unit roots

the 20th century, such proposals have had little practical
impact. A unit of account is an economy-wide institution,
and it appears to be both difficult and costly to bring about a
collective decision to replace even a badly functioning one
with a specific alternative. Nevertheless, in conditions of
very rapid inflation, money’s means of exchange and unit of
account functions do tend to become separated, albeit more
often in a piecemeal fashion than as the outcome of any
coherent policy decision. As inflation rises, some stable
forcign currency comes to be more and more widely used as
a unit of account, even when actual transactions are still
completed with local currency valued at the current ex-
change rate. The recent widespread use of the US dollar as
a unit of account in Israel and several Latin American
countries has given rise to the word ‘dollarization’ to
describe this phenomenon.

Davip LambLer
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unit roots. Economic and financial time series are fre-
quently well modelled by autoregressive moving-average
(ARMA) schemes of the type

alLy, = HL)e.;
aiy= 3 alioiy = 3 hL, (n)

where &, is an orthogonal sequence (i.e. E(s,) = 0, E(es,) =
0 for all t#s5), L is the backshift operator for which
Ly, =y,_y and a(L), (L) arc finite-order lag polynomials
whose leading coefficients are ag = by = 1. Parsimonious
schemes (often with p +¢<3) are usually selected in prac-
tice either by informal ‘model identification” processes such
as those described in the text by Box and Jenkins (1976) or
more formal order-selection criteria which penalize choices
of large p and/or ¢. Model (1) is assumed to be irreducible,
so that a(L) and b(L) have no common factors. The model
(1) and time series y, are said to have an autoregressive unit
root if a(L) factors as (1 —L)a,(L) and a moving-average unit

root if b(L) factors as (1 — L)b1(L).
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Much attention has been focused recently on models with
autoregressive unit roots. If the polynomial (L) has all its
zeros outside the unit circle then we may write (1) as

Ay, =u = aI(L)_]b(L)ﬁr (2)

This suggests more general models where, for instance, #,
may be a linear process of the form

w= o= 3 geup with PIRATIINC

or a general stationary process with spectrum f£(A). If we
solve (2) with an initial state at ¢ = 0 we have the important
representation

3
»= Z] u+y = S:+ 50, O

showing that S, and hence y, are ‘accumulated’ or ‘inte-
grated’ processes. A time scries y, that satisfies (2) is
therefore said to be integrated of order one (i.c. it has one
unit root or is an I(1) process) provided £,(0) > 0. The latter
condition rules out the possibility of a moving-average unit
root in the model for », that would cancel the effect of the
autoregressive unit root (c.g. if #(L) = (1 —L)by(L) then
model (2) is Ay, = Aay(L) " 'by(L)e, or, after cancellation, just
¥, = ay(L) " 1h;(L)e, which is not I{1)). Note that this possibil-
ity is also explicitly ruled out in the ARMA case by the
requirement that @(L) and #(L) have no common factors.
The process S, in (4) is often described as a stochastic trend.

The representation (4) is especially important becausc it
shows that the effect of the random shocks 1; on y, do not dic
out as —j grows large. "T'his means that the shocks #; have a
persistent effect on y, in this model, in contrast to stationary
systems. Whether actual economic time series have this
characteristic or not is of course an empirical issue. The
question can be addressed through statistical tests for the
presence of a unit root in the series, a subject which has
grown to be of major importance in recent years and which
will be discussed later in this essay. From the perspective of
economic modelling the issue of persistence is also impor-
tant because if macroeconomic variables like real GNP have
a unit root then shocks to real GNP have permanent effects,
whereas in traditional business cycle theory the effect of
shocks on real GNP is usually considercd to be only
temporary. In more recent real business cycle theory vari-
ables like real GNP are modelled in such a way that in the
long run their paths are determined by supply side shocks
that can be ascribed to technological and demographic
forces from outside the model. Such economic models are
more compatible with the statistical model (4).

Permanent and transitory effects in (4) can be disting-
uished by decomposing the process #, in (3) as follows:

u = {C()+ (L - 1CL}e,
=C(e,+&_1— &, ®

where &= C(L)e,, C(L)=2Fz1/ and §=276- The
~oo 172
decomposition (5) is valid algebraically if 35 gl <
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Equation (5) is called the Beveridge-Nelson (1981) or BN
decomposition of #,. When it is applied to (4) it yields the
representation

!
3= CO) . e+ Eo—Eityo

= 0(1)2:5,-+g,. ©)

Under (6) we have a direct decomposition of y, into two
components, one where the effects of shocks are permancnt,
viz. C(1)Z1¢;, and the other where the cffects of shocks are
transitory, viz. § = €y — &,+ ¢ (since &, is stationary). The
first component is the martingale or random walk compo-
nent of y, and its relative strength is measured by the
magnitude of the coefficient C(1).

