This functional form makes Power—0.05 as S—1 and Power—1 as
T— (B +#1),as it should. Also, in our experiments powef appears similar for
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T, § pairs such that T{1 — ) is constant {e.g. the tabulated results for 7= 100,
B=0.9 and T=200, 8=0.95), which would support the restriction a, = a.,.
Imposing this restriction did not change the results much. Finally, given our
functional form, we need to drop one observation (7=100, §=0.9,
X:',‘ = —10) for 0 because Power < 0.05. We also eliminated two observations
(T=200, =0.8, Xh=0and T=500, B8=0.9, X% =0) for which power was
equal or nearly equal to unity. Our fitted response surfaces were as follows
(standard errors in parentheses):

Number of
a, a, a, as a, R? experiments

o, —9255 3182 2882 0019 -0.015 0985 15
(0.720) (0.147) (0.159) (0.069) (0.007)

t, —8924 3015 2862 0.001 0.006 0987 15
(0.618) (0.126) (0.137) (0.059) (0.006) '

o —8873 3078 2.747 0.008 -—-0.043 0984 14
(0.749) (0.151) (0.159) (0.127) (0.025)

The main conclusion that emerges from our experiments is that the g test
proposed in this paper is more powerful than the Dickey-Fuller 6, and 7, tests
except when the initial condition term (X% is large in absolute value. The
empirical relevance of this finding can be argued. From the point of view of
estimation, X} is a parameter. However, it is not identified when =1 (only
the sum y, =y + X, is then identified), and we should not expect to estimate
it well when S is close to one. Therefore the possible strategy of choosing a
test, for a given sample, on the basis of estimated X is probably not to be
recommended. An alternative is to consider X 1',‘ as random and drawn from the
stationary distribution of X,/a,, which under normality is N{0,1/(1 - 3?)], and
ask how likely it is that X¥ takes a value that favours the new g test over the
Dickey-Fuller 6, and 7, tests. As reported above, the new test dominates the
Dickey-Fuller tests over the most likely values of X3; for example, we
reported (for T=100, 8=0.9) that 6 is more powerful than %, with a
. probability of about 0.88, where this probability is taken over the distribution
of X}. This is a reasonable calculation, but one may object that it fails to
address the question of how large the power differences are over various
regions of the distribution of X5 In particular, 6 is modestly more powerful
than 7, over most (in terms of probability) of the values of X}, but it is con-
siderably less powerful for some values of X5

An obvious way to see which tests are most powerful ‘on average’ is simply
to treat X} as drawn from the stationary distribution of X,/o., and then to
calculate the powers of the test not conditional on X7. Table 4 gives the
results of two experiments in which X7 is drawn from NI[0,1/(1— %)}, with a
different X} drawn for each of the 50,000 replications of an experiment. This
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TABLE 4
Size and Power, 5% Lower Tail Tests X Drawn from N[0,(1 = %) ]

Expro. T p & %, 6, 7, 6B

7 100 0.95 0 0.126 0.167 0.081 0.090 0.098
7 100 0.90 0 0.333 0.447 0.187 0.225 0.242
7 100 0.85 0 0.640 0.776 0.390 0.464 0.483
7 100 0.80 0 0.880 0.951 0.647 0.732 0.728
7 100 0.70 0 0.997 1.000 0.961 0.982 0.954
8 500 0.99 0 0.119 0.170 0.081 0.094 0.098
8 500 0.98 0 0.312 0.445 0.184 0.225 0.237
8 500 0.97 0 0.601 0.763 0.374 0.452 0.464
8 500 0.95 0 0.996 0.994 0.828 0.892 0.869
8 500 0.90 0 1.000 1.000 1.000 1.000 0.999

corresponds to a calculation of the unconditional (on X:',‘) power of the
various tests. Experiment 7 gives power for 7= 100 and for § between 0.70
and 0.95, while experiment 8 has 7=1500 and § between 0.90 and 0.99.
Incidentally, the power of o for T= 100 corresponds closely to the results of
Bhargava (1986, Tabie II, p. 378) for his test R,, as would be expected.

The results of these experiments are easy to summarize. First, the g, test
dominates the 7, test. Second, the new g test is more powerful than the
Dickey-Fuller g, and 1, tests for T and f such that power is low, and less
powerful than the Dickey-Fuller tests for T and § such that power is high.
This last conclusion is intuitively reasonable. The differences between the
test and the Dickey-Fuller tests is the way in which level and trend are
removed from the data; that is, the way in which parameters representing
level and trend are estimated. The new test estimates these parameters from a
regression in first differences, while the Dickey-Fuller tests estimate these
parameters from a regression in levels. Estimation in differences is superior
when the null is true, or presumably when it is close to being true; that is,
when power is low. On the other hand, estimation in levels is superior when
the null is far from being true; that is, when power is high.

