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1. INTRODUCTION

Most theoretical and empirical econometric work in the field of
nonstationary time series has used classical statistical methods. However,
interest has lately begun to shift to Bayesian alternatives. Many
econormetricians (e.g. Geweke, 1988, Leamer, 1978 and 1988, Poirier,
1988, Zellner, 1971) find the Bayesian paradigm well suited to problems
of inference in econometrics. Some econometricians (Sims, 1988, Sims
and Uhlig, 1988/1991, and DeJong and Whiteman, 1989, 1991) have even
suggested that the Bayesian approach is actually superior to classical
econometric methods in time-series applications. Most recently, the
author (1991c, 1991d) has taken issue with this latter view and put
forward a different perspective which argues for the use of impartial or
objective Bayesian methods in time-series analysis, especially with respect
to the empirical issue of trend determination. This perspective puts value
on both classical and Bayesian approaches. Moreover, in joint work with
W. Ploberger, the author has gone further in reconciling Bayesian and
classical methods of time-series analysis. Phillips and Ploberger (1991)
studies the impact of data conditioning, via the operation of the likelihood
principle, on Bayesian analysis and provides a new class of Bayesian lests
that includes a Bayes model posterior-odds test for the presence of a



288 Peter C.B. Phillips

stochastic trend. This latter test has interesting asymptotic properties
(unlike classical tests it is completely consistent in the sense that both type
I and type Il errors go to zero as the sample size tends to infinity); it has
excellent performance in finite samples; and it is especially easy to apply
in empirical research.

The present paper will provide an overview and empirical illustration of
these new Bayesian methods of trend determination. Attention will focus
on the use of model-based reference priors, as advocated in Phillips
(1991d) and on the objective posterior-odds test developed in Phillips and
Ploberger (1991). These methods will be used both for trend analyses of
individual time series and for studying relations between series. The
methods will be illustrated by an empirical application to the Australian
consumption function which is the main subject of the paper. This
application takes a new look at the consumption-income data studied by
Hall and Trevor (1991) and seeks to resolve some of the puzzling
empirical outcomes in their results concerning the presence of a
cointegrating relationship for the nominal data but not for the real data.

2. OBJECTIVE BAYESIAN METHODS OF TIME-
SERIES ANALYSIS

This section will provide a brief overview of recent work by the author
(1991d and e) and joint work with Werner Ploberger (1991) and Eric
Zivot (1991) concerned with the development of objective Bayesian
methods of analysing time series. These papers set out to provide an
objective correlative for more traditional subjective Bayesian methods.
Two distinguishing features of Bayesian analysis are addressed in this
work: priors and data conditioning. These will be considered in turn.

2.1. Objective Priors and Bayes Confidence Sets

Clearly, the input of information via the prior distribution, whether it is
deliberate or unwitting, is a major reason for potential divergence
between classical and Bayesian stalistical analyses. A conventional
mechanism for achieving an impartial or objective analysis is to use a flat
(or diffuse) prior on the regression coefficients. In the linear regression
model with fixed regressors this approach leads to Bayes confidence sets
from the posterior distributions that are identical with classical confidence
regions under Gaussian assumptions. The same is not true in time-series
models. There are further complications in time-series models arising
- from the discontinuity in classical asymptotic theory between stationary
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and nonstationary models. No such discontinuity occurs in a Bayesian
analysis because the approach is exact or approximate (depending on the
numerical and analytic methods that are employed) for the given data and
sample size (T). No consideration is given to (T — =) limit theory in the
derivation of Bayes confidence sets. In linear time-series models with
Gaussian errors these confidence sets are actually identical to those that
would apply for the conventional linear regression model (see Zellner,
1971, and Malinvaud, 1980, for expositions of traditional Bayesian
analysis in the linear regression model).
To illustrate these background ideas consider the AR(1) model

Y =Pyt Hu, t=1,....T )

with u, = iid N(O, 02). Conditioning on the initial Qalue Yo the Gaussian
likelihood follows from the density

Y 1 T 2
Omoon)=(o5z) erlsp oo f| @

Assuming a flat prior for (p, log o) leads to the usual diffuse prior for
(p, o), viz.

n(p,o)x;‘; 3)

Bayesian analysis of (1) under this prior is identical to that of the linear
regression model. The joint posterior distribution is

petrn)=(2) " enf-(sLr fm@r+o-pPm0]} @

where
“ 2
p= Zylyl—l /z)’:-l ,
- 2
’”(}’) =Y ¥
m(i)=3 i’
and

The marginal posterior for p is
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TR

Pe (P17, 30) = [m(@) +(p =)’ m(y)] ®

This posterior for p (we use the affix ‘F’ to signify that a flat prior is
used) is a univariate 1, distribution. Observe that p is symmetrically
distributed about the OLS estimate p.

The prior (3) has in the past been taken to be 'uninformative’ about p in
the sense that p values in any two intervals of the real line of equal length
are equally likely a priori. However, this. flat prior actually ignores
information that we have from the AR(1) model about the way p values
affect sample behaviour. Sample behaviour is known to be very different
for p values in different intervals especially between stationary (Ipl < 1)
and nonstationary (Ipt 2 1) regions, and this represents prior knowledge
based on the postulated AR(1) model. In my (1991d) paper 1 argued that
an objective prior for p in a model such as (1) that allows for stochastic
nonstationarity should incorporate such model-based information. Thus,
when ipl 2 1 in (1) we anticipate confidence regions for the true value p
to be tighter than when Ipl < 1. This expectation should be represented in
an objective prior on the autoregressive coefficient p. Thus, even though
the true coefficient p is unknown, an ebjective prior on p will reflect the
knowledge we have about the AR(1) model that, were ipl to be large, the
data would be much more informative about p. This generic model
characteristic that confidence sets will be tighter when ipl is large is
neglected in a flat prior. In treating all values of p as equally likely, the
flat prior unwittingly carries information that downweights large values
of p. In so doing, Bayesian inference under a flat prior on p will be
distorted by information that will bias the posterior towards stationary
alternatives. In time-series models with deterministic trends it is therefore
hardly surprising that Bayesian inference under flat priors strongly
favours trend-stationary alternatives. The simulations in my (199ic)
paper make these distortionary effects of flat priors quite evident.

