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Generaj formulae for the finite sample and asymptotic distributions of the instrumental variable
estimators and the Wald statistics in a simuitaneous equation modei are derived. It is assumed
that the coefficient vectors of both endogenous and exogenous variables are only partially
identified, even though the order condition for identification is satisfied. This work extends
previous resuits in Phillips (1989) where the coefficient vector of the exogenous variables is
partially identified and that of the endogenous variables is totally unidentified. The effect of
partial identification on the finite sample and asymptotic distributions of the estimators and the
Wald statistics is analyzed by isolating identifiable parts of the coefficient vectors using a rotation
of the coordinate system developed in Phillips (1989). The pdf’s of the estimators and the Wald
statistics are illustrated using simulation and compared with their respective asymptotic distribu-
tions.

1. Introduction

Identification of a structural equation in a simultaneous equation system is
an important preliminary condition prior to estimation and statistical infer-
ence. Standard statistical procedures are almost always based on the assump-
tion that the coefficients of a structural equation are uniquely defined by
a priori restrictions on the coefficients of a simultaneous equations model.
These restrictions usually arise from economic theory. Conditions for identi-
fication have been discussed by various authors [e.g., Fisher (1966), Hsiao
(1983), Hausman (1983)]. If an equation is identified, we are usually able to
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estimate the coefficients consistently and to mount conventional statistical
tests relying on asymptotic normal or chi-square distributions.

However, the statistical properties of estimators and tests in cases of
identification failure have not received much attention by researchers. We
use the term identification failure here to imply that the rank condition for
identification in single equation estimation is not fulfilled, even though the
order condition is satisfied. Hence studies in identification failure presume
that the usual condition that empirical researchers check for in single-equa-
tion estimation is met. It is of importance to investigate the statistical
properties of estimators and test statistics in case of identification failure,
since there are good reasons for suspecting such failures in empirical re-
search [see Phillips (1989) and Sims (1980) for examples]. When such failures
occur, the conventional statistical theory does not apply. A finite sample
distribution theory of the instrumental variable estimator and the limited
information maximum likelihood estimator in case of identification failure
was developed in some earlier work by Phillips (1980, 1983, 1984a, 1984b,
1985). In this work it was shown that the exact finite sample densities of the
estimators do not carry any information on the coefficients in a structural
equation when the true coefficient vector is not identifiable. Moreover, the
densities are invariant to changes in the sample size, demonstrating the fact
that the uncertainty about the coefficients that is due to lack of identification
persists in the limit as the sample size tends to infinity. Recently, a general
finite sample and asymptotic distribution theory for the instrumental variable
estimator and for Wald test statistics was developed in Phillips (1989). There
it is assumed that the whole coefficient vector of the endogenous variables is
not identifiable and a general rank condition is given such that the coefficient
vector of the exogenous variables is partially identified. By rotating the
coordinate system, identified and unidentified parts of the coefficient vector
are distinguished. The finite sample distribution theory developed therein
shows that only the estimator of identified coefficient vector has a finite
sample density that carries any useful information on the true coefficient
vector. The asymptotic distribution theory shows that only the estimator of
the identified coefficient vector is consistent and has a meaningful limit
distribution. These findings remind us how important the necessary and
sufficient condition for identification is in terms of the statistical properties of
estimators and tests in simultaneous equation models.

This paper is built upon the earlier work in Phillips (1989) and employs a
similar approach. The finite sample and asymptotic distribution theory in
Phillips (1989) is given for the case where the coefficient vector of the
endogenous variables is totally unidentified and that of exogenous variables is
partially identified. In the present paper it is assumed that the coefficient
vectors of both endogenous and exogenous variables may be partially identi-
fied. Hence the current framework is more general than that of Phillips
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(1989) and includes total identification, total lack of identification and partial
identification of the coefficient vectors of both endogenous and exogenous
variables. General formulae for the finite sample and asymptotic densities of
the instrumental variable estimators will be given by rotating the coordinate
system as in Phillips (1989). This rotation shall show the effect of partial
identification on the distributions of the estimators of the whole coefficient
vectors in a convenient way. The general formulae provide an economical
way of writing down the exact and asymptotic densities of the instrumental
variable estimators in various cases of identification and lack of identification
and shed light on the effect of identification and lack of identification on the
finite sample and asymptotic distribution theory of the estimators. The
asymptotic distributions are derived for general martingale difference errors
and, as in Phillips (1989), the limit distribution theory is all of the mixture
normal class. Limit distributions of Wald test statistics are also derived.
These are, in general, not chi-squared and again demonstrate the effect of
nonidentifiability.

The plan of this paper is as follows. Section 2 discusses the structure of the
current problem and the rotation of the coordinate system that isolates the
identifiable components of the coefficient vectors. In section 3, the finite
sample and asymptotic distributions of the instrumental variable estimators
are derived. Section 4 deals with statistical inference on the whole coefficient
vectors. Standard Wald statistics are formulated and are shown to converge
in distribution to random variables which are not distributed as chi-square.
These results indicate the importance of identification for statistical infer-
ence in a simultaneous equations model. Section 5 reports some numerical
computations in partially identified models and contains figures of the pdf's
of the estimators and the Wald statistics based on simulations. These figures
illustrate some of the main properties of econometric estimators and tests in
partially identified models. Conclusions are drawn in section 6. All proofs are
in the appendix.

A word on notation. We use the symbol ‘=’ to signify weak convergence,
the symbol ‘=" to signify equality in distribution, and the inequality ‘> to
signify positive definite when applied to matrices. We use O(n) to denote the
orthogonal group of n X n matrices, I, , to denote the Stiefel manifold (H,
(nxk): HH, =1} Finally, we use r(IT) to signify the rank of the matrix I1
and P to signify the orthogonal projection onto the range space of Il with
Q@ =1—- P,. All the limits are taken as T — <, unless specified otherwise.

2, A partially identified structural equation and its estimable functions

We are concerned with a structural equation

V=Y. B+ Zy+tu=Ws+u, (h
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where y, (T X 1) and Y, (T Xn) denote n+ 1 endogenous variables, Z,
(T X k) is a matrix of k, exogenous variables included in the eq. (1), and u is
a random disturbance vector. The reduced form of (1) is written in parti-
tioned format

+ e, V5] (2)

_ m I
[YUYz] = [Zlazz][,n.z m,

or
Y=2z2I0+V,

where Z, (T X k,) is a matrix of exogenous variables excluded from (1). It is
assumed that k£, > n so that the necessary condition for the identification of
(1) is satisfied, and that Z is of full column rank k =k, +k,. Eq. (2) is
assumed to be in canonical form [see Phillips (1983) for details of the
necessary transformations], so that the rows of V are iid(0,1,), m=n+ 1.
We shall require the following distributional assumption for the development
of the finite sample theory:

V=N ,(0,1). (C1)

In addition, we make the following assumption on the sample second
moment matrix of Z:

T-'2'Z =M. (C2)

