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A SHORTCUT TO LAD
ESTIMATOR ASYMPTOTICS

P.C.B. PHiLLIPS

Yale University

Using generalized functions of random variables and generalized Taylor series
expansions, we provide quick demonstrations of the asymptotic theory for
the LAD estimator in a regression model setting. The approach is justified
by the smoothing that is delivered in the limit by the asymptotics, whereby the
generalized functions are forced to appear as linear functionals wherein they
become real valued. Models with fixed and random regressors, and autoregres-
sions with infinite variance errors are studied. Some new analytic results are
obtained including an asymptotic expansion of the distribution of the LAD es-
timator.

Shall I refuse my dinner because I do not fully understand the process of
digestion?
O. HEAVISIDE

1. INTRODUCTION

Classical asymptotic methods such as those given in Cramér [7, Ch. 33] are
usually thought to apply only in cases of regular estimation. Here, smooth-
ness conditions facilitate the use of Taylor expansions of the objective func-
tion and the associated first-order conditions. When supplemented with
preliminary consistency arguments, these expansions then yield the required
asymptotic distribution theory in a few simple steps. With more tiresome al-
gebra and higher-order smoothness conditions, they also supply the formu-
lae for Edgeworth expansions to second and higher orders.

The absence of smoothness in the criterion function that occurs in what
are called nonregular cases is generally thought to prevent the use of this clas-
sical approach. Early studies that dealt with nonregularity complications by
direct methods were Daniels [8] and Huber [11]. More recently there has been
a move toward the use of stochastic equicontinuity arguments and empiri-
cal process techniques to address the complications that are presented by the
absence of smoothness and continuity in the criterion function. These tech-
niques have been successful in accommodating a wide range of nonregular
cases, including simulation-based optimization estimators such as those that
are employed by McFadden [14] and Pakes and Pollard [16]. They have also
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found attractive applications in the development of asymptotics for semipara-
metric models [2]. The work of Pollard [20,21,22,23] has been especially in-
fluential in advancing the use of these techniques in econometric applications.
However, as pointed out by Pollard [23], stochastic equicontinuity arguments
are less accessible to many potential users even though they often capture the
key technical difficulty in the asymptotics. Partly in response to this objec-
tion, Pollard presents an alternative approach in [23] for studying the asymp-
totic theory of the least absolute deviation (LAD) estimator in a simple
regression context. Pollard’s alternative approach builds on the convexity of
the LAD criterion function to construct a quadratic approximation whose
minimand is close enough to the LAD estimator for the latter to share the
same asymptotic normal distribution.

The present note is related closely to Pollard’s paper [23]. However, instead
of putting forward an alternative approach, our objective is to show the ser-
viceability of the classical approach in nonregular problems like that of the
LAD estimator. The idea we put forward is very simple. If the criterion func-
tion has nonregularities like discontinuities in its derivatives, these may be
accommodated directly by the use of generalized functions, provided the dis-
continuities are smoothed out asymptotically. First-order conditions and Tay-
lor representations can be written down in the usual way but they take the
form of generalized Taylor series. They may be formally interpreted as lin-
ear functionals in terms of the empirical distribution function. As the sam-
ple size n — oo, these linear functionals become well behaved provided some
basic smoothness conditions are imposed on the underlying probability law
of the data. In effect, with this generalization of the classical approach, the
asymptotics provide the smoothness that is required to justify the Taylor de-
velopment and thereby the resulting asymptotics.

Our approach is heuristic and we do not claim to deal rigorously with all
of the mathematical issues that arise. However, it is hoped that our extended
treatment of LAD asymptotics will serve to illustrate the utility of these ideas
and to stimulate the interest of others in the use of these methods. To con-
tinue the theme put forward by Heaviside in the line that heads this article,
we believe there is still good food to enjoy in classical dinners.

2. LAD ASYMPTOTICS: THE HEURISTICS

Suppose y, is generated by the linear regression

ye=x/8°+ u, (t=1,...,n), @
where the parameter vector 3° € R*, the errors u, satisfy (@,) below and
(x,) constitutes a bounded, deterministic sequence for which

On=n"'3xx >0, )
1

a positive definite limit, as n — oo.
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(@) The sequence (u,) is i.i.d. with zero median and probability density
f() that is positive and analytic at zero.