The alternative approach that was suggested in my (1991d) paper is to
use an information matrix prior. This achieves certain desirable
invariance properties (such as posteriors being invariant to I:]
transformations of the parameters) and encapsulates model characteristics
such as anticipated tighter confidence sets for lpl large. The idea of such
priors goes back to Jeffreys (1946). Since then they have attracted
considerable interest and come within a more general class of "ignorance’
priors that possess useful invariance properties and seek to represent the
notion of 'knowing little' a priori. If we set
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lgg= -E{(a 1 636" )log £ (x o))}

for a famlly of probability densities f(xI 0) indexed by the parameter
6e®cR" then Jeffreys' suggestion was the' prior

7(0) o< |lgq|" ©)

For the model (1) and allowing p to take both stationary values, this
approach leads to the prior

#(p.6 )«—1"2 ™
where
(T 1 l—p" (!Q)zl_pzr
- + —, p#l
1-p* 1-p" 1-p* \0) 1-p
Top =7

2
2 o

which is continuous in p for ~ee <p<es  This prior depends on yq, which
is the given initialization of the model, and the sample size T. The latter
dependence is especially important. The Jeffreys prior (7) recognizes the
information content of the sample variance of the regression in this model,
and it also recognizes that this information will grow as T increases and at
a geometric rate when p> 1.

The marginal posterior for p is obtained by integrating the product of
(2) and (7) with respect to 0. The (1991d) paper used a Laplace
approximation to reduce this integral directly to

\

ps(ply) = ao(e)” 2[m(ii) +(p-3) m(y)]—m ®

where the affix °J’ signifies the use of the Jeffreys prior (7) and where
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[ T
T2_ 121 pT- p#l
I-p° 1-p° 1-p
ao(e)l/2=‘
T(T-1) 1
S

is the effective contribution of llfo2 to the posterior. Unlike (5), the
posterior density (8) is not symmetric about §. It has one mode close to
P and, depending on the values of B, m(ii) and m(y), often has a second
mode around some p> 1. As is shown in the (1991d) paper, posterior
inferences that are based on (8) can be very different from those based on
(5). In general, (8) is less subject to the downward bias that the F-
posterior (5) inherits from the estimator on which it is centred.

Empirical models usually allow for a more complex dynamic structure
than (1) and also for the possibility of deterministic trends. An extension
of (1) that is popular in applied work is the model

k-1 ,
y(t)=p+Pt+py,_ +3, @8y, tu=p+Pt+py_+@' x, +u, (9)

The parameter p in (9) is the long-run autoregressive coefficient and the
key parameter in determining the long-run stochastic behaviour of y,
(note that the spectrum at the origin of detrended y, depends only on p).
The hypothesis

Hp p=1 (10)

corresponds to the presence of a stochastic trend in y,. To determine the
support in the data for (10) by traditional Bayesian methods requires the
use of the posterior-odds ratio in favour of (10) and this in turn requires
the assignment of some prior mass to the sharp (or point null) hypothesis
(10). Neither F-priors like (3) nor J-priors like (7) accommodate this
possibility. Instead, some spike and slab prior is usually employed and it
is difficult to find a suitable objective correlative in this approach. An
alternative approach to ‘objective’ posterior-odds testing will be described
in the following section.

Another possibility for assessing the empirical evidence in support of
stochastic nonstalionarity is to evaluate the posterior probability (or Bayes
confidence) of the nonstationary set {p 2 1) using the marginal posterior
of p. This approach is used in the (1991d) paper and was first employed
by DeJong-Whiteman (1989, 1991) for a different parameterization of (9)
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in which p is replaced by the modulus of the largest root of the
characteristic equation.

The computation of Bayes confidence sets involving p requires the
assignment of a prior distribution for the parameters of (9) (i.e. ¥+2
coefficients and the error variance 02) The (1991d) paper uses an
approximation to the Jeffreys information matrix prior that has the form

w{pu1.8.0) < ™+ Hag(p) + oy (P )/ 0} an
() =T(1-67)-(1-5%) " (1-¢"").

(pa8)= S]ut1-p)"(1=0' )+ 8- 'i=p1-p) (1~ ol

where

and

This leads to a posterior for p of the (approximate) form

Py (ply) < ag(e) [ m(@) + (=Y my (D] (12)

where V is the matrix of observations of (l,t.Ay,_,,...,Ay,_k“)‘ and in
conventional regression notation

'"v(}’)=}"_| Qvy_

Qv =1-v(vv)y'ly

. T.2
m(i)=3, &

and

-

" A - k=1
=Y, —A=Bt-py -, 0,4y

are the OLS residuals.

The posterior (12) has properties analogous to those of (8) in the simple
AR(1) model. In empirical applications (12) often leads to results that are
quite different from those obtained with a flat prior, which for the model
(9) leads to the posterior

pr(ply) = [m )+(p-7) mv(y)] (T-k-1)2

(13)
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analogous to (5) in the simple model.

One disadvantage of (11) is that the prior is flat for @ and thereby fails
to account for interactions between the long-run parameter p and the
transient dynamic parameters @ in determining the information matrix.
Zivot and Phillips (1991) address this issue and derive a generalization of
(11) that takes this dependence into account. Their prior has the general
form

n(pa.B.p) = 0“3|Ao(p.rp) +07A (p,u.ﬁ.rp)r/2

(14)
for certain matrices that depend on (p, 4,8, ) and that can be calculated
readily by recursion (the formulae are given in Section 2.3 of Zivot and
Phillips, 1991). Zivot and Phillips show that direct use of (14) leads to an
improper posterior for p and they therefore suggest a class of modified
Jeffreys priors that are indexed by a single parameter €. These &-priors
have the general form

k 12 2 £
"e(qu’)“{nnaoﬁ(P»?)} exl’{‘P b )} (15)
where
cp =~(4e) +(4e) 1 +4e(Tk - 4,)}'
dy =1+(k+1)(k+2)/2
and a,; is the i'th diagonal element of the matrix Ay(p.p) in (14).

The value of £ in (15) is set by the investigator. The function ¢, (&) is
determined as the solution of an optimization problem so that the modal
value of the prior (15) occurs around p = l+¢, after which the prior falls
away rapidly. Thus, for priors in the family (15) low prior probability is
attached to values of p much greater than I+&. Suitable choices of € in
various practical applications (we mention an important one below) might
be €= 0.001, 0.01, 0.025, 0.05 and posteriors for a range of plausible
values might be computed to indicate potential fragilities in inference.
Note that (15) is also dependent on the lag parameter k and this parameter
does influence the shape of the prior.

