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SUMMARY'

In two recent articles, Sims (1988) and Sims and Uhlig (1988/1991) question the value of much of the
ongoing literature on unit roots and stochastic trends. They characterize the seeds of this literature as
‘sterile ideas’, the application of ndnstationary limit theory as ‘wrongheaded and unenlightening’, and
the use of classical methods of inference as ‘unreasonable’ and ‘logically unsound’. They advocate in
place of classical methods an explicit Bayesian approach to inference that utilizes a flat prior on the
autoregressive coefficient. DeJong and Whiteman adopt a related Bayesian approach in a group of papers
(1989a,b,c) that seek to re-evaluate the empirical evidence from historical economic time series. Their
results appear to be conclusive in turning around the earlier, influential conclusions of Nelson and Plosser
(1982) that most aggregate economic time series have stochastic trends. So far these criticisms of unit root
econometrics have gone unanswered; the assertions about the impropriety of classical methods and the
superiority of flat prior Bayesian methods have been unchallenged; and the empirical re-evaluation of
evidence in support of stochastic trends has been left without comment.

This paper breaks that silence and offers a new perspective. We challenge the methods, the assertions,
and the conclusions of these articles on the Bayesian analysis of unit roots. Qur approach is also Bayesian
but we employ what are known in the statistical literature as objective ignorance priors in our analysis.
These are developed in the paper to accommodate explicitly time series models in which no stationarity
assumption is made. Ignorance priors are intended to represent a state of ignorance about the value of
a parameter and in many models are very different from flat priors. We demonstrate that in time series
models flat priors do not represent ignorance but are actually informative (sic) precisely because they
neglect generically available information about how autoregressive coefficients influence observed time
series characteristics. Contrary to their apparent intent, flat priors unwittingly bias inferences towards
stationary and i.i.d. alternatives where they do represent ignorance, as in the linear regression model. This
bias helps to explain the outcome of the simulation experiments in Sims and Uhlig and some of the
empirical results of DeJong and Whiteman.

Under both flat priors and ignorance priors this paper derives posterior distributions for the parameters
in autoregressive models with a deterministic trend and an arbitrary number of lags. Marginal posterior
distributions are obtained by using the Laplace approximation for multivariate integrals along the lines
suggested by the author (Phillips, 1983) in some earlier work. The bias towards stationary models that
arises from the use of flat priors is shown in our simulations to be substantial; and we conclude thar it
is unacceptably large in models with a fitted deterministic trend, for which the expected posterior
probability of a stochastic trend is found to be negligible even though the true data generating mechanism
has a unit root. Under ignorance priors, Bayesian inference is shown to accord more closely with the
results of classical methods. An interesting outcome of our simulations and our empirical work is the
bimodal Bayesian posterior, which demonstrates that Bayesian confidence sets can be disjoint, just like
classical confidence intervals that are based on asymptotic theory. The paper concludes with an empirical

U All citations 1n this Summary are from Sims (1988) and Sims and Uhlig (1988). They are repeated in full in the text
of this paper, where their precise locations 1n the cited articles are given.
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application of our Bayesian methodology to the Nelson—Plosser series. Seven of the 14 series show
evidence of stochastic trends under ignorance priors, whereas under flat priors on the coefficients all but
three of the series appear trend stationary. The latter result corresponds closely with the conclusion
reached by DeJong and Whiteman (1989b) (based on truncated flat priors). We argue that the
DeJong—Whiteman inferences are biased towards trend stationanty through the use of flat priors on the
autoregressive coefficients, and that their inferences for some of the series (especially stock prices) are
fragile (i.e. not robust) not only to the prior but also to the lag length chosen in the time series
specification.

Readers, even mature readers, are attracted to a writer who is quite sure of mmself (T. S. Eliot,
1961).

1. INTRODUCTION

Since the influential empirical article by Nelson and Plosser (1982) on trends and random walks
in economic time series there has been an explosion of interest in the econometrics of unit roots
and stochastic trends. This interest has brought together theory and application in a way that
is unusually productive for a new field. Together with subsequent developments on
cointegration, the theory has given rise to a large and growing volume of empirical research.
Economists who do empirical work with macroeconomic time series have been excited by the
knowledge that regression with nonstationary time series is better understood and, as a result,
they have become more confident in the interpretation of their empirical results. The
excitement is understandable in light of the fact that as little as six years ago there was no
theory of regression applicable to nonstationary series. The recent article by Stock and Watson
(1988) well illustrates the empirical relevance of the new regression theory for nonstationary
series, and the many ways in which it can assist our understanding of economic time series.
However, intellectual acceptance of the methods of unit root econometrics has not been
universal, and a wave of scepticism of the field, criticism of its methodology and re-evaluation
of its empirical findings based on an alternative Bayesian methodology has recently appeared.