We assume M = I, This simplifies the expressions in later sections, but incurs
no loss of generality. It will also be convenient in some cases to strengthen
(C2) to the following:

T 'ZZ=M+0O(T Y)Y =I+0(T™"). (C2)
We partition M conformally with Z=1[Z,,Z,]1=[Z,,Z,,Z,] as

Mll M13 Ml* k[
M3l M33 M3* k3 .

u-|
My, M,y M, ik,

Mll MlZ} -
MZI M22

The second partition corresponds to the selection of a submatrix of instru-
ments Z,. The submatrix Z, is chosen using the matrix W’ =[|0], ie.,
Z,=2Z,W.Since M=1,we have M, =1, My, =1, M\, =0, and M, =0. We
also have corresponding results for the second partition.
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The identifying relations connecting the parameters of (1) and (2) are

m =1 B=y, (3)

w,—I,B=0. (4)

Eq. (1) is identified iff 11, has a full column rank, i.e., r(I1,)=n <k,. We
call this the fully identified case, following Phillips (1989). If

m,=0 (5)

and r(II,) =0, we have what is usually referred to as the leading case in
econometric distribution theory [Phillips (1983)]. In this case the parameter
vector § is totally unidentified. However, if II, = 0, for example, the entire
coefficient vector ¥ is identified and is equal to the reduced form subcoeffi-
cient vector 7.

In this paper, we consider the general case where II, and II, are of
arbitrary rank. The leading case where 1, =0 and II, is of arbitrary rank is
discussed in earlier work by Phillips (1989). In the leading case the vector g is
totally unidentified and only a certain part of y (i.e., some linear combina-
tions of y) is identified. In the general case certain components of both 8
and y are identified while other components of both vectors are unidentified.
The number of components in each category is determined by the ranks of
I1, and II,, which are assumed to be

r(Il)) =k, <k, (C3)
r(Il,)=n, <n. (C4)

Following the development in Phillips (1989, §2.1) we now rotate coordinates
in both the space of the endogenous variables Y, and the exogenous variables
Z, to isolate estimable functions. Define

n n;
S=[S,, S,] €0(n),

where §, spans the null space of I, and I1,, = I1,§, has a full column rank
n;. Let

B, =S’1B7 Bz=5'zﬁ
and

H”=H,S,, HL?:HIS‘M H"1=H251' H22=HZS.’.=O'
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Then the identifying relations in the new coordinates are
m =By — 1B, =7. (6)
my— 1 8,=0. (7)

In this system we see that B, is identifiable and B, is totally unidentified.
Moreover the structural coefficient vector y is also unidentified due to the
effect of the unidentified coefficient 8, appearing on the left-hand side of (6).

We now rotate coordinates in eq. (6) to isolate the identifiable part of y.
Again as in Phillips (1989, §2.1) we define an orthogonal matrix:

ki ki
R=[R, R,]€0(k),

where R, is selected to span the null space of 11} and k|, =k, + k. Under
R’ the equation system (6) becomes

Ry =y (8)

Rym =Ry I By — Ry 1,8, = s, (9)
where

Y =Ry and y,=Ryy.

Here vy, is identified, while y, is not.
These rotations produce a new structural equation

yw=Y2B+Zy+u
=Y,S8B+Z,RR'y+u
=YuB+YuBy+tZyy 2y, tu (10)

In (10) [which corresponds with eq. (13) in Phillips (1989)] the coefficients
(B,,v,) are identified and (B,,y,) are totally unidentified. The original
coefficients are recovered from the equations:

B=58 +S,8;, y=Ryy, +Ryy,.

Using these equations, we can find the effect of partial identification on the
finite sample and asymptotic distributions of the IV estimators of the entire
vectors 3 and y.
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The reduced form system (2) can be similarly rewritten in the new
coordinatc system (following rotation by §) as

VW=Zr + 2y, (11)
Ya=Z I, +Z, 11, + Vy, (12)
Yo=ZH,+Vy, (13)

where
Vy,,=V,S, and V,,=V,S,.

3. Distribution theory under normality

3.1. Coefficients of the endogenous variables

We shall study the finite sample and asymptotic distributions of instrumen-
tal variable (IV) estimators of the structural eq. (I) under the normality
assumption (C1). We assume (C3) and (C4), so that I, an I1, have arbitrary
ranks. [The distributional theory in the case where I, =0 and [II, is of
arbitrary rank was developed in Phillips (1989).] Under (C3) and (C4) and in
the transformed coordinate system leading to (10), (B,, y,) is identified while
(B.,7v,) is totally unidentified. The functional forms of the finite sample
distributions of the I'V structural coefficient estimators will be derived and, as
a corollary under the additional requirement (C2), their asymptotic distribu-
tions will be obtained.

The IV estimator of & in (1) is simply 6 = argming(y — W8)P,(y — Wé),
where H=[Z,Z;] is a T X (k, + k;) matrix of instruments and Z, is a
submatrix of Z, formed by column selection. We require k; > n, so that the
order condition of sufficient instruments is satisfied. If H=[Z,,Z,], the
instrumental variable estimators are equivalent to 2SLS estimators.

Formulae for the subcoefficient vector estimates in the transformed system
(10) are easily obtained by stepwise regression as follows:

By = (Y3,EYy) " '(Y3,Ey)),

Ba=(Y5,JY2) " (Yady)),

y=R)y =R,l(z’lzl)_ Zyy, _R’I(Z’lzl)‘lzrl[yl’hyﬂ]l:

1

T T

9= Ry =RYZ\Z\) 'Zy, — RYZ\Z,)) "' Z}[ Vs, Y2s]

| a—
™



120 I Choi and P.C.B. Phillips, Asymptotic und finite sumple distributions of IV estimators

where

E=L-LY,(YpLYy) —|Y3'2L~

J=L—LYy(Y}LY,) V3L,

L=P,—P;.
Of course, E and J are idempotent matrices with ranks r(E)=trL —n, =
ky—n,and r(J)=trL —n, =k, —n|, respectively.

_ The following theorem gives general expressions for the exact densities of

B, and B,.

Theorem 3.1. Under the assumptions (C1), (C3), and (C4),

@  B=f [ | NA©0)5(60)5, 466

l’k,‘-ng.k‘ 8

X pdfy(A.g)dAdg dO

=r,, say,
where
Alp=A(O0") = I/Vn'l‘(k3 -n,+n,+1, [nl,Tﬂng@@'W’Hﬂ),
glo=8(060") =N(TILWOOW'IL;, TILIWOOW'I,,),
and

ky k—k,
w=[11 07 ks

In the above formula, @ is a matrix that is distributed uniformly on the Stiefel
manifold V, _, . ={0:00=1, _,}

A

(b) BZ_'[HER"""'[meR"l":'[B>0N(Bm(B)Bl,B)

X pdf,( B, m) dB dm pdf(8) d8,

=r,, say,
where
B= Wn"zl(k3—n, +ny+1,1,),

0=N(TV*W'Il,,, I),
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and
m(0)|y =N, TH,WQW'ITy).