Figures 11.1(a) and (b) display these priors as a function of p for
selected values of £ and £ and for ¢ = 0 against the standard Jeffreys
ignorance prior (7) with o = 1 and y, = 0. As is apparent from Figure
11.1(a), larger values of ¢ delay the mode and, as € increases, the prior
approaches the ignorance prior from below when k£ = 1. Figure 11.1(b)
reveals that for k> | (with & = 0.05) the prior (15) attaches more weight
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Figure 11.1: Prior densities for p.
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to stationary alternatives than the ignorance prior but rises in the same
way as p approaches unity from below. Apgain the e-priors fall away
rapidly from their peak as p increases beyond the modal value. The
import of Figure 11.1(b) is that when & > | the ¢-prior gives more weight
to both stationary p and p in the vicinity of unity than the ignorance prior,
but much less weight than the ignorance prior to values of p greatly in
excess of unity.

One area of application where the e-priors would seem to be especially
useful is in the analysis of residuals. Models (1) and (9) may be used both
for raw data and for residuals from regressions. For (9) in the latter case
we typically set u=f=0 and in this format the equation corresponds to
the augmented Dickey-Fuller (ADF) regression suggested by Engle-
Granger (1987) for testing a null of no cointegration (i.e. p = 1) by using
the residuals from an OLS regression fitted according to the hypothesized
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relationship. By virtue of the construction of the data as residuals in this
case, it seems sensible to attach less prior weight to extremely large (i.e.
explosive) values of p. However, in order to properly allow for the
possibility of no cointegration in the original data, for which p = 1 in the
model for the residuals, we need to anticipate that the residual data may be
more informative in this case so that an objective prior should increase as
p approaches unity. The e-priors capture these notions well and therefore
seem like an appropriate family of priors when a general model like (9) is
used for fitting residuals. Section 3 provides an empirical application of
these priors in precisely this context.

Posterior distributions for the parameters of (9) are obtained in Zivot
and Phillips using Laplace approximations for the general family of &-
priors (15). The form of the posterior for p, which will be our main
interest in the present paper, is analogous to (12) above. From Theorem |
of Zivot and Phillips we have the explicit expression

pe(ply) = {nfaoii(pv é"(p))}uz exP{'chk (e)}[m(l?) + (P - ﬁ)z my (y):]—(T—-k‘l)/2

where @(p) is obtained from the appropriate element of 5’:(;2,[;,@’)
where

=5+(v'v)y'v'y_ (p-p)

and ﬁ3 '} are the OLS estimates of the coefficients in (9).

Bayes confidence sets can be compuled directly from the posterior
density formulae (12), (13) and (16) using one dimensional numerical
integration. Thus, posterior probabilities of the nonstationary set {p 21}
are given by

Pi(p21)=[ps(p1y)dp

p
Pe(p21)=["pr(ply)dp an
p

These calculations typically take only a few seconds on a desktop 386 — 20.
Thus, the approach is eminently feasible for empirical research.
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2.2 Data Conditioning, the Bayesian Frame of Reference, and
Objective Posterior Odds

Phillips and Ploberger (1991) show that classical statistical models like (1)
and (9) take on a new statistical meaning when they are employed in a
traditional Bayesian framework. In fact, the use of the likelihood
principle that underlies all Bayesian inference involves data conditioning
in the context of the specified likelihood function. This in turn implies the
use of a 'Bayes model' associated with the historical time-series trajectory
on which the Bayesian inference is based. The methods of the Phillips and
Ploberger paper involve some stochastic process theory to elicit this
‘change of geometry' or 'frame of reference' as it is referred to in that
paper. The main ideas can be easily explained in the context of the AR(1)
model (1).

With reference to (1), let h = p-1, 02=l, P,,p be the probability measure
of ¥, =( Y );' and P, = I’,,l (corresponding to the random walk case). Then
the likelihood function given Y, can be written in terms of & as

L, =dP’/dP,
»\2 " 2
=exp{(l/2)h"An}exp{—(l/2)(p—pn) A,,}

= exp{(l/2)1?3A,,}exp{-(1/2)(/1—/?,, )2 A,,} (18)

where /i, =, -1, p, is the OLS/MLE of p based on ¥, and A, = Jy? .
Equation (18) is just the likelihood function (2) given earlier, standardized
by its value at p = | (which corresponds to the reference measure). From
(18) it is apparent that only the second factor for L, is important for
likelihood-based inference about p. This factor produces the symmetric
Gaussian shape of the likelihood about j,, and hence that of the posterior
based on a flat prior for p (cf. p(ply) as given in (5)). Note that L, may
be written in a more revealing manner as follows:

L, =[A,;”2 exp{(uz)ﬁ,fA,,}]N(ﬁ,,,A;‘) (19)
o N(ﬁn,A;') (20)

In (20) we get the Gaussian posterior for p about j, that applies under a
flat prior. Note from (19) and (20) that deviations of p from pJ, are
measured in units that are determined by A, =ny,2_,. This changes the
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geometry of inference. Conditional on A, the likelihood for p and the
posterior is Gaussian, but the conditioning under which this is true is not
innocuous. The passage to the posterior via the proportionality sign that
appears in (20) eliminates the first factor of (19). This factor is data
dependent only and does not figure in traditional Bayesian inference (it is
absorbed into the proportionality sign). But, as Phillips and Ploberger
(1991) shows, this factor changes the reference measure from P, (the
measure of the unit root model) to a conditional Bayes model measure in
which p, figures prominently, viz. the measure for the model

Va1 = B ¥y 1)
Writing the proportionality factor in (19) as
M, =A"? exp{( 1 /2)12,3/4,,} 22)

we can show that M, is a local L, martingale (in fact, M satisfies the
martingale conditional expectation property E, ;M =M __,;). It may be
regarded as a likelihood ratio (density) process, which we write as
de / dF,, and as such it defines the measure, Qf , of the 'Bayes model'
(21) in which the parameter j, evolves according to the MLE from the
latest available data. The measure Qf is o-finite but induces a probability
measure for (21) as soon as we condition on minimal information for the
construction of g, (clearly at n = O there is no data to construct g, and
thus the model and measure Qf are undefined without suitable
initialization). Phillips and Ploberger show how to use (22) for 'Bayes
model' likelihood ratio (BLR) tests and posterior-odds tesis and they
develop an asymptotic theory for likelihood-based inference along these
lines under general regularity conditions.