Schmidt and Lee (1991) show that the comparison between the ¢ and 6
tests is qualitatively similar to the comparison just given between the 5 test
and the Dickey-Fuller tests. The 6 test is more powerful than the 6 test when
power is low, and less powerful when power is high. However, the gain in
power when power is low is quite smalil, while the loss in power when power
is higher is more substantial. For this reason they recommend 6 rather than o.

VII CONCLUDING REMARKS

This paper has proposed tests of the unit root hypothesis based on the LM
(score) principle. They are based on a different parameterization than the
Dickey-ﬁjller tests. The choice of a parameterization is to some extent a
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matter of taste. However, the parameterization we use has two important
advantages. First, the meaning of the parameters governing level and trend is
independent of whether or not the unit root hypothesis is true. Second, the
analysis of the distributional properties of both the new tests and the Dickey-
Fuller 4, and £, tests is simplified.

Although the new tests were not derived on the basis of considerations of
invariance, they do have the property that their distributions under the null
hypothesis are independent of the nuisance parameters reflecting level, trend
and variance. Because they were derived as LM tests, they should be
expected to have good local power properties. Our simulation results indicate
that the comparison of their power to the power of the Dickey-Fuller o, and
#, tests hinges on an initial conditions parameter (X} ), and that they should be
more powerful than the Dickey-Fuller tests except for values of this
parameter that are large enough to be unlikely. If X7 is treated as random and
drawn from the stationary distribution of X,/o,, the new tests are more
powerful than the Dickey-Fuiler tests for 7 and f such that power is low, and
less powerful for T and f such that power is high. !

The LM test procedure used in this paper can be used in other settings,
with appropriate modifications to the distributional theory. Essentially, we
have tested the hypothesis that the error in a regression has a unit root, where
the regressors form a deterministic trend. This could be extended to accom-
modate stochastic trends. Thus, if the regressor is an I(1) variable rather than
a deterministic trend, the unit root test becomes a cointegration test. In fact,
the cointegration test of Hansen (1990) can be derived in this way. The
change in the nature of the regressors will change the asymptotic distribution
of the test statistics, but in ways that are presumably straightforward.

A reasonable extension of this paper is to find alternative ways to correct
for error autocorrelation. It is intuitively reasonable, following Said and
Dickey (1984), that we can (asymptotically) correct the 7 statistic for the |
effects of error autocorrelation by including lagged values of Ay, (or AS)) in
the regression-(10) that generates the test statistics. Similarly, Lee and
Schmidt (1991) consider IV tests, analogous to those of Hall (1989) but
based on the regressions (15A) and (15B), and show that they have good size
and power properties in the presence of MA(1) errors.

Michigan State University, MI 48824
Yale University, CN 06520-2125
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APPENDIX |
DERIVATION OF THE LM TEST

We begin with the model as given in equation (4) of the main text. It implies
nw=yp+pX,+&+te
=Byt p(1=-p)+E(t+B-1B)+e,1=2,.., T (AL.1)

We assume that the &,(¢r=1,...,T) are iid N(0,0?) and we treat the initial
condition X, as fixed. Since the Jacobian from (e,,...,&7) to (y,...,y7) is
unity, we obtain the log likelihood

1
20°

T )
In L= constant -5 Ino” - SSE, N (AL.2)

where

"

SSE=(y - 9= BX, = EV' + T [y = By-1) = w(1- B)= &+ B~ 1B)f. (AL3)

1=2

At the maximum 6° =SSE/T and so the concentrated log likelihood is

T
Ln L*=const. - 3 In(SSE/T). (Al.4)
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To derive the MLE's subject to the restriction 8= 1, we note that, when

B =1, SSE simplifies to :

T
SSEp=[yi—v Z (Ay = &P, Yu=p+X, (ALS)

and this is minimized by the restricted MLE's
§=A_y=<)’r’)’x MT-1)
W=y = E=(Ty—y (T 1),

as given in equations (5) and (6) of the main text.
To derive the .M test we need to calculate the efficient score, evaluated at

B=1: .
amu()—1m$
aB 20° 98 (AL7)
It is easy to calculate that
SS !
B Xy v BXam 8=2 T [yos =y £ {3 By,
als =2
= (1= B)=&(t+B— )] (AL8)
Define
St—l=y1—l- “/.)X_é(t— 1)? (AIQ)

as in equation (7) of the main text. Then (A1.8), evaluated at the restricted
MLE’s, becomes

dSSE !
_— (A ) .
35 2,§ y=E€)S,-), (A1.10)

and the score becomes

dln L*~) T 1 T L
25 & 22 (Ay=8)S-1=—= 2 (Ay= (5, -3). (ALLY)