Remarks

(i) We find that both distributions (a) and (b) are mean and covariance
matrix mixture normal unless B, = 0. This is an economical way of writing
down exact distributions whose series representations are very complicated
[these may be deduced from results in Phillips (1980, 1984b)]. Moreover the
functional forms given here more easily shed light on the effect of identifica-
tion and lack of identification on the finite sample distribution theory.

(ii) The density of B, is independent of B, and carries no information on
B, This is as we would expect since 3, is not identified. Interestingly, we find
that the density of B, is dependent on the identified coefficient 8,. The
density of S, is also dependent on S,.

(iii) If 1, has full column rank, the whole parameter vector g is identified
and the pdf of B may be expressed as

BEf f N(AgB, A)pdf(A,g)dAdg=r, say,
eR"A>0

14
where
A= W,,"(k3 -n+ 1,1 TILWW'IL),

g=N(TILWW'I,, TILWWTL,).
This expression is easily recovered from part (a).
(iv) If r(I1,) =0, then II,, = 0, and we find from part (b)
és[ N(0, B)pdf(B) dB,
B>0

where
B=W,"(ky—n, +n,+1,1).
This result is consistent with the earlier result in Phillips (1989, theorem
2.1(a)} for the case of totally unidentified 8.

(v) The exact densities of B, and B, undergo some simplification when
B, = 0. By setting 8, = 0 in (a) and (b), we obtain

J,

ho-naky

B, [ N(0,4(60'))pdi( A(06"))d 446,
A>0

B:= [ N(0.B)pdf(B)dB.
B>0

The latter result was given earlier in Phillips (1988).
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(vi) The density of the (totally unidentified) estimator /§z depends on the
matrix T'/2W’, as it enters the mean of 8. However, # occurs in the
distribution of B2 only in terms of the projection operator Q,. It is clear,
therefore, that the distribution of B, depends explicitly only on W", which is
finite. Nevertheless, the dependence on W' and the noncentrality of the
distribution of 9§ make the problem rather different from that studied in
Phillips (1988, 1989).

Under assumption (C2), we may develop an asymptotic distribution theory
of B, and B, as follows:

Corollary 3.1. Under (CD, (C2"), (C3), and (C4),
(a) VT(B -B)

= N0 (M, MG OOME (M, 1T,,) ') dO

Vk:‘n}kw

=f N(0.(1,00'TL,)"')dO =F,, say,

Vii=ns ks

(b) Bza[bozv(o,s)pdf(s)ds

=F27 Say’
where
My =My — My MM 5 =1,
M;,, =M, —MslMl—llMlz =1,
and
B=W,(ky~—n +n,+ 1,1, ).
Remarks

(i) The estimator B; 1s consistent to B,, as we would expect for the
identified subcoefficient 8,. On the other hand, Bz converges in law to a
nondegenerate distribution so that the uncertainty about §, that results from
the lack of identification persists in the limit. This is analogous to the cases
explored earlier in Phillips (1988, 1989). R

(it) Note that the limiting distribution of 8, is a covariance matrix mixture
normal. Hence the conventional asymptotic theory for identified coefficient
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estimators does not apply here. This is because the lack of identifiability of
B affects the limiting distribution of 8, by producing an additional variabil-
ity that is manifested in the covariance matrix mixing variate,

(iii) If the entire parameter vector 8 is identified, we have directly from (a)

VT (B - B) = N(0.(IIsM3, M3\ My I1,) ") = N(0, (11311;) "),

corresponding to traditional asymptotic theory.
(iv) If r(IT,) =0, then

B= [ N(0,B)pdf(B)dB,
B>0

so that the usual leading case result applies in the limit.

(v) Note that the limiting distribution of #, is different from its finite
sample distribution. Again, this is also different from the leading case where
the finite sample distribution js invariant to 7.

(vi) Since B=S8,8, + S, B>, we find that B = S,7,. Thus, the effects of the
lack of identifiability of 8, are manifested in the original coordinates in the

nondegeneracy of ﬁ

(vii) Corollary 3.1 continues to hold if the rows of V' form a sequence of
stationary, ergodic martingale differences with covariance matrix [, as is
discussed in Phillips (1989). Thus the asymptotic results hold for a much
wider class of errors.

3.2. Coefficients of the exogenous variables

The estimates of the coefficients of exogenous variables have the following
finite sample distributions. These depend on the joint pdf of 8, and B-.

Theorem 3.2. Under (C1), (C2), and (C3),

(a) 9 Efm CN(y T+ %) )pdf(r*) dr*
zsls say,

where r* =[r, r,].

(b)  §,= [R”MN(R'Z?, ~ Ry I, Sr*, T (1 4 r*'r*))pdf(r*) dr*
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Remarks

(i) Both y, and y, have mixture normal distributions since they are clearly
normal conditional on the estimates of the endogenous variable coefficients.

(i) When I1, =0, y, and y, have distributions identical to those derived
in Phillips (1989).

(iii) When II, = 0, the whole parameter vector y is identified. Its pdf is
easily recovered from part (a) of Theorem 3.2 as follows:

7= [ N(y. T (1+r¥r*))pdi(r) dr*.
R T
If, in addition, II, =0, we find from the above that

5= f N(y,T~'(1+77))pdf(7) dF,
o
where

F= [ N(0,B)pdf(B)dB,  B=W;'(ky—nm +n+1,1,).
B>0 ) '

The exact formula of the pdf of y in this case was derived by Phillips (1984)
by a rather different method.

(iv) If I1, has full row rank, y is totally unidentified. In this case, the pdf
of y is expressed as

5= N(m, = yry = Iyry, T7 (14 r¥r) )pdf(r*) dr*.

Rmi+n:

(v) Note that the density of ¥, contains v, in its pdf as an argument. From
eq. (9) we have R,m, =y, + R, 11,58, which vields R,7, — R,I1,Sr* =y, —
R, I1,8(r* — B). Thus we obtain

V.= Lnl*n:N(Yz—R'zﬂlS(r* = B), T (1 +r*r*))pdf(r*)dr*.

This expression shows that the distribution of y, depends on y,. This is in
contrast to the case of ﬁz where there is nokcomparable parameterization for
B, which will allow §, to enter the pdf of 8,. This expression reduces to the
one in (iii) when II; = 0.

(vi) The densities of ¥, and ¥, both depend on the sample size T. Thus we
can expect that both will have asymptotic distributions that are different from
the finite sample distributions given here.
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The asymptotic distributions of ¥, and ¥, are given as follows:

Corollary 3.2.  Under (C1), (C2"), (C3), and (C4),

(8)  VT(F1—v) = NO.T'(1+B, +FF,))pdi(7,) dF,

s
=§,, say.

(b) ¥, = Rym, — Ry 1,8, — R, 11,7, =5,, say.

Remarks

(i) The estimator ¥, is consistent to y, as expected for the identified
subcoeflicient vector y,. However, y, converges in law to a nondegenerate
distribution due to the lack of identification. This is analogous to our former
results on the estimators ﬁ, and ﬁz. .