For the purpose of our subsequent empirical application it is the Phillips
and Ploberger (BLR) posterior-odds test that is most useful. We illustrate
the form this test takes in the case of the AR(1) model (1) and the AR(k)
model (9). Let us start with the AR(1). Suppose we wish to test the point
null Hy:p=1, i.e. (10) above. In the Phillips and Ploberger geometry the
alternative ‘Bayes model' is the evolving parameter model (21), which we
call model B. The Bayes model measure of B is denoted Qf in Phillips
and Ploberger notation and the Bayes model posterior-odds criterion is
based on the likelihood ratio de / dP, which is the Radon-Nikodym (RN)
derivative of Qf with respect to the reference measure P, for the random
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walk that applies under H;. When o = 1 is known, this RN derivative is
simply (22) as given above. When o is 10 be estimated, we use

id® (4 -112
SAH) g e

where &2 is the usual OLS estimator of o®. The decision for testing H,
against B is then simply

Ldg) m o ,
if =2 > =L decide in favour of model B (i.e. (21))
ar, m, .
08
if P" <;L decide in favour of H, (i.e. model (1) with p = 1)
n Tp

where /7, is the prior-odds ratio. Setting #; /7, =1 then leads to a
very simple test criterion for the presence of a unit root in the model (1).

This idea is generalized to more complex models like (9). In this case it
is helpful to rewrite (9) as

k-1
Ay, =hy,_, +zl @48y, +H +Pt+u, (24)

with u, = iid N(0,0%). Suppose we wish to employ a Phillips and
Ploberger (BLR) posterior-odds test of & = 0, i.e. a unit root in (24).
Th:s is achieved by using the RN dcrxvambe of the Bayes model measure
Q (i.e. h unrestricted) with respect to Q,° (i.e. h restricted to h = 0).
Calculations in Phillips and Ploberger (1991b) show that

dQn exp{(l/Z)h Y _10yy- 1/0' }
dQ"0 {y_l Oy, G }/2

(25)

where h =p, -1 is the MLE/OLS estimator of A in (24) and 0' is the
corrcspondmg estimator of o?. Our decision rule with cqual prior odds is
then simply
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By
if a0, <1 decide in favour of the hypothesis Hy: h = 0 in (24)
dg,

B,
n

(i.e. model (9) with p=1) (26)

Tests based on the criterion (25) will be applied extensively in our
empirical work that follows. We shall use the test for evaluating the
evidence in favour of stochastic trends in the raw data and for testing
whether there is cointegration in the time series by using regression
residuals.

3. THE AGGREGATE AUSTRALIAN CONSUMPTION
FUNCTION

This section reports an empirical application of the Bayesian methodology
just described to aggregate Australian macroeconomic data. The Bayesian
methods are used in conjunction with classical statistical procedures. This
facilitates comparisons of the empirical results and highlights the ways in
which the different methods elicit information from the data. Specifically,
this application is to Australian data on household disposable income,
private consumption expenditure, inflation and liquid assets. Our main
focus of attention is the long-run form of the Australian consumption
function.

3.1 Earlier Work and Empirical Puzzles

There have, of course, been many previous studies of the Australian
consumption function such as those, in chronological order, by Amdt and
Cameron (1957), Smyth and McMahon (1972), Freebaim (1976), William
(1979), Anstie, Gray and Pagan (1983), Johnson (1983), McKibbon and
Richards (1988) and Hall and Trevor (1991). Of these previous studies
the most relevant for our present purposes is the work of Anstie, Gray
and Pagan (1983) and Hall and Trevor (1991). Like the Hall and Trevor
study, our work will focus on the long-run cointegrating relations between
private consumption and other macroeconomic variables. An interesting
outcome of the Hall and Trevor study was the finding that the null
hypothesis of no cointegration could not be rejected for real variables
(aggregate real consumption and household disposable income) but could
be rejected for nominal variables, leading them to postulate a nominal
aggregate consumption relation. Moreover, since their estimates of the
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long-run nominal relationship led to a unitary income elasticity, the
empirical outcome of cointegration for nominal variables and no
cointegration for real variables would seem prima facie to be inconsistent.
Hall and Trevor advance several possible explanations of this inconsistency
but do not reach any conclusion. One of the objectives of the present
paper is to look further into this somewhat puzzling result.

One important explanation of the puzzle that is of economic as well as
statistical interest is that inflation plays an important role in the
consumption relation. In seeking to explain the rise in the Australian
savings ratio during the 1970s, Anstie, Gray and Pagan (1983) suggested
that household disposable income series should be adjusted to take into
account the effects of inflation on wealth. According to their view real
‘economic’ income corresponds to income adjusted to leave real wealth
intact. After making such an adjustment to income, Anstie, Gray and
Pagan found that the empirical savings ratio stabilized. The idea that
measured income should be adjusted downwards to account for inflation
tax on nominal assets was also put forward by Hendry and von Ungern-
Sternberg (1981) (hereafter, HVS). According to HVS,

...as inflation increases, nominal interest rates tend to rise, thereby increasing the
interest componeni of Y. It seems appropriate to measure 'real income' as increasing
in such a situation, since large nominal interest receipts are offset by capital losses on
all monetary assets which are not being deducted from the income variable used
(HVS, p. 245).

HVS go on to suggest the use in consumption relations of a real 'perceived
income' measure Y* that is designed to adjust real income Y for such
capital losses as pL (where p is the rate of inflation and L is real liquid
assets). Y* is defined as

Y'=Y-BpL=Y(1-BpLIY) 2n

and the parameter B is introduced to allow for scale effects resulting from
an inappropriate choice of p or L. The composite variable pL/Y may be
regarded as a measure of relative capital loss (RCL).

3.2 The Data and Empirical Regularities
We shall attempt to explore the relevance of these ideas to the Australian

consumption function. The data we use cover the periods 1959(3)
—1988(4) and 1965(1) — 1988(4) and are described with the notation we
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Table 11.1: Macroeconomic variable notation and descriptions

Variable Description Sample Period
C aggregate real private final 1959(3) — 1988(4)
consumption expenditure
YHD real household disposable income 1959(3) — 1988(4)
(=$YHD/P)
$C aggregate nominal private final  1959(3) - 1988(4)
consumption expenditure
$SYHD nominal household disposable income 1959(3) — 1988(4)
P implicit deflator for aggregate private 1959(3) — 1988(4)
final consumption expenditure
Inf_, inflation rate (= A1n(P)) 1959(4) - 1988(4)
Inf_4 standardized annual inflation rate  1960(3) — 1988(4)
(= 44 In(P)/4)

M3 real money stock (= $M3/P) 1965(1) - 1988(4)
RCL relative capital loss (= Inf_j*M3/YHD)1965(1) — 1988(4)

employ in Table 11.1. All variables are seasonally adjusted and the
constant price series are at average 1984/1985 prices.