The LAD estimator 3, is chosen as a solution of the extremum problem
n
Bn=argmin{n"‘2|yt—x;ﬁl]- 3)
1

This is the standard framework for deriving the consistency and asymp-
totic normality of the LAD estimator. The original work is due to Bassett
and Koenker [3]. An extensive study with an analysis of autoregressions as
well as the regression model (1) is provided by the monograph of Bloomfield
and Steiger [6]. Some additional insights into LAD estimation and the his-
tory of its asymptotic theory are given in Bassett [4]. A recent and novel
treatment of the subject that includes an historical overview of research and
some additional references is Pollard [23]. Our condition (@) is stronger
than Pollard’s “error assumption” on u, in that we require the density f(-)
to be analytic rather than simply continuous at the origin. But there will be
gains to making this stronger assumption. Not only does it help in develop-
ing generalized Taylor series but in so doing it facilitates the subsequent de-
velopment of higher-order asymptotics.

In most cases of interest and certainly under the standard assumptions of
the regression model given above, the consistency of 8, is easily established
by conventional arguments that involve the limit of the objective function
in (3). Amemiya [1, pp. 152-153] is a convenient source for the details of this
approach. In what follows, we shall assume this argument has already been
made and that §, > B%asn— o, X

Our concern is with the asymptotic distribution of 8,. Our approach is to
proceed as if the problem were regular and the objective function were dif-
ferentiable in 3. Although the derivatives do not exist in the usual sense, they
do have a meaning as generalized functions. Moreover, they are real valued
and unique when they appear in an appropriate linear functional form. Since
this is precisely how they do arise in the limit as # - oo, it turns out that we
may proceed with the usual Taylor series expansion of the first-order con-
ditions to extract the asymptotic theory.

We start with the first-order conditions for 3, from (3). These are

n' Y sgn(y, — x/Ba)x = 0, @)
1

where sgn(X) = —1 for X <0 and = 1 for X = 0. We now expand (4) in a
Taylor series about its value at 3°. Note that d/dX (sgn(X)) = 286(X) where
6(X) is the delta (generalized) function (Gelfand and Shilov [9], hereafter
simply GS, p. 4). We denote successive derivatives of the delta function by
8 (X) for k = 1,2,... . Proceeding in a purely formal way by treating
sgn(-) as analytic (it is already piecewise analytic) and its derivatives as or-
dinary functions, we would have the expansion
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n n .
0=n"1> sgn(u)x, —2n7" 23 6(u)xx/ (B, — B°)
1 1

+2 i} (—l)k(i)n*‘ éﬁ“‘“”(u,)x,[x,’(ﬁn - BN~ 5)
k=2 k! 1

Let us now suppose that we can ignore all but the first two terms of (5) as
n - o, This is, of course, precisely what is done in the classical approach.
Scaling (5) by n'/? and taking the error to be 0,(1), we have

n-v? i sgn(u)x, = Z{n*‘ i a(u,)x,x;]n“(é,, ~ B°%) + 0,(1). (6)
1 1

Since (sgn(u,)) is i.1.d.(0,1), the left side of (6) satisfies a multivariate exten-
sion of the Lindeberg-Lévy theorem, leading to

n12 i sgn(u)x, 7 N(0,Q). (¥)]
1

On the right-hand side of (6) the matrix factor in square brackets satisfies
a weak law of large numbers, viz.

™ 36 o Tim o 3 E(u)xx, = £(0)Q. @®
1 n—oo 1

Putting (6), (7), and (8) together we deduce directly the limit theory for the
LAD estimator, that is,

n'2(B, = B°) 7 N(O,(1/2f(0)*Q ™). )

3. AN ATTEMPT AT RIGOR

To attach some rigor to this heuristic skeleton, we need to justify three of
the steps just taken, specifically, (i) the Taylor expansion (5); (ii) the 0,(1)
error in (6); and (iii) the weak law of large numbers (8).