(ii) As is the case with the estimator 8,, the limiting distribution of y, is a
covariance matrix mixture normal. Here again, we find that the conventional
asymptotic theory for identified coeflicient estimators does not apply.

(ii1) When I, =0, the earlier results obtained in Phillips (1989) can be
readily recovered from our general formulae for the asymptotic distributions.

(iv) When II, = 0, the whole parameter vector vy is identified irrespective
of the rank of the reduced form coefficient matrix II,. The limiting distribu-
tion of ¥ might be expressed as

ﬁ(&—y)=>fR N(O,T~'(1+ 8,8, + 747, ) )pdf(F,) dF,.

s

Moreover, if I1, =0, we find that

T(9=y) = [ NO,T7'(1+7F))pdf(F),
where

fsf N(0,B)pdf(B)dB, B=W]'(ky—n,+n,+1,1).
B>0

Clearly, y is consistent to y, manifesting its identifiability. However, its
limiting distribution is a covariance matrix mixture normal due to the lack of
identifiability of the endogenous parameter vector 8.

(v) If II, has a full row rank, the whole parameter vector y is totally
unidentified. As can be readily found from part (b), ¥ converges in law to a
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nondegenerate distribution as shown below:
y=m 11,8, — II,,F,.

(vi) The limiting distribution of y, is different from its finite sample
distribution. This is consistent with the leading case discussed in Phillips
(1989).

(vii) Since y =Ry, + R,7,, we find that y = R,§,. The nondegeneracy of
y is due to the lack of identifiability of the coeflicient vector 8.

(viii) As is the case with Corollary 3.1, Corollary 3.2 holds if the rows of
form a sequence of stationary, ergodic martingale differences with covariance
matrix /.

4. Statistical tests on the coefficients

In this section, we shall consider the problem of testing hypotheses on the
coefficients of the endogenous and exogenous regressors. We shall formulate
Wald statistics for the hypotheses

Hy: HB=h,
where H, is p, X n of rank p, (<n) and

H: H,y=h,,

Y

where H, is p, Xn of rank p, (<n). The error variance estimator for the
Wald statistics is defined by

A

=Ty, = W8)(y, - W,5)

= T—l(yl - YZlél - Yzzﬁz)’Qz,()H - YZlél - Yzzéz)-

The Wald statistics for H,; and H,, are, respectively,

W= (HiB =) {H[Vi(Py = P )Y.] " H) (H\B = hy) /67
and

W, = (Hyy—h,) | HA(202)) " H3] ™\ (Hay — hy) /62,
where

Q="Py— P, Y,(Y;P,Y,) " 'YiP,.
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The following lemmas will be employed in deriving the asymptotic distribu-
tions of W, and W,. As in the previous section, we assume that (C2), (C3),
and (C4) hold. Note also that the following lemmas hold under the assump-
tion that the rows of V form a sequence of stationary, ergodic martingale
differences with covariance matrix . This replaces condition (C1).

Lemma 4.1. &% =1+ 8,8, + F:F,.

Lemma 4.2. [Y;(Py —P,)Y,]"' = S,15,85, where

l,=B+B f Wuz("l’illl/znélnzj:l/z)d@ B,

Vi ke

i

B W' (ny+ky+1,1,),

n

and

Iy ={1,00'T,} "

Lemma 43. Z,0Z, = 17610 — QpAfy N QL JEIT},

=[H5W, (ki +ky—n, DI,

where 117, is the Moore-Penrose inverse of ITy,, &= N(O, I .0
F= 0 N I,
Iy, m,

fu=QA) "

and

Remarks

(i) Lemma 4.1 shows that the standard error of regression converges
weakly to a random variable due to the lack of identifiability.

(i1) If the coefficient vector 8 is totally unidentified. we find that 7~ Y@, Y
-, I and that 6= 1+7F, where 7= [,_, N(0. B)pdftB)dB and B=
W;Yky—n,+n,+1). This is consistent with the result obtained by Phillips
(1989).

(iii) When B =0, we find from Lemma 4.1 that ¢ = 1 + 7,7,. Thus under
the null H,: 8 =0, the nondegeneracy of ¢° persists in the limit as well.
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(iv) If the system is totally identified, we would have [Y;( P, — P, )Y,]™!
O,(T™"). Lemma 4.2 shows that [Y;(P, = P,)Y,]"!' = O,(1) in contrast. The
difference arises since the coeflicient vector B is only pamally identified.

(v) If the coefficient vector B were totally unidentified, we would have
[Y3(Py — P, )Y,]7 = W (n + ky+ 1. I) as was obtained by Phillips (1989).

(vi) Lemma 4.3 is obtained in the same way as Lemma 2.7 of Phillips
(1989). The result can be sharpened as follows:

Z,0Z, = LW, (K, + ky=n, DT,
= [IJPP'II;,
- B

Columns of P are now iid N(0,(IT,,IT;;)*). That is, P has a singular matrix
normal distribution. Note that Lemma 2.7 of Phillips (1989) uses an addi-
tional rotation to obtain the required result on the assumptions that [1, has
full row rank and that I, = 0.

Theorem 4.4. If the rows of V form a sequence of stationary, ergodic martin-

gale differences with cocariance matrix I and if (C2'), (C3), and (C4) apply,
then under the null

= rQr ’ 7 ' ’ -1 -
(rZ_B;’)SZHI{HlSZlZZSZHl} H,S,(7, = B5)

W, = ,
(a) £ 1+B’lﬁl +;f.’;‘2
_ -1
(52— v2) R H3{ Ho{ ITW, (K, + ks =, DT} H)

XH,R,(5;,—7v,)

(b)y W=
L+ BB, + 757,

Remarks

(i) Theorem 4.4 shows that the limiting distributions of the Wald statistics
are not chi-squared. Here the conventional theory for hypothesis tests in
simultaneous equations system does not apply. Under the alternative hy-
potheses Hy: H,B#h, and H,: H,y#h,, [Y)(P,—P,)Y,1"', Z,0Z,
HB-h, and sz A, have the same order of magnitude O (1), so that the
Wald statistics do not dwerge under the alternatives as T goes to infinity and
the tests are also inconsistent. Of course, this is a consequence of the lack of
identification.

(i) When II, =0, our result on W, reduces to that obtained by Phillips
(1989). W, has the same limiting distribution as in Theorem 4.1 in this case.
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(iii) The limiting distributions of W; and W, when B and y are totally
unidentified were derived by Phillips (1989).

We also study the case in which the coefficient vector vy is fully identified
as in Phillips (1989). In this case, we have II, = 0, so that Y,, = V,,. Hence it
follows that Z1QZ, = O,(T) as below:

Lemma 4.5. If I, =0, then

712,02, = po[1- oW (W oo¥) 'vo|op,
where

I,

qf=[0

| o-r0m.

and @ is distributed uniformly on the Stiefel manifold V, ., ={P: PP =
1.} ’ '

ns

Theorem 4.6. If I1, =0, then under the same conditions as in Theorem 4.4,

5’H3{ Hy{p®| 1 - o (wody)” v o|op) ' Hz} E

W =
Y 1+ BB, +7:F,
Here
s=[RmN(0, T'(1 + BB, + 757, ))pdf( F,) d7,.
Remarks

(i) When [I1,=0, Lemma 4.4 yields T~'Z,QZ, = p®®'p’. This can be
sharpened further to give rise to a result equivalent to Lemma 2.9 of Phillips
(1989).