Initiating this wave of criticism in a highly sceptical essay, Sims (1988) put forward the view
that classical inference procedures are misleading in models with unit roots, and argued that
Bayesian methods are simpler to use, lead to more reasonable inferences and are largely
unaffected by the presence of unit roots. Classical procedures, he suggested, are to be
mistrusted

precisely because they do differ substantially from Bayesian procedures in this context
(Sims, 1988, p. 474).

(This and all subsequent citations from Sims (1988) will be labelled in the form (S,),
i=1,..,n)

In a sequel to that article, and using Monte Carlo simulations, Sims and Uhlig (1988/1991)
provided a visual helicopter view of the joint probability density of the unknown
autoregressive coefficient p and its least-squares estimate p in the simple AR(1)

(S1)

Ye=pYe—1+ U t=1,..T) ¢))

with () i.i.d. N(0, ¢*). Computed under a flat prior for p and with ¢ = 1, their figures show
the symmetric conditional distribution of p |5 and the asymmetric conditional distribution of
p | p, thereby illustrating the operational differences between Bayesian and classical inference
procedures in this context. They also compute the prior that would be implied by treating
classical significance levels as if they were Bayesian posterior probabilities. They conclude as
follows:
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Use of classical statistical tests as measures of the plausibility of hypotheses is
logically unsound. We have shown that in the case of a simple time series model with

a unit root it amounts to acting as if one had a stronger prior belief in a root at or (SU))
above one, the closer to one is the estimated value p of the root (Sims and Uhlig,

1988, pp. 8-9).

Both extracts (S;) and (SU;) well represent the scepticism about classical procedures of
inference that is the central message of these two papers. The ring of confidence with which
they are written is certain to attract other researchers, as our header by T. S. Eliot suggests,
and it will do so almost irrespective of the merits of the case.

Adopting a related Bayesian approach, DeJong and Whiteman have recently launched a
series of independent empirical investigations (1989a,b,c) which seck to re-evaluate by
Bayesian methods the evidence in support of unit roots and stochastic trends in the
macroeconomic time series. Their philosophy marries well with that of Sims, their
methodology follows the example of Geweke (1988) in the use of flat priors for the time series
coefficients, and their empirical results appears to be conclusive. In reconsidering the historical
time series studied originally by Nelson and Plosser (1982), DeJong and Whiteman (1989b)
discover that trend stationarity is much more likely in terms of the Bayesian posteriors than
difference stationarity. Only when zero prior probability is attached to trend stationary
alternatives, they argue, will the AR representation of most macroeconomic time series appear
to contain a unit root. They sum up their empirical re-evaluation by telling us that:

the death of trend stationarity appears to have been greatly exaggerated (DeJong and
Whiteman, 1989b, p. 13).

The purpose of the present paper is simple. We seek to challenge the methods, the assertions,
and the conclusions of these articles on the Bayesian analysis of unit roots, and we offer an
alternative methodology in its place. Our own approach is also explicitly Bayesian. But we
differ by employing objective ignorance priors rather than flat priors in our analysis. As we
shall explain below and more fully in Section 3, the epithets ‘objective’ and ‘ignorance’ are
used advisedly in defining these priors, and they correspond to established usage in the
statistical literature, although the precise forms for the priors that we develop here are new.
Our analysis will help to illustrate how, in contrast to the thrust of (S,), the Bayesian approach
can lead just as easily to inferences that are compatible with those of classical procedures as
it can to divergent inferences. This shows the fragility of Bayesian inferences about unit roots
and stochastic trends to the specification of the prior. Moreover, objective Bayesian analysis
reflects as much uncertainty about the data generating mechanisms as classical significance
testing. Far from being ‘logically unsound’, as claimed in (SU,), classical asymmetric sampling
distributions are simply a manifestation of this uncertainty. The analogue of this phenomenon
in objective Bayesian inference is, as we shall show, a bimodal posterior distribution of p |3,
which is a striking consequence of the use of ignorance priors in place of flat priors in the
analysis.

The message of this study, like its purpose, is simple: when Bayesian and classical
procedures lead to divergent conclusions we should seek first to find the answer in the prior
rather than rush out to announce the failure of classical methods. What seems to have
obscured this natural answer in the present case is the mistaken supposition that flat priors are
uninformative and representative of ignorance. In a time series setting they certainly are not
and, in consequence, they need to be used with more care and more qualifications in inference
than we believe the articles cited above demonstrate.