Let us start with (i). Obviously, (5) has no meaning as an ordinary equa-
tion or as an ordinary Taylor series expansion. But it can be interpreted in
terms of generalized functions and as a generalized Taylor series. Thus, sup-
pose ¢ is a suitable test function for linear functionals of a generalized func-
tion g. Suppose, for instance, that ¢ belongs to the space S of entire functions
which, together with their derivatives, approach zero more rapidly than any
power of 1/|u| as |u| - o (e.g., e™*’) and that the linear functional

(g(u+ h), o) =fg(u+h)@(u)du=fg(S)@(S—h)dS 10
R R

is an ordinary analytic function of 4 in some neighborhood of 2 = 0 for
all ¢. Then, g,(u) = g(u + h) is a generalized analytic function of A (GS,
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pp. 149-150). Indeed, by expanding ¢ (s — /) about its value at 2 =0in (10)
and noting that (g, ¢) = (g,(—1)/¢'"), we obtain

oo

1 , , >
(g(u+h),0) =2, (J—’) (—h) (g ) = 2] (

Jj=0 j=0

1
Jt

) hi (g, )
which we can write in formal terms as

g =2, (T)g;fj)h’-
j=0 J!

Setting g,(u) = sgn(u + h), h = x/ (8, — B°), and noting that fZ sgn(u +
h)e(u) du is analytic in A for all ¢ € S, we deduce the expansion given in
(5) above.

Next consider (iii). The limit given on the right of (8) is well defined be-
cause the generalized function 8(-) arises only through the linear functional
E(5(u)) = [6(u) f(u) du = f(0). Note that this last expression remains true
even though the density f(-) may exist only in a neighborhood of zero. This
is because generalized functions like §(-) may be defined locally in terms of
their operation on test functions with support in arbitrarily small given neigh-
borhoods of every point (see GS, p. 140).

To be more complete in deducing (8) we may replace 6(-) with its inverse
Fourier transform representation, which we signify by “F~1(-),” that is,

o

§(u,) = F71(1) = (Zr)‘lf e ™ do.

Again, the integral is formal and the correspondence produces the Fourier
transform pair of generalized functions (6(-),1) (GS, p. 168). In place of (8),
we may now show that

n

n
nt e oy x{ > limn™! ST E(e ™) x,x{ = cf,(—0)Q. an

1 n—o 1

But this follows immediately because (e~ — E(e ")) is i.i.d. with zero
mean and finite variance. Upon inversion of (11) we get (8), since

J(0) = (—1—>f ¢f.(0) do.
27/ J o

In fact, (11) may be regarded as the appropriate way to interpret (8) as a
weak law for generalized random variables.
This leaves us with (ii). Working from (5) we have

n“/zésgn(ut)xt =24,n"*(B, — 89, (12)
1
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where

n
A, =n"1Y6(u)x X,
1

+ i (=D + DY) 'n! ZHIB”)(M)X:X[[X[(B" - 8%/
=1 T

and we have to show that the second term of A4, is 0,(1) as n — .
As with (8) we have

n=t 6% (u)x, x; ry lim [n_l DEG P u))x x| = (=) P00,
1 n—oe 1
where we use the fact that

(69, 1) ‘—‘f S (u) f(u) du = (5,(—1)FfP) = (=1)* f(0),
(GS, p. 26). Moreover, since f(-) is analytic at zero, power series such as

= (1 L (fe) = £(0) = £'(0)e)
2 o)kl =
Zzlz(k!)f (0)e

€

are convergent and of order O(e) for all e in the vicinity of zero. However,
B, 5 B and x/(B8, — B°) > 0 uniformly in ¢. It follows that the second
term of A, converges in probability to zero as required.

4. AN ASYMPTOTIC EXPANSION

One advantage of the above approach is that it lends itself to the develop-
ment of higher-order asymptotic expansions. To see how to proceed we set
g, =n"*(B, — B°), £, = n~V2 37 sgn(u,)x,, scale the expansion (5) by n'"2,
and write it in the form

0="0y;+ £, + n-l/szkqnjquk + 0 ke Gy GnkGum + 0p(n71), (13)

where we use the summation convention. Inverting (13), we have up to
Op(nfl/Z)

qni = féjij + nﬁl/zfgjfyke(flz(mfm)(fgnfln) + O,(n7"). (1 E)

Next observe that the distribution of sgn(u,) is symmetric, that the distribu-
tion of £; will admit a valid Edgeworth expansion, and that, because of the
symmetry of the distribution of sgn(u,), there will be no skewness term in
this expansion. Thus, we may write symbolically