(i) Under the alternative H: H,y # h,, VT(H,% — h,) diverges, and so
does the statistic W, . The test is therefore consistent. However, the limiting
distribution of W, is not chi-squared due to the nonidentifiability of B.

(iii) When [I1, =0, Theorem 4.6 reduces to the result discussed in Theo-

rem 2.10 of Phillips (1989).

5. INustration of probability density functions

We illustrate the finite sample and asymptotic distributions of the two-stage
least squares (2SLS) estimator in a single equation of a simultaneous equa-
tion system. We consider the structural equation (1), the reduced form
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equations of which are
y, =Zm +Z,m+0y,
Yy =21l + 2,01, + 'V,
Yo=2ZIl,+Z,1+V),.

It is assumed that an appropriate rotation is performed to partition Y5, I1,,
I1,, and V, as in section 2. The endogenous variables, y,, Y3, and Y, are
T x 1 vectors. The exogenous variables Z, and Z, are TX1 and T X2
vectors, respectively. The values of parameters in the reduced form equations
are set to be =, =2, w,=[0,0], I1,, =9, I}, =[1,5], II;,=25, and [I}, =
[0,0). Notice that the value of B, 15 zero by construction. The identifying
relations show that B8, is identified and that B, and y are not identified in
this experimental format. For the purpose of simulation, 4,000 iterations are
made to generate normal variates for ¢,, V,, and V,,. For Z, and Z,,
random numbers from a uniform distribution are generated. Since the
variables Z; and Z, are exogenous, they are fixed throughout the iterations.
In each iteration, we calculate the 2SLS estimates of B;, B,, and y using the
formulae in section 3. These are used to plot the finite sample and asymp-
totic distributions. Since the parameter 3, is identified, its estimator 8, has a
distribution which is not invariant to the sample size, as is discussed in
Phillips (1988). At a given sample size, the finite sample distribution is
plotted by using Bl, while the asymptotic distribution is charted by the
rescaled values of B,, ie., T'/'B, The 2SLS estimator of B, is known to be
invariant to the sample size and, as discussed in Phillips (1988), has a
standard Cauchy distribution. The parameter vy is unidentified, but its
estimator has a distribution that varies with the sample size.

Fig. 1 illustrates the finite sample and asymptotic pdf of the identified
coefficient estimator B,. Sample sizes T = 30, 80,200 are used. As discussed
in section 4, both the pdf’s are scale mixture normal. The identifiability of B,
is manifested by the fact that the pdf’s are centered on the true value of B,
and concentrate as T increases. In fig. 2, the pdf of T'/ZB at T=80is
plotted together with normal pdf’s. The normal pdf’s are charted by a normal
density function formula with the variance IT5M,{300'M {311, condi-
tioned on certain @ as in Corollary 3.1. Note that M,, | = My, — My M 'M ;.
The pdf's of normal 1 and normal-2 are generated by setting € =
[cos(r/2),sin(r/2)] and @' = [cos(0), sin(0)], respectively. The tail of the pdf
of T‘/ZB1 is in between those of normal 1 and normal 2, reflecting the scale
mixture normality of T‘/ZB Fig. 3 shows the pdf’s of B, and the standard
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Fig. 2. Pdf’s of beta 1 and normals.

Cauchy. The sample size here is T = 80. We find that both pdf's have similar
shapes.

The pdf's of y at T = 30,80 are plotted in fig. 4. The distributions are
shown to have very large variances. This is what we would expect from the
fact that B, has a Cauchy distribution. Both the pdf's show only a slight
difference in shape.



132 I Choi and P.C.B. Phillips, Asymptotic and finite sample distributions of IV estimators

density
G2

/ W vete 2
/ \\;\ — — auchy
Ot N

(&) —
S -20 -10 0 10 20
Fig. 3. Pdf’s of beta 2 and Cauchy.
o
> /,.;A\\
= !
g /J \\‘
o [
© J Y
/ |
/ 1
? N e
/ \/\ — T o= 10
{7/')4 A\\j——~ = :03
ol ncmrn SIS
S -20 -10 0 10 20

Fig. 4. Pdf’s of unidentified gamma.

Fig. 5 and fig. 6 display the empirical pdf’s of the Wald statistics under the

null hypotheses on 8 and on y at T = 30,80 against the chi-square distribu-
tion with the degrees of freedom 2. Here

, ' 9 1 1 0
1T|=[2,0], 7TZ=[070]’ Hl=[0 0]’ szl:s 0]’

hence B and y are only partially identified. When B is partially identified, fig.
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Fig. 6. Pdf’s of the Wald statistics.

S shows that the null distributions of the Wald statistics have high peaks
around the origin and that their tails are thinner than that of the chi-square
distribution. Contrastingly, when y is partially identified, the null distribu-
tions of the Wald statistics display more dispersion than the chi-square
variates, as we see fig. 6. Obviously we find that using a nominal chi-square in
hypothesis testing in case of identification failure results in size distortion.
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6. Conclusion

General formulae for the finite sample and asymptotic distributions of the
instrumental variable estimators and Wald test statistics in a simultaneous
equation model are derived under the assumption of partial identification of
the coefficient vectors of both the endogenous and exogenous variables. In
order to isolate identifiable components from the coefficient vectors, we
employed a simple rotation of the coordinate system. Both identified and
unidentified components estimates can then be studied separately and the
consequences for estimation and inference in the original coordinate system
follow directly.

Only estimators of identified coefficient vector have finite sample distribu-
tions that carry information about the true coefficient vectors. The estimators
of the unidentified coefficient vectors are independent of the true coeffi-
cients. But they are not invariant to the sample size. All the finite sample
distributions are expressed as mixed normal. The formulae derived are
general enough to include totally identified, totally unidentified and general
partially identified systems. Asymptotic analysis informs us that only the
estimators of the identified coefficient vector have meaningful limit distribu-
tions. However, these are not normal, demonstrating that the effects of the
nonidentifiability of other components persist asymptoticaily. Only the esti-
mators of the identified coefficient vector are consistent of course. The limit
distributions of Wald statistics for the whole coefficient vectors are not
chi-square, as we would expect from the lack of identification. As a matter of
fact, these tests are inconsistent in the general case of partial identification.
Simulation results show the empirical pdf’s of the estimators of both the
identified and unidentified coefficients and of the Wald statistics under the
null against the respective asymptotic distributions. The difference in
the properties of the estimators and of the test statistics in the two polar
cases is vividly shown in the figures. These results indicate the importance of
identification in simultaneous equations theory and highlight the conse-
quences for estimation and for statistical inference of identification failure.
In empirical research where order conditions for identification are all that
are checked, these consequences should always be borne in mind.