336 P. C. B. PHILLIPS

The plan of the paper is as follows. In Section 2 we confront the scepticism articulated in
Sims (1988) about the methodology of unit root econometrics and we deal seriatim with each
of his criticisms. In every case we find his grounds for doubt to be unfounded. In our view
his assertions about the impropriety of classical methods of inference are ex cathedra,
unjustified and, in some cases that we make explicit, plain wrong. His claims about the
superiority of Bayesian methods under flat priors are unwarranted. Indeed, we regard neither
classical nor Bayesian approaches to be inherently ‘unreasonable’. But, somewhat ironically
in view of Sims’ claims about its superiority, we show that the mechanical use of a flat prior
Bayesian analysis is itself unreasonable because, contrary to apparent intent, such priors are
informative in autoregressions and they unwittingly downweight the possibility of unit root
and explosive alternatives. Section 3 introduces an alternative Bayesian approach based on
ignorance priors that seek to represent the notion that a parameter is completely unknown.
Such an approach is said to be objective, as distinct from subjective, Bayesian and it goes back
to early work by Jeffreys (1946) and Perks (1947). We develop ignorance priors for the
autoregressive coefficient p in model (1) and similar autoregressive models with trends and
more general transient dynamics. The joint posterior for p and the other parameters is given
under a Gaussian likelihood and the marginal posterior for p is obtained analytically by using
a Laplace approximation to reduce the multidimensional integral. Sections 3.2-3.4 report
simulations which evaluate the new procedure against the flat prior Bayesian approach. The
bias towards stationary and trend stationary alternatives in posteriors obtained from flat priors
is found to be substantial in every case. Indeed, in a model such as (1) with a fitted trend, a
flat prior on p and T =50, we would expect, on average, when the true data-generating
mechanism has a unit root to find the posterior probability of nonstationarity, viz. P(p = 1),
to be less than 5 per cent. This degree of bias seems unacceptable by most standards. In this
assessment we use the frequentist terminology ‘bias’ deliberately to describe Bayesian
posteriors which are sufficiently mislocated that the true generating mechanism (here, one that
involves stochastic nonstationarity) is made to appear unlikely in posterior probability
calculations. Section 4 reports the results of an empirical illustration of our methods to the
Nelson—Plosser time series.

2. SCEPTICISM CONFRONTED

In his (1988) paper Sims questions the value of much of the ongoing work on unit root
inference in econometrics and claims that the seeds of this work ‘are essentially sterile ideas’
(p. 463). If one were to interpret sterility literally as an incapacity to produce offspring, then
the fecundity of the research in the field would itself belie that claim. Notwithstanding this
irony, several explicit ‘grounds for doubt’ about the value of classical inferential procedures
and arguments in support of the assertion about sterility are given by Sims, although the
arguments that are offered are only brief and are largely nontechnical. The central argument
is the divergence of Bayesian and classical inference expressed in (S) and this we shall address
in Sections 3 and 4. However, since we wish to be complete in this critique, since some of the
attendant issues are themselves of interest, and since Sims’s prescriptions and scepticisms are
being taken seriously by other researchers, we shall look here explicitly at the stated grounds
for doubt. We shall deal with them individually and in the order in which they appear in the
cited paper.

(a) Tenuous Connections Between the Unit Root Hypothesis and Economic Theory

The efficient markets hypothesis for asset prices is one of the main behavioural economic
theories that lead to models with unit roots. Sims argues that this model is at best just an
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approximation that applies for small time intervals. Similarly, to present his case here, Hall’s
(1978) martingale model for consumption strictly applies only under rigid conditions on utility
and under assumptions like constant real interest rates which hardly seem tenable except over
short time periods. Likewise, models that incorporate technological change via stochastic
processes with unit roots have only tenuous connections with economic theory.

There is validity in each of these objections. Yet similar objections of specificity and
approximation can be raised against most economic theory, more especially macroeconomic
theory that is based on representative agent paradigms. Models like the permanent income
hypothesis and the efficient markets hypothesis, it should be remembered, are powerful in their
predictions and useful in terms of their interpretative content precisely because of their
simplicity. Moreover, in spite of a long history of objections, these models, as distinct from
innumerable others, have survived and evolved as theoretical constructs. The efficient markets
hypothesis, in particular, has continued to perform well empirically against all competitors.
Few theory models can claim a comparable degree of success and longevity. Were it not for
these empirical successes, and for the underpinning in efficient markets theory, it would surely
be unlikely that a root of unity would be selected as the leading prior mean in so many
Bayesian VAR exercises.