Model (4) is of special interest to economists working in
finance because its output, y,, behaves as if it has no fixed
mean and this is a characteristic of many financial time
series. Indeed, if the components #; are independent and
identically distributed (iid) then y, is a random walk. More
generally, if %, is a martingale difference sequence (mds) (i.e.
orthogonal to its own past history so that E._(x) =
E(ujlu,-_l JUi—2, ..., uy) = Q) then y, is a martingale.
Martingales are the essential mathematical elements in the
development of a theory of fair games and they now play a
key role in the mathematical theorv of finance, exchange rate
determination and securities markets. Duffie (1988) pro-
vides a modern treatment of finance that makes extensive
use of this theory.

In empirical finance much attention has recently been
given to models where the conditional variance £ (uff!uj_l,
Woo, ..., u) = UJZ- is permitted to be time varying. Such
models have been found to fit financial data well and many
different parametric schemes for cr,z- have been devised, of
which the ARCH (autoregressive conditional heteroskedas-
ticity) and GARCH (gencralized ARCH) models are the
most common. These models come within the general class
of models like (1) with mds errors. Some models of this kind
also allow for the possibility of a unit root in the determining
mechanism of the conditional variance (rj-z and these are
called integrated conditional heteroskedasticity models. The
IGARCH (integrated GARCH) model of Engle and Bol-
lerslev (1986) is an example, where for @=0,8=0 and
«> 0 we have

2 2 2
o =w+ B0 tau_y;
w=a;z,atp=1

2 _ 2 2 2
a; = w+a;tag (g, — 1), (7)

and the innovations z; are iid with E(z;) = 0 and E(zjz)
= L. It is apparent from (7) that this model for o% has an
autoregressive unit root and, indeed, since

E(U;z'icjz—l) = UH‘U;'Z—l,

Gf is a martingale when w = 0. It is also apparent from (7)
that shocks as manifested in the deviation z7_;—1 are
persistent in O'jzu Thus o-f shares some of the characteristics
of an I(1) integrated process. But in other ways, 0}7’ is very

different. For instance, when « = 0 then oj"f—»O almost
surcly and when >0, o-]z~ is asymptotically equivalent to a
strictly stationary and ergodic process. These and other
features of models like (4) for conditional variance processes
with a unit root are studicd in Nelson (1990).

In macroeconomic theory also, models such as (2) play a
central role in modern treatments. In a highly influendal
paper, Hall (1978) showed that under some general condi-
tions consumption is well modelled as a martingale, so that
consumption in the current period is the best predictor of
future consumption, thereby providing a macroeconomic
version of the efficient markets hypothesis. Much attention
has been given to this idea in subsequent empirical work.

One generic class of economic model where unit roots
play a special role is the ‘present value model” of Campbell
and Shiller (1988). This model is based on agents’ forecast-
ing behaviour and takes the form of a relationship between
one variable Y, and the discounted, present value of rational
expectations of future realizations of another variable
Xwi(i=0,1,2,..). More specifically, for some stationary
sequence ¢, (possibly a constant) we have

Y= 00-8) " SEM) +a ®
i=0

When X, is a martingale, E,(X,+;) = X, and (8) becomes
V,=0X,+¢ 9

so that ¥; and X, are cointegrated in the sense of Engle and
Granger (1987). More generally, when X is I(1) we have

Y, =0X,+¢,

where ¢ = ¢, + 035_18"E,(AX,.), so that Y; and X, are also
cointegrated in this genecral case. Models of this type arise
naturally in the study of the term structure of interest rates,
stock prices and dividends and linear-quadratic intertem-
poral optimization: problems.

Statistical tests for the presence of a unit root fall into the
two general categories of classical and Bavesian, corres-
ponding to the mode of inference that is employed. Maost
empirical work to date has used classical methods but
attention has very recently shifted to Bayesian alternatives.
Both approaches will be discussed in what follows.