Figures 11.2(a) — (d) graph these series in various combinations to
illustrate how the observed historical trajectories relate. Clearly C and
YHD (in lag levels) move in consort over time, although the nominal
series appear to move together more closely than the real series
(however, note the difference in scale between Figures 11.2(a) and (b)).
Figure 11.2(c) graphs these series (in levels form) against M3 and a scaled
version of the relative capital loss variable, RCL. Apparently M3 shows
some divergent behaviour with respect to YHD, especially towards the end
of the sample period. The capital loss measure, RCL, has high sample
variability. Note that RCL peaks over the period 1974 — 1978, which is
precisely the interval when the empirical savings rate rises (as is
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Figure 11.2: Graphs of Australian real and nominal household
disposable income and consumption, M3, INF_*M3/YHD

and inflation rates. -
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Figure 11.2: continued

(d) Inflation rates
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apparent from the graphs of YHD and C). This suggests that RCL may
have a useful role to play in a consumption function relating C and YHD.

Figure 11.2(d) graphs the two inflation variables Inf_; and Inf_,. Inf_,
is the quarterly inflation rate and Inf_, is the average inflation rate over
the past four quarters (i.e. the latest annual rate standardized to quarterly
units). The rate Inf_, is used because in the computation of 'perceived’
measures like Y* in (27) and the capital loss measure RCL the average
prevailing inflation rate over the past year seems more appropriate than
an instantaneous rate. HVS employ a two-year moving average of the
quarterly rate in their empirical work (i.e. Inf_g in our notation). We
choose Inf_, because it captures the essential idea of using longer-term
inflation measures to assess capital loss and it involves less sample size
reduction than Inf_g.

3.3 Testing the Data for Nonstationarity

Bayes and classical tests for the presence of stochastic trends in the data
were conducted. Table 11.2 reports results for the Phillips-Ploberger
posterior-odds test, as given in equation (25). For all the series except
Inf_; and $C the results are unambiguously supportive of the presence of a
stochastic trend. For Inf_, and $C series there is uncertainty due to the
variation in the outcomes for different lag lengths. The results show
rejection of a unit root for Inf_; when the lag length ¥ = 1, 2, 3 and
acceptance when k = 4, 5, 6. Looking at the series in Figure 11.2 it is
apparent that Inf_, has a choppy appearance that reduces the correlation at
lag 1, yet also shows evidence of stochastic drift over the full period. This
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helps to explain the uncertainty in the outcome. The Inf_; series retains
the stochastic drift evident in Inf_, but smoothing serves to eliminate the
choppy character of the Inf_; series. There is less uncertainty about $C.
Only for & = 1 do the results reject a unit root in the series. For all other
lag lengths there is strong support for the presence of a stochastic trend.

Bayesian posteriors support the results of Table 11.2. Figures 11.3(a) -
(c) graph the Bayesian posteriors for the long-run autoregressive
parameter p in equation (9) for different lag lengths (k = 1,3) for the two
inflation series Inf_,, Inf_, and the aggregate series C for comparison
purposes. In Figure 11.3(a) the uncertainty over the value of p for the
Inf_, series is manifested by the elongated second mode of the posterior
based on the ignorance prior (hereafter I-posterior). By contrast for the
Inf_, series both the I-posterior (for k=1) and e-posterior (k=3) give
strong support to the presence of a stochastic trend. Only the flat prior
posterior (hereafter F-posterior) suggests stationarity and these posteriors
are known to suffer from substantial bias, as explained earlier in Section
2. Figure 11.3(c) shows that for the data series In(C) the posterior
evidence is unambiguously supportive of a stochastic trend, thereby
concurring with the posterior-odds outcome given in Table 11.2, Similar
results were obtained for the other aggregate series. Table 11.3 shows the
Bayes posterior confidence associated with these figures for each of the
three priors. Again the evidence in favour of stochastic nonstationarity
for the series Inf_; and In(C) is very strong.

Table 11.2: Results of Phillips and Ploberger posterior-odds unit root
tests for Australian macroeconomic data; values of
the BLR criterion for different lag lengths

Variable Lag Length
1 2 3 4 5 6
Trend degree = |
C 0.18 0.022 0.023 0039 0044 0.049
YHD 0.060 0.040 0.053 0.077 0063 0.068
$C 39.010 0.133 0.048 0.029 0.033 0.049
SYHD 0.500 0.757 0.172 0.105 0.094 0.072
Inf, 5359.400 87.527 1723 0367 0.306 0.713
Inf_, 0.058 0.165 0.317 0696 0.169 1.147
Trend degree =0
Inf_, 282979 14.864 0787 0298 0.349 0.841
Inf_, 0.045 0.089 0.133 0312 0.153 0.77]

Legend:reject unit root if ‘BLR > 0.1'
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Figure 11.3: Bayesian posteriors for the long-run autoregressive
parameter, p, for the inflation rates and real consumption
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Table 11.3: Posterior probabilities of stochastic nonstationarity

Series AR(1) + trend model AR(3) + trend model
Rlp21)  Pep21) P(p21) Fi(p2)
Inf_; 0.193 0.000 0.064 0.005
Inf_, 0.433 0.113 0.980 0.015
In(C) 0.646 0.356 0.756 0.453

Legend: P; = ignorance posterior; P = £-posterior (£=0.05); P = flat posterior

Table 114: Classical unit root tests

Test lag Inf_, Inf_, In(C) 5%CV

p 3 0.842 0.935 0.983

ADF 3 -1.902 -2.521 -0.671 -3.500
5 -2.074 -2.822 -1.194 -3.500
7 -2.546 -1.784 -1.371 -3.500

Z(a) 3 -34.577 -5.216 -1.048 -21.099
5 -32.056 -6.727 -1.082 ~21.099
7 -33.709 -7.853 -1.255 -21.099