To the extent that both behavioural and empirical models are approximations to an evolving
time series reality we can expect that any model will retain its relevance only over finite spans
of data. As more data are brought to bear, it is common to find that the variance of the
prediction error increases linearly over time. In other words, the superposition of new shocks
over time leads to stochastic drift away from a given model and its best predictions. Such
stochastic drift constitutes strong empirical evidence in favour of the unit root hypothesis. It
can be incorporated by direct reasoning in modelling as in the efficient markets theory, or
indirectly as in real business cycle models where the ultimate engine of change in the economy
is taken to be the demographic and technological supply-side shocks that affect the economy’s
productive capacity. In either case the effect is the same and, in consequence, the unit root
hypothesis is about as well connected to the behavioural economic theory that appears in time
series models as any other justifiable empirical feature of those models.

Some of the latest perspectives in macroeconomic thinking have actually strengthened the
links between unit roots and behavioural economic theory. In particular, work by Durlauf
(1989, 1990) has shown that coordination failure models with incomplete markets and multiple
equilibria can generate unit roots from shocks that enter the system period by period,
irrespective of their origin in demand or supply-side disturbances. Moreover, unit roots can
occur in these models even when technical change is deterministic.

Thus, the Sims objections to unit roots on this ground have some validity as generic
criticisms of economic theory and, in our view, they are comparable to earlier criticisms voiced
in Sims (1982) of representative agent rational expectations modeling as a ‘revolution [that]
itself has had its excesses, destroying or discarding much that was of value in the name of
utopian ideology’ (p. 107). However, Sims’ objections ignore the longevity and the successes
of the efficient markets theory, they overlook the importance of sophisticated simplicity in
modeling (as argued, for instance, by Friedman, 1953 and Zellner, 1988), they fail to take into
account the latest thinking in macroeconomic modelling, and they are inconsistent with the
pervasive use of unit root priors in VAR empirical models.

(b) Mistaken Perspectives on the Effects of Unit Roots on Classical Inference

It is by now well understood that the presence of unit roots does affect asymptotic distribution
theory and classical procedures of inference. Indeed, much of the ongoing literature has been
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concerned with the many different consequences of this fact. Sims recognizes this but then tells
us that:

The attempt to apply asymptotic distribution theory allowing for nonstationarity has
been in most instances wrongheaded and unenlightening (Sims, 1988, p. 464).

(S2)

No examples or citations to support this view of community-wide bungling are given. The
reader is instead referred to Sims, Stock, and Watson (1990) for a demonstration of the fact
that in linear VARs conventional J T normal asymptotics apply, albeit with some degeneracies
depending on the number of unit roots in the system. This description of lowest-level normal
asymptotics is perfectly accurate when there are stationary or cointegrated regressors, and it
applies much more generally to misspecified systems, as shown by Park and Phillips (1989).
However, this is far from being the whole story. Unhappily, the degenerate (T normal
asymptotics have led many to conclude mistakenly that conventional asymptotic tests apply
without modification in nonstationary models. Indeed, Sims himself errs on this point when
he concludes that:

any hypothesis which can be tested after the model 1s transformed [fo stationary
form], can be tested with exactly the same distribution theory using the
untransformed model. There i1s no justification for preliminary differencing or
application of cointegration transformations in the belief that these steps are necessary
to allow use of the usual statistical tests (Sims, 1988, p. 465; my insertion in square
brackets, for purposes of clarification).

(S3)

A major counterexample to this statement is given in my paper (Phillips, 1988/1991) on
optimal inference in cointegrated systems. As argued there, linear VARSs in levels or log levels
implicitly estimate whatever roots, including unit roots, there may be in the system. This means
that estimates of any cointegrating relationships in the system have a limit theory that depends
on the limit distributions that apply for the estimated unit roots. Moreover, as explained in
my (1988/1991) paper, estimated cointegrating vectors obtained from VARs in levels suffer
from simultaneous equations bias, a somewhat ironic outcome  given the arguments put
forward a decade ago by Sims (1980) for the use of VARSs in place of simultaneous equations
models. By contrast, when the model is transformed to its stationary error correction model
(ECM) representation, these problems do not appear because the unit roots are no longer
estimated when the model is in this format. Instead, estimates of cointegrating vectors from
ECM formulations are optimal and follow a mixed normal limit theory. As a result, tests of
hypotheses about the cointegration space can be conducted validly with usual asymptotic chi-
squared criteria. This is not possible for the untransformed VAR in levels formulation. Similar
arguments apply also to causality tests, although in the case of these tests there are major
asymptotic problems even in ECM formulations. Thus, (S3) is simply wrong on this point.