Classical tests for a unit root may be classified into
parametric, semiparametric and nonparametric categories.
Parametric tests usually rely on augmented regressions of
the type

k=1
Ay =ay+ Z CRAVINE o (10)
1

where the lagged variables are included to model the
stationary error #, in (2). Under the null hypothesis of a unit
root, we have @ = 0 in (10) whercas when y, is stationary we
have a <0. Thus, a simple test for the presence of a unit root
against a stationary alternative in (2) is based on a one-sided
t-ratio test of Hy: @ =0 against Hy: a<<0. This test is
popularly known as the ADF (or augmented Dickey—Fuller)
test. It has been extensively used in empirical econometric
work since the Nelson and Plosser (1982) study, where it
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was applied to 14 historical time series for the USA leading
to the conclusion that unit roots could not be rejected for 13
of these series (all but the unemployment rate). In that study
the alternative hypothesis was that the series were stationary
about a deterministic trend (i.e. trend stationary) and there-
fore model (10) was further augmented to include a linear
trend, viz.

k-1
b= ptBit@ot ) elyte.  (0)

When y, is trend stationary we have a<<0 and B#0 in (10),
so the null hypothesis of a difference stationary process is
a=0 and B = 0. This null hypothesis allows for the pre-
sence of a non-zero drift in the process when the parameter
w#0. In this case a joint test of the null hypothesis Hy:
a=0, B =0 can be mounted using a regression F-test.
What distinguishes both this test and the corresponding
t-test in (10) is that critical values for these tests are not the
same as those for conventional regression F~ and r-tests,
even in large samples. Under the null, the limit theory for
these tests involves functionals of a Wiener process and
typically the critical vatues for five or one percent levetl tests
are much further out than those of the standard normat or
chi-squared distributions. The limit theory was first ex-
plored and tabulations provided by Dickey (1976), Fuller
(1976) and Dickey and Fuller (1979, 1981). Later work by
Said and Dickey (1984) showed that if the lag number £ in
(10) is allowed to increase as the sample size increases then
the ADF test is asymptotically valid.

Several other parametric procedures have been suggested
including instrumental variable methods (Hall 1989; Phillips
and Hansen 1990) and variable addition methods (Park
1990). The latter also allow a null hypothesis of trend
stationarity to be tested directly, rather than as an alternative
to difference stationarity. Another approach that provides a
test of a null of trend stationarity is based on the unobserved
components representation

h=p+Brtrntu, rn=rn_1+u, an

which decomposes a time series y, into a deterministic trend,
an integrated process or random walk (r,) and a stationary
residual («,). The presence of the integrated process compo-
nent in y, can then be tested by testing whether the variance
(c2) of the innovation v, is zero. The null hypothesis is then
Hg: o> =0 and this hypothesis can be simply tested using
the Lagrange multiplier (LM) principle as in Kwiatkowski,
Phillips and Schmidt (1990).

By combining r, and #, in (11) the components model may
also be written as

Yi=ptprtr, Ax=an_+tm,. (117

In this format it is easy to construct an LM test of the null
hypothesis that y, has a stochastic trend component by
testing whether 2 = 0 in (11). When a = 0, (11’) reduces to

¢
Ap=Bim or y=Bre Dy, (1)

and so the parameter p is irrelevant (or surplus) under the
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null. However, the parameter B retains the same meaning as
the deterministic trend term coefficient under both the nult
and the alternative hypothesis. This approach has formed
the basis of several tests for a unit root that have been
developed (sce Bhargava 1986 and Schmidt and Phillips
1989) and the parameter economy of this model gives these
tests some advantage in terms of power over proccdures like
the ADF in the neighbourhood of the nuil.

Semiparametric unit root tests use nonmparametric
methods to model and to estimate the contribution from the
stationary error %, in (2). Direct least squares regression on
the equation

Ay =ay,+u, (107

gives an cstimate of the coefficicnt and its -ratio in this
cquation. These statistics are then corrected to deal with
serial correlation in #, by employing an estimate of the
variance of %, and its long-run variance, which is the value of
the spectrum of #, at the zero frequency. The latter estimate
may be obtained by a variety of kernel-type spectral esti-
mates using the residuals 4, of the OLS regression on (107).
This semiparametric approach was introduced in Phillips
(1987) and leads to two test statistics from (10”), one based
on the coefficient estimate and called the Z(a) test, the other
based on its ¢-ratio and called the Z(¢) test. the Z(z) test and
ADF test are asymptotically equivalent. Semiparametric
corrections can also be applied to the components modcls
(11) and (11') leading to generally applicable LM tests of
stationarity (0'3 = 0) and stochastic trends (a = 0).

More general nonparametric tests for a unit root are also
possible. These rely on frequency domain regressions on
(10" over all frequency bands. They may be regarded as
fully nonparametric because they test in a general way for
coherency between the series y, and its first difference Ay,.

The Z(a), Z(t) and ADF tests are thc most commonly
used tests in empirical research. Extensive simulations have
been conducted to evaluate the performance of the tests.
It is known that the Z(g), Z() and ADF tests all perform
satisfactorily except when the error process #, displays strong
negative serial correlation. The Z(a) test generally has
greater power than the other two tests but also suffers from
more serious size distortion. All of these tests can be used to
test for the presence of cointegration by using the residuals
from a cointegrating regression. Modification of the critical
valucs used in these tests is then required — see Phillips and
Ouliaris (1990).