2n 3 —4.577 | -1.539 -0.495 -3.500
5 —4.445 -1.767 -0.507 -3.500
7 —4.532 -1.919 -0.567 -3.500

These outcomes can be compared with classical unit root tests. In Table
11.4, we provide results for the ADF, Z(a) and Z(/) tests applied to the
same group of variables. Each of the Z(a) and Z(r) tests rejects the
presence of a unit root for Inf_; at both the I per cent and 5 per cent
levels, while the ADF test does not reject the hypothesis at the 5 per cent.
This conflict in outcomes mirrors the Bayesian results. By contrast all of
the tests confirm (i.e. 'do not reject’) the presence of a unit root for Inf_,
and In(C), again comroborating the Bayesian evidence. Similar results to
those of In(C) were obtained for the In(YHD) series and these are not
reported.
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3.4 Testing for Cointegration

Our first step is to analyse the aggregate consumption and disposable
income data for cointegration. We examine relationships in both real and
nominal variables of the form

In(C) = a+ b In(YHD) + error, (28)
and
In(3C) =a + b In(3YHD) + error. 29)

Again, both Bayesian and classical methods are employed.

Table 11.5 gives the results of the posterior-odds test (26) applied to the
residuals of the cointegrating regressions (28) and (29). Estimation of
these equations was by OLS but the results given in the table are robust to
alternative methods of estimation that would be asymptotically efficient if
the variables were cointegrated (Section 3.5 below reports estimates from
a range of different efficient methods for augmented regressions based on
(28) and (29)). For each equation and for every lag selection except k = |
the posterior-odds test favours the presence of a unit root in the residuals
of (28) and (29). According to this Bayes test, therefore, the evidence
does not support the hypothesis that aggregate consumption and household
disposable income are cointegrated either in real or in nominal terms.
Clearly, this conflicts with the earlier empirical finding of cointegration
for the nominal variables $C and $YHD by Hall and Trevor (1991).

Table 11.5: Results of Phillips and Ploberger posterior odds tests for
cointegration, values of the BLR criterion

Consumption Lag Length in Residual Regression
Function 1 2 3 4 5 6
(28) real 2.077 0442 0.624 0436 0228 0.157

(29) nominal  3.060 0.631 0.925 0616 0352 0.204

Legend: reject unit root in residuals if ‘BLR>1.0’
(i.e. accept the presence of cointegration if BLR>1.0)

Figure 11.4(a) gives plots of the residuals from the two regressions (28)
and (29). These graphs show that the behaviour of the residuals from
these two regressions is very similar over the sample period. The test
outcomes from Table 11.5 therefore seem consistent with the visual
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Figure 11.4: Graphs of the residuals for regressions (28) and (29) and
their posterior priors for p.
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evidence. Thus, failure of cointegration in one case seems compatible
with the other. In both cases the residual graphs display drift away {rom
the origin over the period 1974 - 78 indicating a persistent overprediction
of consumption expenditure by the two regressions (28) and (29) during
this period. This is in fact the period where the Australian savings ratio
appears to rise, which we have already had occasion to discuss. The
failure of cointegration therefore seems to be closely connected with this
particular phenomena. The next section attempts to address this issue by
suitable augmentation of the regression equation.

Additional evidence is provided by an analysis of the Bayesian
posteriors for the parameter p in a model such as (9) fitted with the
regression residuals from (28) and (29). These posteriors are shown in
Figures 11.4(b) and (c). The results are very similar for the real and
nominal data regressions. In both figures, the I-posteriors and e-
posteriors indicate a non-negligible probability of nonstationarity in the
residuals. Table 11.6 gives the Bayes confidence probabilities assigned by
these posteriors to the nonstationary set {pZ l}. Only in the case of the
flat prior is this posterior probability negligible. Thus, a Bayes posterior
analysis leads to results that support the posterior-odds tests.

Table 11.6: Posterior probabilities of stochastic nonstationarity in
regression residuals of equations (28), (29), (31) and (32)

Regression AR(]) + trend model AR(3) + trend model

Equation Plp21)  Pe(p21) PFp21) Fe(p21)
(28) 0.143 0.002 0.142 0.007
(29) 0.138 0.002 0.137 0.008
3D 0.004 0.000 0.008 0.000
32) 0.001 0.000 0.003 0.000

Legend: P, = ignorance posterior; P . = ¢-posterior (£=0.05); P = flat posterior

Again, it useful to compare these Bayesian results with classical tests.
Table 11.7 gives results for the ADF, Z(a) and Z(/) tests applied to the
same regression residuals. The empirical results are unambiguous. At the
5 per cent level all of these tests confirm nonstationarity in the residuals.
Thus, classical residual-based tests accord well with the Bayesian results.
The evidence against cointegration for real and nominal C and YHD
variables is therefore rather persuasive.
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Table 11.7: Classical residual based tests for cointegration

Test lag  (28) 29 5%CV 31 (32) 5%CV

p 2 0897 0.924 0.743 0.673

ADF 2 -2292 -2449 -3466 -3.732 4,135 -3.903
6 -1.668 -1.83 -3466 -2972 -3.587 -3903

Z(a) 2 -12.869 -13.775 -19.614 -30.056 -37.030 -25.820
6 -11.123 -11.733 -19.614 -31.848 -39.758 -25.820

Z(r) 2 -2639 -2764 -3466 4453 -4954 -3.903
6 -2469 -2576 -3466 4543 -5.077 -3.903

3.5 Alternative Forms of the Long-Run Consumption
Function Involving Inflation Rates

Since (28) and (29) fail classical and Bayesian tests as cointegrating
equations we now consider alternative forms for these aggregate
consumption relationships. Arguments discussed earlier in Section 3.1
suggest the use of a 'perceived income' measure in place of YHD in (28)
and (29). If we employ a definition based on equation (27) that takes
account of capital losses and use the M3 variable for liquid assets then we
have in our notation

YHD* = YHD - BInf_*M3
= YHD{1 - B(Inf_*M3)/YHD)
= YHD{I - BRCL} .

Taking logarithms we have the approximation (since Inf_, is small)
In(YHD*) = In(YHD) - SRCL. 30)

If BM3/YHD is treated as effectively constant in the long run (it would be

in traditional steady-state theory if the income elasticity of M3 demand

were unity) then (30) may in turn be replaced by the approximation

In(YHD*) = In(YHD) - ¥Inf_.
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Since
$YHD* = $YHD(1 - SRCL),

we also have the same approximations in nominal terms, viz.