Appendix

Proof of Theorem 3.1

(a) The coefficient estimate of B, is written as

éx = (YleEYZI)—l(YZ’IEyl)’
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where E=L — LY,(Y;,LY,)” 'Y}, L and L = P, — P, . Factorize the idem-
potent matrix L as L =D, D), where D, =Q, Z{(Z,0, Z;)""/? [cf. eq. (33)
of Phillips (1989)]. Using this factorization, we write F as

E=D1Dll -DlDlIVZZ(VéZDlD’IVZZ)-lVézDIDlI'

It follows from (C1) that 6 = D|V,, = N(0, /). Hence E can be rewritten as
follows:

E=D/D,-D,5(58) 8D,
=D,[1-5(55) "5 D;
, -1/2 , ) -1/2 .,
= Qz,z_x(zan,Zz) / 006 (ZJQZ,Z3) ZzQz,’
where @ is distributed uniformly on the Stiefel manifold

V, ={0:00=1__,]}

a—na kT

We find trivially that
' ' _‘/2 ’ '
@(Zst,Zs) Z.%Qz,szlV:zEN(@Arnzw](k_,—nzm,)v (A1)

where A, =(Z;0, Z,)" 22,0, Z,) = T'/*W’ under (C2). Standard multi-
variate theory then yields the (conditional) Wishart distribution:

YLEY v, = Wn,(k3 —ny I, 15, A00° A, 11,))
=W, (ky—n,. 1, , THLWOO'W',)
and (conditional) inverted Wishart
A0 o= (Y4EYy) v,
=W, (ky=ny+n, + 1,1, [ A,00' A, 11,,)
=W, (ks —ny+n + 1,1, TILWOOWIL,). (A2)

Next

ViEy\|, =N(YLEZ 1By, Vi EYy). (A3)
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Set ¢(@O) =Y, EZ,II,, and note that g(©O") is normally distributed
conditional on V5, (or equivalently on @) as follows:

g(00) e =N(I15Z,EZ,IL,,, I, ZEZ, 1))
= N(IT; A OO0’ ALIL,, [T A OO'A L)
=N(TII,WOO'W'IL,, TII,WOO'W'II,,).

Combining (A.2) and (A.3), we have

B v, = (YflEYZI)—l(YélEyl)

= N(A(60')5(60')B,. A(00)).
Next, integrating with respect to A4 and g conditional on @, we find
Blva=[ [ N(4(00)g(00)B,. 4(66"))
geR/ 450
Xpdf,(A,g)dAdG,

where pdfy(A,g) denotes the joint pdf of 4 and g conditional on 6.
Finally, letting V,, go free and integrating over O €V, _, ., we obtain

Bl =[V j;'eRmJ;>ON(A(@@')g(@@’)Bl’ A(Q@’))

ki—naks

X pdfe( 4, g) d4dG do.

(b) The coefficient estimate of 3, is

éz = (Yz'zjyzz)“l(yz'zj)ﬂ)’

where J=L — LY, (Y;,LY;)"'Y; L. L is defined as in (a) and factorized in
the same manner. J is rewritten such that

7 ’ ’ ’ -1
I=D\D| - D D(Z, I, + V3 )((Z,11,, + V) D, D(Z, [T, + V3,))
X(Z,11,, +Vy)'D Dy

-p[1-e(00) '9|D],
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where

O =D\(Z,IT,, + Vy) = Aplly, + DV, = N(T'*W'II,,, 1) (A4)

and Ay=(Z230,2,)""23Q, Z,) = T'/*W'. Proceeding in the same way
as (a) we find that

-1/2

’ ? - 2 '
J= Qz,Zz(Z'st,Zs) 20 (Zst,Zs) v Zst,’

where 2 =(2(9) is distributed on the Stiefel manifold V'={2: 202 =1 _ }

with a nonuniform distribution induced by that of # in (A.4). It is easily
deduced that

Q'(ZEQZ,Zs)_’/ZzzQz,YzﬂVz, = N(0, Ries=nyymny)-
This is also an unconditional distribution. Hence we find that
YR =W, (ky—ny, 1, )
and that
B= (Y3 Yy) ' =W, (ky—n, +ny+1,1,). (A5)
Next we consider the conditional distribution
Y, Jy, v =N(Y»nJZ,11,,B,,Y5,1Y,,) v (A.6)
Vs Vi
Observe that m(0)lg = Y3,JZ,11,,|,,, is distributed as
m(8)le=N(0, 15, 25JZ,11,,)
= N(0, 15, Ar QAL ILL,)
=N(O, TII,WQOW'L,,)).
From (A.5) and (A.6) we have

Ba|, = (Yal¥u)(Yady)|
21 21

Vy Yy

= N(Bm(6)8,, B).
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In the manner of (a), we then have

Bolv,=[ [ N(Bm(8)B,. B)pdt,(B,m)dBdm,
oo meRM":YB>0

and finally

A

5 = N B 9 ’B
BL j(;eRk-‘"‘j:neR"r":[B>(, ( m( )B| )
X pdf,( B, m)dB dm pdf(8)ds,

where pdf,(B, m) denotes the joint probability density of B and m condi-
tional on 6.

Proof of Corollary 3.1
(a) Write
YL EY, = (1325 + Vz’x)Dl[l—5(5'5)_l5'] D(Z,11, +Vy).

Now characterize the asymptotic behavior of each term on the right-hand
side. First,

e, . -1/2, .,
T'2D\Z, 01, =T l/'(szz,Zz) (Z3QZIZZ)H2|

-1/2 ’ ’ ’ - ’ -1/
=T"%(232,-2:2(2/2,) "' Z,Z,)

X(242, - 242(2,2,) "' 2,Z,) 1,

- ~1/2 _
"’(M33—M3|M|11M13) /(M32—M3|MHIMIZ)H21

Next,
6 =D\Vy = N(0, ]k_m:)’ DV, = N(0, ]k.w:)'

The last two results follow directly from Phillips (1989, lemma 2.3). Thus we
obtain the limit theory:

T_IYZlIEYZI = H§1M§z~|M3—31-{2@@’M3—3!1/2M32~1n2|-
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Similarly, we write
Y3\ Ey, = (I13,Zy+ V) D,| 1 - 8(8'8) '8’ D\( Z,m, + 1)
Since Diry = N(0, I, ), we find that
T 'Y EZym, =I5 Mj, (MG {200'MS (*M;, 7,
=115M3, M3 ?00'M3!{* My, 11,8,
and

T-'2Y,Ee = [ N(O, 5, M3y \M3{200'M35 (*M, \11,,) 46

V=i
Rewrite B, as
B = (Y5 EYy) (Y} Ey,)
= (Y} EY,) (Y4 EZ,I1,,B,) + (Y3 EY,)) " (YL, EV)
=(T"'Y4EYy) (T 'YL EZ,1,,8))

+ T V(T Y5EYy,) (T 2Y3,Ee).
Thus,
ﬁ([‘}] _BI)IV:: =’N(O, (Hé] §2~1M3_3¥1/2@@,M3‘3{1/2M32~1H21)_‘)v

and removing the conditioning we obtain

o ’ ’ -1/2 ’ - -1
VT (B, - B,) ‘—“f N(O, (T M3 M3 PO0' MG\ (PMy,  1T,)) )

Vi-naky

= N(0.(I15,00'11,)) ") d6.