More generally, it is important to recognize that the likelihood ratio is not locally
asymptotically normal (LAN) in the sense of LeCam (1960) when there are unit roots to be
fitted. In fact, the likelihood ratio is not even locally asymptotically quadratic in this case, as
shown in Proposition 4.1 in Phillips (1989). The reason is that the information (in the sense
of R. A. Fisher) that is carried by the data about the unit root is both random and variable
(i.e. sensitive to local departures from unity) and this uncertainty persists even in asymptotic
samples. Appendix A provides more technical detail on this point. But when the model is
transformed to stationary form the likelihood ratio is LAMN (i.e. locally asymptotically mixed
normal, as in Jeganathan, 1980) and all of the inferential theory, including optimality, for
LAMN families applies.
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Thus, in direct contrast to the assertion (S;) there is substantial justification in terms of
asymptotic distribution theory and optimality theory for working with transformed
specifications such as ECM formulations rather than untransformed VARs. If one takes into
account that VARs in levels produce estimates of the cointegration space that suffer from
simultancous equations bias (Phillips, 1988/1991), causality tests that generally involve
nonstandard limit theory and nuisance parameters (Sims, Stock, and Watson, 1990) and
impulse response functions that are both arbitrary (Cooley and LeRoy, 1985) and very
imprecise (Runkle, 1987), there would seem to be little justification for using VARs
empirically, even if one’s preferred modelling methodology is atheoretical.

(¢) The Discontinuity in the Classical Asymptotic Theory at p =1 Generates Confidence
Regions of ‘Disconcerting Topology’

The argument is as follows. If a fitted value § < 1 with z-ratio 7,(6) = (6 — 1)/s; leads to
acceptance of a unit root null under the unit root limit theory for ¢#(5) but rejection under
conventional normal asymptotics, then classical confidence regions can be disconnected
because of the exclusion of some values of p close to unity from the confidence set since the
corresponding f-ratio £,(6) = (6 — p)/ss would reject them. The phenomenon arises because
the asymptotic critical values under a unit root null are further out in the left tail than those
of a stationary null for p close to but less than unity. Sims finds this feature of the classical
approach disconcerting, and argues that Bayesian inference encounters no such difficulties
because

The likelihood, and hence the posterior p.d.f. for a flat prior, is Gaussian in shape
regardless of whether or not there are unit (or even explosive) roots. This simple flat-
prior Bayesian theory 1s both a more convenient and a logically sounder starting place
Sor inference than classical hypothesis testing.

(S4)

This is a strong and confident assertion. Yet the flat prior condition under which it is given
is nowhere near as innocent as it appears, nor is the data conditioning that is part of the
Bayesian analysis. In fact, Bayesian inference in time series models under flat priors for the
coefficients is formally identical to that of the linear regression model in which the regressors
are fixed and nonrandom. No consideration is given to the time series nature of the data either
in setting the prior or in conditioning on sample moments. Of course, Bayesian inference
typically pays little attention to the sample space, gives maximum attention to the parameter
space, and always proceeds by conditioning on the observed data.? Moreover, flat priors are
convenient to use, they have established precedent in earlier work (e.g. Zellner, 1971) and in
the normal linear regression model they are well known to lead to Bayesian confidence sets that
are equivalent to the corresponding sampling theory (e.g. Malinvaud, 1980, pp. 239-240).
Why is the situation so grossly different in a time series setting? The reason is that in the
normal linear regression model the coefficients influence only the mean of the data and
conditioning on fixed regressors is innocuous. In a time series model, on the other hand, the
coefficients influence the mean, the variance, and the entire autocorrelation structure of the
data and conditioning on the random sample moment matrices of time series data is not
innocuous. Indeed, the values of the coefficients in time series models actually influence the

2This characterization of Bayesian procedures is by no means sumply a personal view. It is recurrent in many
discussions of Bayesian theory For a recent example the reader is referred to the discussion of Lindley (1990) and,
in particular, to the comments of Lehmann (1990).
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amount of information that is carried in the data and its sample moments. This is especially
true of statistics like the sample variance of the regressor in an AR(1) like (1). To condition
on such a sample variance, as Sims does implicitly in (S4) when he tells us that the likelihood
is Gaussian in shape, is to ignore the information that it carries about the coefficient po. Worse
than this, the claim of a ‘Gaussian likelihood’ is made possible only by using the sample
variance of the regressor to determine the units of measurement of departures of p from 3,
and this is tantamount to the use of a variable yardstick, one that relies on p itself (as the
asymptotics certainly make clear). I hasten to add that there is nothing inherently wrong with
this particular conditioning device that changes the units of measurement, provided it is clearly
understood that the frame of reference or geometry of the problem has been changed. In fact,
if one wants to look at the data in this new frame of reference then one can easily do so in
a classical frequentist approach. Indeed, one can go much further than the Sims statement (S4)
and demonstrate that fixing the amount of information in the data is an effective device for
normalizing the distribution of an estimator such as 5. None of this means that either Bayes
or classical theory is the ‘more convenient and logically sounder starting place for inference’.
But it does show that with an appropriate frame of reference the two approaches to inference
are certainly much closer than (S4) implies.