(The last equality holds since (Ay, - &) sums to zero.)
The term Z(Ay,—§)S,_; in (Al.11) is the numerator of the estimated
coefficient (say @) in the regression

1=

™~

Ay,=intercept + ¢S,_ | +error, (Al1.12)
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as given also by equation (10) of the main text. It is also the numerator of the
estimated coefficient in regressions (15A) and (15B), as explained in the main
text. :
To construct the LM test, we also need the information matrix. We
calculate

Finl* -1]_, < ,
= (Xt I ey B (AL
B o

Evaluating (Al.13) at the restricted MLE's, and ignoring X,, (which will be
negligible asymptotically), we have

9’In LX~) 1 L
3B —76: E-:z Ay (Al.14)

We show below that the information matrix is asymptotically block diagonal
between S and [y, &]. Therefore the LM statistic becomes

dInL*( ~)\* [ d'In L* ~)
Y; )/ 5 (Al1.15)

LM=
| =
and using (Al.11) and (Al.14) we have

[Z <Ay,—é>s,-,]’ |
= . (Al.16)

This is the ¢-statistic for the hypothesis ¢ =0 in the regression (15B) of the
main text. :

Finally, it remains to show that the information matrix is block diagonal. A
straightforward calculation yields

&ln L*(~)_ -1 T e

apor =& |t p NS (ALL)
PInLX~)_ o

Yo Xo/d". (A1.18)

The appropriate normalization for the information matrix is 7~2, since T~*
times (A1.14) approaches a limiting distribution, in light of the convergence
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-
T‘ZZsf_,-sz Wridr, §=2. ¢. (A1.19)
! [} i

Here W(r) is the standard Wiener process (Brownian motion) on [0,1]. It is
obvious that T~ times (Al.18) approaches zero. The same is true of (A1.17).
We have

1

T_B/ZZte,-'o[W(l)—J W(r) dr} (A1.20)

)
i .
rf‘“Zs,_.—»oJ W(r) dr. (A1.21)

4

Therefore T~%* times (Al1.17) has a limiting distribution, and 7~° times
(Al.17) approaches zero.

APPENDIX 2
RELATIONSHIPS BETWEEN TEST STATISTICS

We first establish equation (16) of the main text.

LEMMA 1:

.
> ASE.

1=

-
Z ASSI—I ==

=2

~ 2

B | —

[

PROOF:

, ,
2 ASE+2 Y ASS .,

=2 =2

N .]. :I- 1. .I< ,].
=ZSIZ+ZSIZ—I—2ZSISI—I+2ZSISI—I—zz S/:—l
=2

(=2 =2 =2 !

[]
[¥9

, , |
=2 8- 8L =8-8=0.

1=2 =2

S=(T-1)y,~(t= 1)y~ (T—-0)y,].
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LEMMA 3: Define
T-1

=T'YS=T1"2 .

1= =2

ol

Then
§=);’(Y| +yr)/2.
THEOREM 1: Bhargava's R, statistic can be written

T T
= Z ASIZ=—2 Z AS/S—I

=2 (=2
using LLemma 1. For the denominator, note that
8, =3={T= Dy~ (1= Vy;=(T=0y, = (T= V7= (y, +yr) 2B T~ 1)

using Lemmas 2 and 3 and a little algebra. Then the denominator of R,
equals

2 (-3¢

by inspection. ;
From Theorem 1 we see that R, is almost equal to — 24, or equivalently
— 20/ T. The only difference is that the denominator of R, is

T T T 2
>z (5-8y=2 §-1 (Z S)

i =1

whereas the denominator of g is

2 (S =3 =2 Si-(T-1)"" (Z 5) ~

=1

Finally, we wish to establish equation (17') of the text.



LM TESTS FOR A UNIT ROOT 283
THEOREM 2:

[—2T_ 1 ]'”- )
“UT-3 (T-3)) PO

[ 2T _ 1 :l‘l/z'é>0
(T-3)6 (T-3)

PROOF: We will give the proof for ¢ <0; when ¢> 0, only a few signs need
changing. We have

T=

_ a2 _
i= \T=3)7¢ = (7=3) . using Lemma 1

5 assuming @ < 0

=_{ -2 _ 1 :‘—1/z=—r —2T_ 1 :’—1/-
(T-3)§ (T-3) (T-3)6 (T-3)]

APPENDIX 3
ASYMPTOTIC THEORY

(i) Linear Trends

We employ the functional limit theory used in Phillips and Perron (1988) and
some of the subsidiary limit results on partial sums given there. Let W(r) be a
standard Brownian motion on the [0,1] interval, V{r)= W(r)— rW(1) be a
standard Brownian bridge and define

Vir= V(r)—Jl Wirydr=W(r)+ %—r) W(l)-J] W(r\dr.