Vivmmai,

(b) Write

Y3y, b Ypd(Zymy+ )
21
Vs

=Y,JZ,m, + N(0,Y3,JY5,).



140 I Choi and P.C.B. Phillips, Asymptotic and finite sample distributions of IV estimators

Here
YpJZym,=VuD[1-6(00)'0| D\ Z,m,.
Since

T—l/zo = T— l/zATnzi + T—l/lelel 7 W’Hzi = 5, Say,

and D\Vy, = N(0, 1 ), it follows that Q,—, Q5 and T~'?Q,D"\Z,m, =
T=12Q,D\Z, 11, -, 0. Thus

T™\2YLJZymy > 0.
p
Moreover, since T7'Z'Z =1 + O(T™1!), we have
’ 1 —-1/2 . , _
D1Zz = (Z3QZ,Z3) (Z3Q2122) = Tl/ZW + O(T 1/2)'

Next note that Q,D'\Z, = (Qg + O, (T~ YXT'*W + O(T~ /%)) = 0, (1), since
Q;W =0. Thus Y3,JZ,7, —, 0 also. Now consider

YpJYy = V3, D4 1-6(66)'0'| DV,
= N(0, I}QsN(0, 1)
=N(0,I)AAN(0,1),
where 4'4 = [. Hence Y5, /Y, = B=W, (k; —n,, I;,z). Next decompose Bz as
By = (Y5 0Yy) ' (YRJZymy) + (Y3 JYy,) " (Yoo dv)
= (YndYy) " (Yadv) + 0,(1),
and since

(YnJYy) 'Yplu = [ N(0,B)pdf(B)dB,
B>0

the stated limit law follows directly.
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Proof of Theorem 3.2

(a) ¥, is written as

~

"= ’19
/ ’ - ’ ’ r - ’ B
=RY(Z1Z)) ]nyx-Rl(ler) lZl[szYzz]iBl}
2

=Rm, +R(Z1Z,)7'21Z,m, - R(Z\Z,) ' 12,11, B,
1
+R(Z,2) ' zv| =By |.
~B,

Z'V is independent of B‘ =r, and B, =r,, since Z|E = ZJ= 0. Thus, we
have the conditional distribution

A ’ ’ - ’ ’ r -1 ’
Yx'CiEN(Yx“'R:(ZxZ]) ]ZXZ?.’TZ_Rl(ZIZ]) Z\ZyI1ry,
(1+rir, +rr)R(Z:Z,) "' R))

=N(yl, T7'(1+r¥rY)),

so that

9 j N(yy, T7 (1 +r*r*))pdf(r*) dr*.
Rmi+m: .
(b) We write ¥, as

$2=Ray

14 i - I 1 i - I B
=RY(Z,Z2))'Z}y, - R Z)Z2,) "' Z}[ Y2 Yzz][ﬁ‘}

=Rym, - 'z(Z;Zx)—‘Z§2272_Rlznnél
-RY(Z\2,)”'Z\2,T,,B, - R, 11,3,
1
+RA(Z\Z) 'z | —Bi .
~B;
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In the same way as part (a), we obtain

2|, =N(Rym + R Z,2,) 7' ZyZ,m, - Ry M7,

2l
2

~RYWZ\2,)" ' Z\Z, [Ty r, — Ry 51y,
(L+rir +r5r)R(Z1Z,)'R,)
=N(R’21'rI -RyMr,— Ry yyry , T (L +7)r, +r4ry))

=N(Rym = RYILSr* T~ (1 +r*r¥)),
since

’
[, ,] [r‘] =I1,Sr*.
Hence, the result follows as in part (a).

Proof of Corollary 3.2

(a) Using 7, — nzxé: =m,—IB, - Hzx(Bu - By = _HZI(Bl - By, we
deduce from Corollary 3.1(a) and Theorem 3.2(a) that

ﬁ(i’l -7~ _RllMl_llMlezx‘/T(Bl _Bl)

+R,MNTV2Zy )| =B

T e T

2

= [ N(O,T'(1+8,B, +7,%,))pdf(F,) d7,.
R"

(b) This is easily deduced from Theorem 3.2(b).

Proof of Lemma 4.1

6= T"(yl - YZIBI - YZZBZ),QZ|(YI - Yzhél - Yzz[‘}z)

1
= (L-Bu-B)(T"'YQ.x)| =B
-B,
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We consider the middle term T"Y’QZ]Y and write Q, =1-D,D; where
D,=2Z(Z,Z,))"'/*. Then we have

(Zymy+ VY
Y'Q,Y=|(Z,T, +Vy) |(I-D,D,)
£
X(Zymy+ V) Zyd + Vs, V).

Since we know that D3V, = N(0, [,), D3V, ="NO, I, ), DV, =
N, 1., ), T7'DyZ, -, 0, and T~'Z,D,D,Z, > M, M;,'M,,, we obtain

a2 14
the following results:

T YZ,my+0))(Zym,+ 1) 7 oMy, + 1 =7m,m, + 1,
T~ Zymy+ 0 ) (201 + V) > Ty Moy Il = w1,
TN Zym,+0v,)Vy = 0,

T NZ,y + V5 Y (2,11, + Vsy) 7 I, My, 11, +1,,

4

=I5, 171, +1,|,

T Z,I1, + Vy, )V, = 0,
p
T-WyuVn—>1,,
p e
T™Zymy+ 1)) DDA Zymy + 1)) > 7AMy MMy, = 0,
p
TN Zymy+0,) Dy DY Zy1, + Vy)) = My MM IT,, =0,
p
T_‘(Zzﬂ'z'*’fl),DzD':sz_’Ov
p
T™YZ Ty +Vy Y Dy DA Zo 015 + V) = [T Moy MG M IT, = 0,
p
T"I(ZZH2l + Vzl)'D:,D':V22 -0,
p

T-'V;D,DyV,, > 0.
p
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Hence,
moMom,+1 myMy,Il,, 0
T-'Y'Q,Y - I My, My Il +1, 0
)
0 0

n2

Vlelex—llsz‘”'z 7"/2M21M1_11M12n21 0
- Héleerl‘Mlzﬂ'z HélelMl—llMlznzx 0

0 0 0
mhm,+ 1 w1, 0
= [}, myI, +14, 0
0 0 1,

Using Corollary 3.1, we now obtain

1
62=(1,- B =B )(T7'Y'Q,Y)| ~B:
-B;
mm,+ 1wy, 0 1
= (1,- B,,— #)| o, i, +1, 0 =B
0 0 I, |\ -7