0 = N(0,Q) + Op(n™") = £, + Oy(n™"), say.
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The second term of (14) is O,(n~"?) and
Cajie = N1 D78 (U)X XexXee > (=D O)rjre = Laju, say,
1

where

n
rjkg = lim ; thjxthtg.
1

n—ooo

Thus (14) would appear to yield a conventional Edgeworth expansion for the
distribution of g,. However, there is an additional complication that arises
from the components £,;; and the elements ¢4 of its inverse. We have

n
by = 2n~! Z O(Ue) X Xy re 2f(0)q,»j = {5, say.
1

Similarly, define £4 = (1/2£(0))g". Then (14) may be written as
Gui = 0901 + (8F — )01 + n7 V209 03500 (05781 ) (€37 81 m) + 0p(0™Y2).
as)

The order of magnitude of the second term of (15) depends on that of
oy — 2y = 2071 25 (8(u) — fF(ONxx + o(1).
1

This term is much more difficult to analyze and is larger than O,(n~"?).
To see what is involved, set x; = 1 and consider

n=' 25 (8(u,) — £(0)) =f o(u) d(F,(u) — F(u)), (16)
1 R

where F, is the empirical distribution function of u, and Fis the c.d.f. of u,.
In general, we have the weak convergence (Billingsley [5, p. 141])

VA(F,(u) — F(u)) 7 Y(u), an

where Y (-) is a Gaussian process with covariance kernel F(u)(1 — F(v)),
u < v. However, we cannot employ (17) in (16) because the implied limit
variate, viz. [r6(u) dY (u), does not exist. For instance, if u, were uniformly
distributed then Y (u#) would be a Brownian bridge process and [z 6(u#) dY (u)
would be its “derivative,” which, like the derivative of Brownian motion,
does not exist as an ordinary random variable.

There is another way to proceed. Note that (16) is the derivative at s = 0 of

n! i; ((%)sgn(u, +5) — F(S)) -n~! é ((%)sgn(u,) - F(O))
1 1

s

=[Fn(0)—F,,(—s>}—f dF.
0
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For s = —tn~"? this expression is
—{Fu(tn™1) = F,(0) = f(0)tn =" — (1) f/(O)*n ) + o(n7?7)
= —X,(t) + o(n"%?), say.
Now Kim and Pollard [12, Theorem 4.7 and Example 6.5, p. 216] show that
n*3{F,(tn™"3) = F,(0) — f(0)tn ™} = (5)£2f(0) + f(0)2W(t) (18)

with W (t) a two-sided Brownian motion. Thus,
¥ X, (1) > f(0)2W(1).

Define £,(0) to be the left derivative of the concave majorant of F, (i.e., the
smallest concave function on [0,o0) that is everywhere greater than or equal
to F,). Kim and Pollard further show that n'/3( £, (0) — f(0)) has a limit dis-
tribution given by that of the slope at the origin of the concave majorant of
Brownian motion with quadratic drift, a result that is originally due to
Prakasa Rao [24]. Treating £,(0) = n~' 31 8(u,) as an estimate of f(0),
these results suggest that (16) and, hence, {,; — £2;; are both O,(n~'3). But
the second term in the expansion (15) involves the product (¢§ — £)¢,;,
where = N(0,Q). Because £; has zero mean this term will contribute
to the asymptotic expansion of the distribution of g, only through the vari-
ance of £, and, hence, will produce an adjustment of O(n~%3). It follows
that only the first and third members on the right side of (15) contribute to
the expansion up to O(n~'"2). In particular, setting & = ¢, = N(0,Q), we
have _
gni = GFONGYE = n~ V2L O F (O G7rje (@ Em) (g ™ Em)
+0,(n"2), 19)
Observe that when f7(0) = 0, which will be the case for symmetric error dis-
tributions, the term of O,(n~"?) itself drops out, leaving only the first-
order asymptotic term. In the general case, we can derive an asymptotic
expansion of the density of some linear combination such as r = ¢’q, = ¢;q,;
of the standardized error vector g,. The formulae for the expansion of the
density up to O(n~"2) may then be deduced from those in the literature
(e.g., Sargan [25] and Phillips [17,18], where the last reference puts them in
a form that is especially simple to interpret). With a little algebra, we obtain
the following explicit expansion to O(n~"?):

p.d.f.(r) = (V/w)e(r/w)[1 + n7Y2{a,(r/w) + a3 (r/w)?}] + o(n~"?),
where ¢(x) = (27) 72 exp(— (})x?) and the parameters are:

w* = (1/2f(0)’ciq"c;,

a = (l/zw)qstfst - 303,
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ay = (1/20*) (172 f(0))*fyrcsc1)
Ja = =2(172f(0)2f(0)c;q" rieg®q .