)

Observe that in L,[0,1], ¥(r) is the projection of ¥{r) on the orthogonal com-
plement of the constant function. Thus ¥/(r) is simply a demeaned Brownian
bridge.

From (18) we have

S=i(e\-'—€>
2
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so that ‘

T='28 7= T~ V28 7y~ ([TFY T)T~ S~ o Wir) = rW(1)) = o V(7)
With this in hand it is easy to see that

T 1
T2Y (8., -SF~ oZJ Wriar. (A3.1)
Further

T2 8-, —-Se=T"2(S_

- DM~
[
U
=
™

Now

T -1 T 1
,6 {T-:Z(S/-l —E)Z} {T-l Z(Sl—l —?)e,}—*,,(—lﬁ)of/ozj l/(r)zdr
! 1 ’ 0

(A3.3)

by joint convergence of the numerator and denominator.
Next observe that

T RIE _
{ P2 (S } Bls (A3.4)
1
where s is the estimated standard error of the regression (10). Since s~ p0e WE

obtain from (A3.1),(A3.3) and (A3.4) the following limit for %

i -1/2
i=(—1/2fo./0) U 14 )Zdr)
(ii) Higher Order Trends

As in the linear trend case, the asymptotics are determined by the behaviour of
the partial sum process S, in (37). Note that from the regression

p-1
Ay=2 b+, (A3.5)

j=0
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We have, under the nuil hypothesis,
Pl )
al=€/— Z (b—b
j=0
Let X be the trend regressor matrix in (A3.5) and define
D;=diag(T,T?,..., T* %)
Then, in conventional regression notation, we have.

Db~ b)=(D}”2X'XD}”2>"(D-'r/zXle)-'OQ"J g(Ndwl) (A3.7)

0

where Q=(q,) with g,=1/(i+j—1) and g(r)=(1,r,...,r’"!). The weak
convergence to (A3.7) follows in a straightforward way using the methods in
Phillips (1987). Next, we observe that

17l '
TN 2 O~ [T T G 1)~ 4 1),
=] :
‘ Hence
L i P=1 e
T2 a=T"8uy— 2 (h=b)|T""* L ¢
=1 j=0 =1

177

= 7725, =(DY(5= b)) D, (T'”z ) ﬂ‘)w%)
i

(A3.8)

)

—O(J dW(S)g(S)') Q0 'q(r)

- aV(r),

i .

=0{Mr)—(J dW(S>g(S>') Q™ 'q(r)
4

where g(r) is pX 1 with jth element r//j. We shall call the Gaussian process

V,(r) a p-level Brownian bridge. Like a conventional Brownian bridge, this

process is tied down on the [0, 1] interval since V,(0) =0 and

dWs)g(s) Q™ 'q(1)

{

V,,(1)=W(1>—J

= W1)- J dW(s)g(s) e,
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=W(1)-J dws)

=0

where we use the fact that Q~'g(1)= e,, the first unit vector.
From (38)in conventional regression notation we have

$=(5'0xS)"(S'QxAY), , (A3.9)

where Q, denotes the usual projection matrix on the orthogonal complement
of the range of X. Now

» 1
750,85~ oZJ Y(ridr (A3.10)
Q)
where
r=1 ]
Y(n=vi{n-2 &
j=0
and

I pet 2
d=argminaj (V,,(r)— 2 a,-r’) dr.

0 j=0

The process V,(r) is a detrended p-level Brownian bridge and is the
asymptotic equivalent of the regression projection QyS.
We also find that

T-'SQ,Ay=T"'$'Qye=T"'8'¢
where £ = Qy¢. But from (A3.6) we have

SI=Z’: [es—pi (5/—l7f>si] =ZI: £

0 1

Thus

T-ISI.&: T Z Sr-lﬁ:
i

ia,) —Zaf}—» -(1/2)0% (A3.11)

1 1

=(2T)“[
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From (A3.9)to(A3.11) we deduce that

p=Tp- —(1/2>of/(ozjl yi)= —(ZJI v

and in a similar fashion the limit of the ¢ ratio #in (38) is found to be

i/2 i -1/2
=—(1/2)(f yﬁ) .

t=—(1/2)d}/0, (UZJ _I{'f,

0