In($YHD*) ~ In($YHD) - yInf_,

and
In($YHD*) ~In($YHD) — BRCL.

Using these approximations in versions of (28) and (29) in which YHD
is replaced by the perceived measure YHD* we obtain the following
alternative forms of the aggregate consumption relation

In(C) = a+ b In(YHD) + cInf_ + error, an

In($C) = a + b In($YHD) + cInf_4 + error, 32)

or, using the variable RCL
In(C) = a+ b In(YHD) + cRCL + error, (33)
In(3C) =a + b In($YHD) + cRCL + error. (34)

In all cases, the anticipated sign of the coefficient c is negative.

Since data on M3 and hence RCL are available to me only from 1965
whereas the Inf_, series is computed from 1960, it is preferable to use
relations (31) and (32) with the longer series. The empirical results we
discuss below therefore concentrate on these augmented regression
equations for consumption. However, we will report some results also for
(33) and (34) based on the shorter series.

Table 11.8 gives the results of the posterior-odds test applied to the
residuals of (31) — (34). In every case the results unambiguously confirm
the presence of a cointegrating relationship among these variables.

Observe that the nominal equations receive more support than the real
equations but in both cases the evidence is strongly in favour of
cointegration. The results also seem to be more decisive for the
specifications (31) and (32) that employ the Inf_, variable, although the
sample size differential makes this comparison more tentative.

Figure 11.5(a) plots the OLS residuals from the two regressions (31)
and (32). As in the case of Figure 11.4(a) the behaviour of the residuals
from the real and nominal regressions is very similar. However, in this
case there appears to be no persistent overprediction of consumption
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Table 11.8: Results of Phillips-Ploberger posterior odds tests for
cointegration on the alternative forms; values of the BLR

criterion
Consumption Lag Length in Residual Regression
Function 1 2 3 4 5 6
(31) real 1803.570 18.818 73.030 188.439 13.008 6.890

(32) nominal 21099.576 77.078 409.129 2267.961 99.859 55.193
(33) real 118.318 14.988 40.784 100.006 7.154  4.076
(34) nominal  643.022 40371 167.3751129.116 54.803 24.442

(36) real 40477 5467 11.805 28.383 3.848 2.690

Legend: reject unit root in residuals if 'BLR > 1.0°
(i.e. accept the presence of cointegration if BLR > 1.0)

expenditure in the 1974 — 78 period, in contrast to that of the regressions
(28) and (29). In this respect the residual graphs in Figure 11.5(a) are
quite different from those of Figure 11.4(a). The visual evidence
therefore corroborates the statistical finding from Table 11.8 that (31) and
(32) are cointegrating.

Bayesian posteriors for p in model (9) fitted with these regression
residuals are shown in Figures 11.5(b) and (c). Both figures show that
virtually all of the mass of the posterior distributions is located in the
stationary region of p. The calculations given in the lower panel of Table
11.6 confirm this directly. For every prior and for each model the
posterior probability that p lies in the stationary region p < 1 is greater
than 0.99. The Bayesian evidence therefore overwhelmingly supports the
hypothesis that (31) and (32) are cointegrating relations.

Table 11.7 (5th vertical panel) reports results of classical tests applied to
the residuals from (31) and (32). The Z(a) and Z(r) tests reject the
presence of a unit root in these residuals. The ADF rejects in the case of
residuals from (32) for a mode!l with a lag length & = 2 but otherwise fails
to reject. Thus, the outcome is somewhat mixed. But the Z(a) and Z(1)
tests both rather convincingly reject the presence of a unit root, and
thereby corroborate the Bayesian evidence in support of cointegration for
both (31) and (32).



314 Peter C.B. Phillips

Figure 11.5: Graphs of the residuals for regressions (31) and (32) and
their posterior densities for p.
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Table 11.9: Long-run parameter estimates of equations (31) and (32)

Equation (31) Equation (32)
Method Lag b c b c

Spectral Regression 2 1010 -1680 1.014  -1.888
(137.229) (-6.843) (461.751) (-8.658)

6 0993 -1079 1008 -1.120

(159.422) (-5.418) (531.968) (~6.140)

Fully Modified OLS 2 1.048  -2.498 1.018 -2263
(113.905) (-8.649) (404.436) (-9.396)

6 1.054 2714 1019 -2.463

(76.431) (-6.841) (268.595) (-7.120)

Canonical Cointegrating 2 1.055 -2.669 1.020 -2.510
Regression (88.678) (-7.297) (317.791) (-7.924)
6 1.063 2922 1.021 -2.644

(70.914) (-6.387) (267.091) (-7.460)

OLS 1.046 2306 1.019 -2.345
(120.808) (—8.484) (449.602) (-10.825)

Legend: +-ratios in parentheses

Equations (31) and (32) were estimated by several asymptotically-
efficient regression techniques. The methods included were spectral
regression (Phillips, 1991b), fully modified OLS (Phillips and Hansen,
1990), canonical cointegrating regression (Park, 1991) and simple OLS.
The resulting estimates for the long-run coefficients in (31) and (32) are
presented in Table 11.9. The results appear highly consistent both across
estimation methods and across models. The estimates of b and c¢ obtained
from the real variable regression (31) and the nominal variable regression
(32) are certainly very close, confirming this aspect of the theory by
which they were derived. In both models the estimates are highly
significant and b, the long-run propensity to consume, is particularly well
determined. Estimates of c are all significantly negative, confirming the
theory underlying (31) and (32). The spectral regression estimates differ
by the greatest amount from the other estimates. In fact, the spectral
regression estimates of b in model (31) are the only estimates of this
parameter that are not significantly different from unity.
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3.6 Some Final Empirical Formulations

With the shorter data set available for M3 and the capital loss variable
RCL we performed some additional empirical analysis. Two formulations
were studied:

In(C) = a+ b In(YHD) + ¢ RCL + error (35)
as suggested in (33) above; and
In(C) = a+ b In(YHD) + ¢ RCL + d In(M3) + error (36)
According to our earlier decomposition (30) we may write
In(YHD*) = In(YHD) - BRCL 37

Using this representation of YHD* in (28) yields (35) directly. Hence, the
specification (35) should be an alternative to (31). Again, the anticipated
sign of c is negative but the coefficient can be expected to be different
from the coefficient of Inf_, in (31).