Attention has also been given to models like (107) where
there are structural breaks in the intercept (p) and trend
coefficient (B). Such models attach unit weight and hence
persistence to the effects of innovations at particular times in
the sample period. To the extent that persistent shocks of
this type occur intermittently throughout the entire history
of a process, these models are very similar to models with a
stochastic trend. However, if only one such break occurs (or
more generally a finite number of breaks) then the process
does have different characteristics from that of a stochastic
trend. Attempts to distinguish empirically between models
with stochastic trends and models with structural breaks
have been performed but with mixed results that dep’cnd on
assumptions made about the timing of the break points. If
the break points are known in advance, as in Perron’s (1989)
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treatment (viz. the 1929 crash and the 1974 oil shock), both
theory and application are simple, but the empirical results
obtained are often not robust to the more important case
where the break points are permitted to be random (c.g.
Christiano 1988, Zivot and Andrews 1990).

Most empirical work on unit roots has relied on classical
tests of the type described above. But Bayesian methods are
also available and appear to offer certain advantages like an
exact finite sample analysis. In addressing the problem of
trend determination, traditional Bayes methods may be
employed such as the computation of Bayesian confidence
sets and the use of posterior odds tests. In both cases prior
distributions on the parameters of the model need to be
defined and posteriors can be calculated either by analytical
methods or by numerical integration. If (10) is rewritten as

k=1
Y= Wit Z} LRAVAE S 3 (10

then the posterior probability of the nonstatiopary sct
{p=1} is of special interest in assessing the evidence in
support of the presence of a stochastic trend in the data.
Posterior odds tests typically proceed with ‘spike and slab’
prior distributions (w) that assign an atom of mass such as
w(p=1) =0 to the unit-root null and a continuous dis-
tribution with mass 1 — 6 to the stationary alternative, so that
w(p<1)=1—9. The posterior odds then show how the
prior odds ratioc 6/(1—9) in favour of the unit root is
updated by the data. Clearly, the input of information via the
prior distribution, whether deliberate or unwitting, is a
major reason for potential divergence between Bayesian and
classical statistical analyses. Methods of setting an objective
correlative in Bayesian analysis through the use of model-
based, impartial reference priors that accommodate nonsta-
tionarity are therefore of substantial interest. These are
explored in Phillips (1991a).

Empirical illustrations of the use of Bayesian methods of
trend determination for various macroeconomic and finan-
cial time scries are given in DeJong and Whiteman (1991a,
1991b), Schotman and Van Dijk (1991) and Phillips
(1991a), the latter implementing an objective model-based
approach. Most recently, Phillips and Ploberger (1991) have
developed a class of ‘Bayes model’ tests (including a post-
erior odds test) that take account of the fact that Bayesian
time series analysis is conducted conditionally on the real-
ized history of the process. The mathematical effect of such
conditioning is to translate models such as (10) to a ‘Bayes
model’ with time-varying and data-dependent coefficients,
that is,

— k-1
Jie1 = ‘A)ryl + Z ‘biIA)’l—i t &1, (loun)
1

where (p,, &;;i=1,..., k— 1) are the latest best estimates
of the coefficients from the data available to point 4’ in the
trajectory. The ‘Bayes model’ (10”) and its probability
measure can be used to construct likelthood ratio and
posterior odds tests of hypotheses such as the unit root null
p=1. Some empirical illustrations of this approach are
given in Phillips (1991b, 1991¢).

Nonstationarity is certainly onc of the most dominant and
enduring characteristics of macroeconomic and financial
time series. It therefore seems appropriate that this feature
of the data be seriously addressed both in econometric
methodology and in empirical practice. However, until
recently this has not been the case. Before 1980, it was
standard empirical practice in econometrics to treat
observed trends as simple deterministic functions of time.
Nelson and Plosser (1982) challenged this practice and
showed that obscrved trends are better modelled if one
allows for stochastic trends. Since their work there has been
a continuing reappraisal of trend behaviour in economic
time series and substantial development in the econometric
methods of nonstationary time series. This essay has
touched only a part of this large research field and traced
only the main ideas involved in unit root modelling and
statistical testing. The rcader may consult recent reviews by
Diebold and Nerlove (1990), Dolado et al. (1990) and
Campbell and Perron (1991) and special issues of the Oxford
Bulletin of Economics and Statistics (1986, 1992), the Journal_
of Economic Dynamics and Control (1988), Advances in
Feonometrics (1990) and Econometric Reviews (1992) for
additional coverage of the field.

Perer C.B. PruLLies
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