5. ESTIMATING THE COVARIANCE MATRIX

In conventional Taylor expansions of the first-order conditions, the Hes-
sian is often used to produce an estimate of the asymptotic covariance
matrix of the estimator. The same idea may be applied here. Taking the
dominant member of the “Hessian,” 24,, in the expansion (12) to be
2n71 337 8(u,)x,x; we simply replace the delta function in this expression by
a delta sequence 6,,(-) for which

oo

lim 8, (X)o(x) dx = ¢(0) Q0

for all ¢ € S. For example, the delta sequence §,,(x) = (m/x)%e ™ sat-
isfies (20) and corresponds to a density estimate based on a normal kernel.
The covariance matrix estimate arising from this delta sequence takes the
form

2n7 D) 8 () X, X,
1

The errors, u,, in this expression can be replaced by residuals to produce a
feasible covariance matrix estimate. The parameter m is like a bandwidth (for
the normal kernel given above we would have # = 1/m'/?) and must be cho-
sen so that m — o, nm~"? - 00 as n — o (i.e., # - 0, nh — o) for consis-
tency (e.g., Silverman [26, p. 71]).

Since delta sequences encompass most density estimates (e.g., Walter and
Blum [28]), this approach to the estimation of the covariance matrix is really
quite general.

6. MODEL EXTENSIONS

It would appear that the approach suggested here remains valid for a large
class of models with weakly dependent, rather than i.i.d., errors. All that is
required is that £; = n="2 37 sgn(u,)x, satisfy some central limit theorem
for weakly dependent errors. For example, suppose that , is strong mixing
(e.g., Hall and Heyde [10, p. 132]) and satisfies the following.

(®,) The sequence (u,) is strictly stationary and strong mixing with mix-
ing coefficients 3, that satisfy 2.7 By < o, and u, has zero median and prob-
ability density f(-) that is positive and analytic at zero.

Then sgn(u,) is also strong mixing with mixing coefficients that satisfy the
same summability condition (e.g., White [27, Theorem 3.49, p. 47]) and we
have the central limit theorem
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n=2 3 sgnlu)x, > N(O, V),
1
where

V= 2, RyE{sgn(uy)sgn(uy)}, with Ry = lim n7! )] x,x/ k.

k=—o00 A—oo 1

When x, = 1 we have

V = E(sgn(uy))® + 2 3, E(sgn(u)sgn(uy))
k=1

oo

=1+22 [{P(u0<0,uk<0)+P(u0>0,uk>0)}

k=1
— {(Pug > 0,u, < 0) + P(ug < 0,u, > 0)}].

Using the same expansion (5) as before, we deduce the following limit the-
ory for the LAD estimator

n'2(B, = B°) 7 N(0,(1/2/(0)’Q'VQ ).

For inference V, as well as f(0), now needs to be estimated. The situation
is entirely analogous to the estimation of autocorrelation consistent covari-
ance matrix estimation as it arises in conventional regression contexts (cf.
White [27], Newey and West [15]).

Models in which the carrier variables x, are random may also be accom-
modated. The details are close to those given in [23] so we shall only touch
on them briefly here. Suppose the x, are strictly stationary, ergodic, square
integrable and F,_, measurable for some increasing sequence of o-fields F,,
suppose #, is independent of F,_; and satisfies (®,), and let V,, =21 E(z,z/) =
nE(x;x{) = nQ, where z, = sgn(u,)x,. Then the following two conditions
hold:

max|| V22| = max[| Q" (n"?z)| » O,
t=n t=n

n n
V;l/l(Zztzt/) Vn—1/2 — 9—1/2 (flﬁl Zztz;)Q—I/Z 1_7, [k
1 1

and we may use a martingale central limit theorem (e.g. [10, Theorem 3.2,
p. 58]) to establish that