=14B\B,+7F,.
Proof of Lemma 4.2
Rotating Y, by the matrix

ny R,
S=[S8,,5.]€0(n),

we have

22

Yt
SIYZI(PH—PZI)YZS=[ le](PH—PZI)[YZI Yzz]

- [YZIXDID’IYZX YZIIDIDIIYZZ
YZIZDXD,IYZX YZIZDlDIlYZZ ’
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where D, = Q, Z,(Z;Q, Z;)~'/?. Write the partitioned inverse of
S'Y;(Py — P2)Y,S in the form

N VA
S'(Y3(Py = P,)Y) ls=[ " 2‘],

Ly 1y
with
Ly = [YZ,IDIDIIYZI - YZ’IDIDIIYZZ(YZ'ZDID’JYZZ)_‘YZIZD]D,IYZI] —l’
L= "(YéleD'IYzz)—]Y£2D1D'1Y22111f
lyy= (Y5, D, D\Y5)) ™" + (Y3, D,D\Y,) ™ 'Y5, D, DYyl
X Y3,D,D\Y,5( Y5, D, D) Yy) .

Now we study the asymptotic behavior of Y;,D,D%Y,,, Y3,D,D\Y,,, and
Y, D,DY,,. Write Y3, D,D\Y,, as follows:

Y3 D \D\Yy = (ZyI1y + Vy, Y D\DW(Z, [Ty, + V)
=11;,Z,D,D\Z,1I,, + I1;,Z, D D\V,,

+VuD\D\Zymy + V3 DDV .

Since

T '2D\Z, > M5 (*Msy. =1
and

DV, = N(0, IKR,,]),

~we have

T_]YZIIDID’IYZI 7 H'21M§2~1M§3!1M32-1H21 =I1;,11,,. (A7)

Next, we find

Y D\D\Yy =V D\ D\WVy =W, (ki In:,)' (A.8)
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Lastly, writing

Y3D\D\Yy = (2,11, + V) DDV

=IT1,,Z,D,\D\V5, + V3, D, D'V,

we obtain

T~'72Y3 D\ DYy, = I1;, M3, \M3{*N(0, L)

=I5, N(0, I ,.)- (A.9)

Using (A.7). (A.8), and (A.9), we obtain the following results:

Tl = [T7'Y3,D,D\Ys, = T~2Y3, D, D\Yy,(Y5, D, DY )
XT=2Y,D D Yy]

, -1
- {HZl{I ~N(0, I ) (W (ks 1)) N(O, I,(J,,Z)HZ,>.
Or, equivalently,
-1
Ty, = ([ 1-8(58) '8 | 11,
={I1,00',) "
=1, say. (A.10)
Here 8 and @ are as in the proof of Theorem 3.1(a).
T\, = —(Y3,D\D\Yy) 'T~'2Y}, D\ D\Y, Tl

1) VO e

na

= /_‘ N(0,B*® I13,)l,, pdf( B) dB
B>0

-/

ky=nz.ky B>0

N(0,B*®1,,IT},IT,],, )pdf( B.0) d B d6,

(A.11)
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where B = W, n,+k;+1,1,) and pdf( B, ®) denotes the joint pdf of B
and 6.

’ ’ - r ’ -1 -_ ’ ’
Ly, =(Y3,D,D\Yy,) ]"‘(YzleDszz) T-'%Y;, D, D\Y,Tl,,

= B+ BN(0, 1,(3,,2)11212,,11;,1\/(0, L.,.)B

32

=B+B W,,Z(n,,i,’{zﬂé,ﬂni}(z)d@]ﬁ

Viimna ks

=1,,, say. (A.12)

We deduce from (A.10), (A.11), and (A.12) that

’ -1 O O ’
[Yi(Py=P2,)Y2]  =S$|, il

=5,0,5).

Proof of Lemma 4.3
This is based on Lemma 2.7 of Phillips (1989). Let P, =D*D*, D¥Y,, =

Y,, D*Yy=TVy. and D*V,, =V, Then Z,QZ, with Q =P, -
P, YAY}P,Y,)"'Y;P,, may be decomposed as follows [see eq. (A.6) of
Phillips (1989)]:

2,0z, = Z,D*[1- D*Y,(Y;D*D*Y,)”'Y;D*| D*Z,

= Z}D*[Q?n - Q)"::}_,ufn}_’le?:] D*Z,,

where f,, = (Y{,Q5 Y,)""
Now proceeding as in the proof of Lemma 2.7 of Phillips (1989), we have

T™'V2Y, =T '2D¥Z\I1,,+ T~ '/*D*V,,
=F,+ T '/2D*V,,, say,
and

FrQy Fr=T! 1722QFT1722 +0,(T?).
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Now write 7~'/2D¥Z, = F;IT}, + O(T~/%), where [T}, = (T, [1,)*IT}, is
the Moore-Penrose inverse of I1,,. We have

2,02, = T{iF;| 0, — Qv ¥u fu T3 Qr..| Fr 111}

= THE{T V40 V0 = T V506, Yo fu V201, Vor
+0,(T~) T},
= 15V Qr, = O, Va1 fuV51Qr, | P [Ty + O,(T™ /)
= T5V4[ Q= @, T2V TFT V273005, | Vi Ty + 0,(1).
Writing V5, = N(0, Lk +kyny) = &, we find

Z\QZ, =11}; ,[QF - QFAJZH)"QF]H—[TZ

'=‘IT,+2'(W,,Z(k‘ +ky—n, 1),

where
o= L) =)
MXXI/ZHIZ I, |’
_ M3_3¥1/2M32-xnzx _ I1,,
Mﬁ‘/znu"'Mx_xszlezx 1, ’
JZu:()‘QFX)_l-

The last line is obtained as in Lemma 2.7 of Phillips (1989) using the fact that
tr{Qr — QpAf AWE) =k  +k;—n. '

Proof of Theorem 4.4

(a) Since [§=Sl[§,-i-82[§2, we find under the null that H,8-h,=
H, S (B, ~ B, + H,S,(B, — B3). Using Corollary 3.1, we obtain

H\B—h =HS,(7-B,).

Combining this with Lemma 4.1 and Lemma 4.2 yields the result as required.
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(b) Under the null H,9 —h,=H,R (3, —v,) + H,R,(¥,— v,). Appealing
to Corollary 3.2 gives

Hyy—h,=H,R,(5,-7v,).

Now applying LLemma 4.1 and Lemma 4.3, we obtain the result directly.

Proof of Lemma 4.5
Observe that

T-'/Z?z,;»w and Y,,=N(0,1)=¢, say,

where

M3{iMy, (11 - I,
M\{*M 11, 0

Proceeding as in the proof of Lemma 4.3, we find that
T~'Zi0Z, = p[ Q. - Q¥ (¥'Q, %) W0, |y
=p®|1- oW (V' DP¥) 'V oy,
as required.

Proof of Theorem 4.6

This is an easy consequence of Corollary 3.2 and Lemma 4.4,
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