Equation (36) is based on a steady-state solution that arises in the work
of HVS. HVS employ an integral correction mechanism in their empirical
study of U.K. consumption behaviour and use a liquid assets/income
variable to capture this effect. The presence of this additional variable in
the regression alters the steady-state solution. In our notation the steady
state would be of the form

In(C) =a+ bin(YHD*) + ¢ In(M3/YHD*)
=a + (b - c)In(YHD*) + ¢ In(M3)

As remarked earlier, this steady-state formulation would only be possibie
in a larger model that explained M3 demand if the long-run income
elasticity of demand for M3 were unity. Using (30), the expression above
can be approximated as

I(C) = a + (b - ¢)iIn(YHD) + d RCL + ¢ In(M3),

which yields the specification (36) above. According to this formulation,
the long-run propensity to consume is given by the sum of the coefficients
of In(YHD) and In(M3),
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Bayes model posterior-odds tests of the long-run specifications (35)
(i.e.(33)) and (36) are given in Table 11.8. Clearly the data support
equation (35) as an alternative to (31) according to this test but give much
less support to (36). This outcome is interesting because it shows that the
inclusion of additional variables in a cointegrating relation does carry
some cost. Especially in small samples (and recall here that we are using
series of reduced length due to the availability of the M3 measure), there
will be additional uncertainty in the regression residuals from (36) arising
from the presence of the additional variable in the regression and
imprecision in the estimation of its coefficient. Posterior-odds criteria
typically involve a penalty for such additional regressors and thereby
inherently operate a form of model selection. In the present case, we find
that the posterior-odds criterion selects the more parsimonious
representation (35).

Bayesian posteriors provide additional evidence on this point. Figures
11.6(a) and (b) give graphs of the posteriors for p in model (9) fitted with
the regression residuals from equations (35) and (36). These posteriors
show an appreciable probability of misspecification in equation (36) (i.e.
no cointegration amongst the four variables). The posteriors in Figure
11.6(a) provide more support for the specification of equation (35).
However, the I-posterior indicates some uncertainty about this
specification. The posterior probabilities of nonstationarity in the
residuals of these two regressions are given in Table 11.10. According to
these outcomes, there is strong evidence in both the /-posterior and the &-
posterior against equation (36). Equation (35) is more satisfactory,
although the /-posterior probability of {p 2 1} is non-negligible. In this
case the uncertainty may be the result of the shorter data series from
which these regression equations were estimated.

Thus, Bayesian evidence rejects the long-run specification (36) but is
tentatively supportive of (35). Given that (35) and (31) are close
alternatives, given that (31) is estimated with longer time series and given
the unambiguous support for (31) and its nominal version (32) in the
evidence, we conclude that specifications (31) and (32) of the long-run
consumption equation are to be preferred.

4. CONCLUSION

This paper is an empirical exercise in new Bayesian methodology. The
outcome of this exercise can be summarized as follows.

1. Objective Bayesian methods seem to provide helpful empirical
evidence that complements classical tests. The Bayesian methods we have
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Figure 11.6: Graphs of the posterior densities of p for the residuals of
regressions (35) and (36)
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Table 11.10: Posterior probabilities of stochastic nonstationarity in
regression residuals of equations (35) and (36)

Regression AR(1) + trend model AR(3) + trend model

Equation Plp21)  Felp21)  P(p21)  Fe(p21)
(35) 0.140 0.000 0.018 0.000
36) 0.255 0.011 0.330 0.032

Legend: P, = ignorance posterior; P =&-posterior (£=0.05); P g=flat posterior
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used elicit information from the data in ways that are quite distinct from
classical procedures. Posterior graphics exhibit in a rather clear way the
plausibility of the underlying hypotheses and show sensitivities, when they
exist, to prior distributions and model choice. Uncertainty in model
specifications tend to show up in widely dispersed and bimodal posterior
distributions. Hypotheses like cointegration may be examined in a
straightforward way by Bayesian posterior analysis of the residuals and by
direct tests using the Phillips-Ploberger 'Bayes model' posterior-odds test.

2. The methods used in this paper are easy to apply in practice.
Computer programs in GAUSS 2.0 have now been written to implement
the procedures used here and are quick and convenient to use. On modern
desktop PCs the programs are executed in a few seconds and graphics are
especially easy to produce in GAUSS software.

3. Bayesian methods are especially useful when classical tests give
conflicting results. It is known that ADF tests, for instance, have low
power especially as the lag length increases, whereas this is much less true
of the Z(a) and Z(r) tests. Qur empirical results in Section 3 often show
divergent conclusions in the application of these classical tests. This type
of mixed outcome is common in empirical practice and hard to interpret.
In such cases Bayesian methods are particularly valuable because they
present an additional form of empirical evidence that often points to new
possibilities. For instance, as seen in the posterior analysis of Section 3.6,
a full posterior distribution (with appreciable stationary and nonstationary
set probabilities) can rather clearly indicate an unsatisfactory empirical
specification, especially when it is compared with the posteriors of other
competing specifications.

4, Qur empirical results on the long-run Australian consumption
function appear conclusive. An inflation measure should certainly figure
in the consumption equation and this empirical finding fits well with
underlying theory of consumption behaviour which suggests the use of an
appropriate 'perceived income’ measure that compensates for capital losses
in periods of inflation. Our results show that instantaneous inflation
measures are inappropriate for this purpose but that annual rates like Inf_,
work well and correspond better with longer-term perceptions of capital
losses in inflationary periods. We find Inf_, to be nonstationary and we
find strong support for a cointegrating relationship between C, YHD and
Inf_, from a variety of Bayesian and classical tests. Furthermore, our
posited long-run relationship between these variables holds for nominal
variables ($C, $YHD) and real variables (C, YHD). Empirical estimation
of equations (31) and (32) by several asymptotically efficient methods
leads to broadly similar results. Correspondence between the real
equation (31) estimates and those of the nominal equation (32) is close and
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again fits well with underlying theory. We conclude that the presence of a
suitable measure of inflation or relative capital loss is supported
empirically, at least for Australian dala on private consumption and
household disposable income.

NOTE

1. All of the computations and graphics reported herein were carried out by the author using
programs written in GAUSS 2.0 on a 386 — 20 Mhz desktop PC. Thanks go to Rob
Trevor and Sam Ouliaris for supplying the data used in Section 3, to Glena Ames for
outstanding wordprocessing and to the NSF for research support under grant no. SES
8821180.
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