ViV 3 sen(u)x > N(O,D).
1

Moreover,

n
n~' Y e ox.x; o E(e™"°x,x{) = ¢f, (—0)Q
1
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and so

n! Z S(u)xx; 7 f(0)Q,
1

where f(-) is the probability density of u,. These results enable us to deduce
the limit law

n'2(B, — B°) = N(0,(1/2£(0)*Q ")

in the same way as before. This covers the case of strictly exogenous station-
ary regressors x, with @ = E(x,x;). It also covers the case of stable auto-
regressions with x; = (¥,_(,...,¥) with (u,) = i.i.d.(0,0?) (the finite
variance o7 ensures that the elements of x, are square integrable) and Q =
(wy) with w; = E(y,—; y,—).

7. AUTOREGRESSIONS WITH INFINITE VARIANCE ERRORS
AND A UNIT ROOT

We shall consider the AR(1) model with a unit root, viz.
Yr = Boyt—l + U, with %=1 21

and where the errors are i.i.d. and have infinite variance. This model has re-
cently been studied by Knight [13].

To develop a limit theory we shall assume that #, is in the domain of at-
traction of a stable law with characteristic exponent «. Specifically we say
that v € D(«) if

Pu>x)=cix*L(x)(1 + a;(x)), x>0, c =0 22)
and
Plu < —x) = x *L(x)(1 + az(x)), x>0, =0 23)

with 0 < o < 2, L(x) a slowly varying function at o, and o;(x) = 0 as
|x| = o. If L(x) =1in(22) and (23), then # is in the normal domain of at-
traction of a stable law with parameter o and we write ¥ € ND(«). With
this terminology in hand, we assume the following

(Q3) The sequence (u,) is i.i.d. with u, € D(a), where 0 < « < 2, with
zero median and with probability density f(-) that is positive and analytic
atzero. If a > 1, E(u,) =0 and if o = 1 then u, = —u, (i.e., u, is symmetri-
cally distributed).

Define the normalizing sequence

a, = inf{x: P(|u] > x) = n~!}.
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For u € D(a), we have a, = n"/*L(n) for some slowly varying function
L(n). For u € ND(a), we have a, = cn/* for some constant ¢ > 0.
Since 8° = 1, the output y, of (21) is an integrated process. In conse-
quence, we have the weak convergence (e.g. [13], [19])
1 1 )
ay' vy = a7t 2 u 7 Sa(0),
n
where S, () is an a-stable process. Further, we have
172 ]
n- 21: sgn(u,) 2> W(-)
and

n n 1
n“”an“ZSgn(u,)yH=n““22](a;‘yt_1)sgn(u,);*f S;dw, (24)
1 1 0

where W{(.) is standard Brownian motion and S (r) signifies the left limit
of the process S, () at . Next observe that

Sty - Sty s [

and

n 21: (8(u) = FO) (@5 ,-1)* 5 0

so that

n~! Z?]S(u,)(a,,“y,_l)z 7f(0)f01 S2. (25)
Combining (24) and (25) we have

n 1
nV2a; " 3] sgn(u) vy f Sy dw
nl/zan(Bn - 1) -~ : 0

n ? 1 ’
2l Sowria 2O [ 82

1 0
as given in Theorem 3 of Knight [13]. Since a, = n'/*L(n) we have the re-
markable result, due to Knight, that the LAD estimator converges at a faster
rate in the unit root model for 0 < o < 2 than the OLS estimator. As
remarked by Knight, robust estimators such as LAD retain the advantages
of the strong signal from y,_; (due to integration and thick tailed errors) but
attenuate the effects of outliers in the error u, to the extent that they occur
in the sample covariance between sgn(,) and y,_; (in the LAD case).
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8. CONCLUSION

The methods outlined here seem to offer some promise as tools for the anal-
ysis of regression asymptotics in nonregular cases like that of the LAD esti-
mator. Our approach has not always been rigorous. Nonetheless, it is hoped
that the results obtained point to the usefulness of the approach: One would
like to hope that the approach can be made entirely rigorous by providing
a tight probabilistic framework for the use of the generalized random vari-
ables that appear in our derivations. In the meantime it seems reasonable to
conclude that the classical approach warrants more attention than it has yet
received. It may indeed offer some advantages that empirical process meth-
ods do not seem to presently enjoy, viz. the capacity to develop higher-order
asymptotics.
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