In time series models, flat priors ignore the way in which the coefficients influence the
amount of information contained in the sample. A flat prior on p in model (1), for instance,
deems that it is equally likely for p to be in the two intervals [0-50, 0-60] and [0-95, 1:05].
Yet this prior ignores what we already know about the effects of p in these different intervals
on sample behaviour. Typical trajectories, responses to shocks, and changes in initial
conditions are all very different for p in these two intervals, and constitute prior knowledge
based on our understanding of the AR(1) model. In this context, flat priors on the
autoregressive coefficient cannot represent ignorance in any meaningful sense. In fact, the next
section will demonstrate, they are highly informative, they lead to inferences about the
presence of stochastic trends and unit roots that are often severely biased against these
possibilities, and they can give a misleading impression of precision in inferences.

One way to give due consideration to the time-series nature of the data is to use an objective
ignorance prior such as that suggested originally by Jeffreys (1946). As illustrated in Sections
3 and 4, under such a prior the Bayesian posteriors for the autoregressive coefficient p |5 in
models like (1) are then frequently bimodal and lead to disjoint confidence sets, just as those
based on classical sampling theory asymptotics. This is a possibility not recognized by Sims.
Far from being ‘logically unsound’, we find that classical procedures lead to inferences that
are often close to their Bayesian counterparts under appropriate ignorance priors. There is no
fatal flaw in either approach to inference, simply human error in accepting conclusions too
readily from fragile and informative priors. The uncertainty about the data generating
mechanism that manifests itself in disjoint confidence sets and low power in unit root tests is
itself present in Bayesian inference when due allowance is made for the time series nature of
the data in the construction of an uninformative prior. Moreover, the fragility of Bayesian
inferences to the specification of the prior should itself be taken as a signal of this uncertainty,
as indeed it is by some Bayesians such as Leamer (1983, 19883).

(d) The Classical Approach Ignores Useful Evidence Against p =1

Sims puts forward the following explanation of his position:
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One of the unreasonable aspects of the classical approach to this problem is that
likelihood ratio tests make no use of our knowledge that a large o, in a large sample
is evidence against p =1 even if the t-statistic for p =1 is fairly small (Sims, 1988,
p. 471).

Here, 0, = 0{Z y?-1}~ % is a ‘standard error’ for 4. Its asymptotic behaviour depends on the
value of p. Thus, when |p| <1 we have o,=O0,(T"'?) and when p=1 we have
0,= Op(T™ 1), leading us to expect smaller ‘standard errors’ for 5 in large samples in models
with a unit root. Thus, we agree with the latter part of (Ss) describing our knowledge about
o,. But we dispute the claim in (Ss) concerning the unreasonable aspect of the classical
approach. Indeed, it is the Bayesian approach under flat priors, not classical methods, that
ignore this generic information about o, in time series models like (1). We make the following
points.

(Ss)

1. Under the null hypothesis that p = 1 we may estimate o2 by 62 where
T&,%:Z(y,—y,_l)z/Zytz_l. 2

This statistic is the Von Neumann ratio of the Gaussian random walk. Its use as a statistic
for testing for the presence of a unit root and for testing the specification of a regression
equation in levels or differences (where regression residuals are employed in place of y; in
(2)) was considered by Dickey and Fuller (1981), Berenblut and Webb (1973), Sargan
(1979), and Sargan and Bhargava (1983). Indeed, the statistic may be interpreted as the
likelihood ratio test of the null of serial dependence against the alternative of a random
walk and, as discussed by Sargan and Bhargava (1983), it is known to be a most powerful
test in a neighbourhood of the alternative. A closely related version of this statistic has
recently been obtained as an LM test for a unit root in Schmidt and Phillips (1989). Thus,
to argue as in (Ss) that the classical approach ignores evidence based on g, is simply to fly
in the face of the facts.

2. Sims claims that ‘when p = 1, g, behaves asymptotically like a constant times 1/7” (1988,
p. 470). In fact, when p = 1, 0, behaves like a random variable times 1/T. The difference
is nontrivial and has important consequences. First, it causes a breakdown in the local
asymptotic quadratic property of the likelihood, as discussed under (b) above and in
Appendix A. Second, since the limit random variable carries information about p as seen
from equation (A1) of Appendix A, one might well expect that conditioning on the sample
moment 7~ 2% y?_, would involve a loss of information. Actually, Bayesian conditioning
on the data does just this under flat priors, i.e. it treats time series data like data from a
linear model with fixed regressors whereas, depending on the value of p, the sample
moments of the data may have radically different behaviour. It is for this very reason that
flat priors in time-series models are informative. They suggest that we believe all values of
p to be equally likely when, in fact, we know that large values of p are much more likely
when scale parameters or standard errors like o, are very small. The ignorance priors we
use in the following section explicitly take this balance into account. Priors like flat priors
do not and thereby, are unwittingly informative in time series models.

To sum up, we submit that Sims errs on two counts in (Ss): first, many classical statistics take
the scale effects o, into account and some, like the Von Neumann ratio (3), are constructed
directly from it; second neither classical nor Bayesian approaches are inherently
‘unreasonable’, but, somewhat ironically in view of the claim in (Ss), the mechanical use of
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flat priors in time series models is unreasonable because, contrary to apparent intent, such
priors are informative and can thereby seriously and unwittingly bias inferences. Section 3 will
give examples.

3. OBJECTIVE IGNORANCE PRIORS AND UNIT ROOTS

3.1. The Justification of Ignorance Priors

In a subjectivist approach to Bayesian inference the role of a prior distribution is to represent
the degree of subjective belief of the person who makes the inference. Partly because of the
difficulties associated with prior elicitation, and partly because there is a need in many
applications to proceed under conditions that approximate ignorance, many Bayesian writers
have sought to establish an objective basis for the choice of the prior. In an objective theory,
the prior secks to represent the notion that a parameter is completely unknown, thereby giving
rise to the term ‘ignorance prior’.

Jeffreys (1946) was the first to suggest a method for inducing ignorance priors in a given
probability model. Earlier researchers had followed Bayes and assumed that ignorance could
be represented by a uniform distribution (i.e. a diffuse or flat prior) over the parameter space.
Yet, as is now well known, flat priors on different versions of the parameter space yield
different posteriors, i.c. the posterior is not invariant to 1:1 transformations of the parameter
space. Jeffreys’s idea was to base the selection of the objective prior on certain invariance
properties of the family of probability densities f(x|8), indexed by the parameter 6 € O, from
which the data were drawn. The prior so selected would then inherit those invariance
properties and thereby avoid any arbitrariness in the choice of parameters since it would assign
the same prior probability to equivalent propositions (i.e. irrespective of their
parameterization). If we set Igpp= —F {(62/60 30Mlog(f(x]0))} then IJeffrey’s general
suggestion was the prior

w(0) o | Ipe| > = J(8), say. 3)

This prior is invariant in the above-mentioned sense to smooth transformations of the
parameters ¢ = ¢(0) because of the equivalence of the corresponding probability elements

I 1091 2 df = | I¢¢| 12 de, C))

(e.g. Jeffreys, 1961, p. 180); Zellner, 1971, p 48; Box and Tiao, 1973, pp. 41-46).
Hartigan (1964) showed that the Jeffreys prior (3) has other useful invariance properties of
which the most important are its invariance under (i) smooth data transformations (e.g.
changes in the units of measurement), (ii) restrictions in the parameter space, (iii) replication
of the sample space, and (iv) replacement of the data by a sufficient set of statistics.
Subsequently, Hartigan (1965) showed that (3) is an asymptotically unbiased prior distribution
under a Jeffreys loss function in the sense that the prior density (3) minimizes the asymptotic
bias of the corresponding Bayes estimator (i.e. the estimator that minimizes expected loss).
An alternative justification for the Jeffreys prior was given by Lindley (1961). Lindley
argued that knowledge of 6§ means knowing f(x|6), and that the amount by which 6 differs
from 6 + 5(9) on some mesh of size 5(f) can, in turn, be measured by how much f(x|6) differs
from f(x |6+ 8(8)). Using Shannon’s information criterion as the metric for this distance
between the densities, and assigning a uniform prior on the interval [6, 6 + 6(0)] to represent
ignorance (as distinct from the knowledge of 8), Lindley obtained the Jeffreys prior (3).
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Another early suggestion for the generation of ignorance priors was made by Perks (1947),
who argued that the prior distribution should reflect the anticipated asymprtotic volume of
confidence regions. Under general regularity conditions the confidence region around # has
volume that is asymptotically proportional to J(8)~!. So if 6y is the true value we anticipate
a tight confidence region near 8y if J(fo) is large. The Jeffreys prior (4) assigns a density to
6 that reflects this expectation. Welch and Peers (1963) made this confidence region argument
more explicit by showing that, asymptotically, one-sided Bayes confidence sets generated from
Jeffreys prior are closer to classical confidence intervals than those of any other prior.

As far as our own application to time series models is concerned, the Perks justification of
(3) is highly relevant. Thus, when |p| > 1 in model (1) we anticipate confidence regions for
the true value po 10 be tighter, indeed much tighter, than when |p | < 1. This expectation turns
out to be properly represented in an ignorance prior on the autoregressive coefficient p. Thus,
the true coefficient po is completely unknown, but the ignorance prior still reflects the
knowledge we have about the AR(1) model that were | o | to be large, the data would be much
more informative about p. This generic model characteristic that confidence sets will be tighter
when |p | is large is neglected in a flat prior. In treating all values of p as equally likely, the
flat prior unwittingly carries information that downweights large values of ¢. In so doing,
Bayesian inference under a flat prior on p will be distorted by information that will bias the
posterior towards stationary alternatives. Simply put, flat priors are informative in time series
models that permit nonstationarity and they inform by effectively downplaying the possibility
of unit root and explosive alternatives. In time series models with deterministic trends it is
therefore hardly surprising that Bayesian inference under flat priors strongly favours trend
stationary alternatives.

Before leaving this introductory discussion it is worth remarking that, while the invariance
properties of the Jeffreys prior have generally been viewed as desirable characteristics, there
are features of Jeffreys priors that some Bayesians have found disagreeable. First, difficulties
with regard to expected degrees of freedom have been encountered in the use of Jeffreys priors
for multidimensional parameter spaces, leading Jeffreys himself (1961, p. 182) to propose
modifications to the general rule (3). We shall comment further on this problem in our present
application below. Second, the Jeffreys prior uses the model itself as the mechanism for
generating prior probabilities. While this does provide an objective basis for Bayesian analysis,
it nonetheless exposes the analysis to what inevitably must be rather arbitrary elements in the
construction of the model, such as the time unit, choice of variable, number of regressors,
treatment of initial conditions, and so on. However, as the author has recently argued
elsewhere (Phillips, 1988), choices that underlie the construction of a model belong to the
antecedent thinking in all good modelling where the investigator shapes his purpose. Both
Bayesian and classical statistical methods are subject to the decisions made in this early stage
of modelling. Even in a purely subjective Bayesian view, where probabilities express ‘personal
beliefs’, the investigator must address and resolve many such modelling choices before he
attempts to articulate his ‘personal beliefs’ in quantitative form.

3.2. A New Look at Bayesian Inference in the AR(1)

We start by considering the simple AR(1) model (1). Conditioning on the initial value yo, the
Gaussian likelihood follows from the density

S lp,0,30)=Qr) %677 exp{— (1207 *Z{ (3 —pye-1)3.
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Assuming a flat prior for (p, log o) leads to the usual purported ‘uninformative’ prior for
(p,0), vis.

w{(p, 0) « /0, (&)

and Bayesian analysis of (1) under this prior is identical to that of the linear regression model.
The joint posterior distribution is

p(p, 0|y, y0) ™7™  exp{—(1/267) [m(@) + (o — 6)*m(¥)]}, ©)

where 5 =2 yiyi-1/ S yi1, m(¥) =2 yi1, m(@) =247 and d; = y;— pyi-1. The marginal
posteriors are:
pr(p| ¥, yo) o< [m(@) + (o — pY’m(»)1 " 772, )
pr(o| y, yo) < o™ T exp{—(1/20%)m (@)} (8

Note that the marginal posterior for p is a univariate #7—; distribution, p is symmetrically
distributed about the OLS estimate 4 and the variance of p is m (@) (T — 3)m(y), which
decreases as m(y) increases.

Thornber (1967) and Zellner (1971, Ch. VII) both used this framework and emphasized its
applicability for stationary and nonstationary cases. Geweke (1988) used the same approach
in a cross-country applied study but used a restricted domain in addition to the flat prior. Sims
(1988) and Sims and Uhlig (1988/1991) also use this framework, although in the latter paper
the model is even simpler because o is assumed to be known for computational convenience.
Schotman and van Dijk (1991) employ a similar approach in studying real exchange rate data.
However, since their objective is to perform a posterior odds analysis of the unit root
hypothesis, they modify (5) by truncating the domain over which p has a flat prior to a proper
subset of the stationary interval and they assign a discrete prior probability mass to p =1
(values of p in the explosive range being excluded). In all of these past studies, only Thornber
and Zellner mention the possibility of a Jeffreys prior and they, along with Box and Jenkins
(1976), and Jeffreys (1961, p. 187) in his original analysis, confine their attention to the
stationary case.

In place of (5) we shall now consider a Jeffreys prior under which there is no stationarity
assumption. As above, we will work conditional on the initialization y,. Setting 6 = (p, o) we
find, after a little calculation, that

L, O
lgo = [ 0 IM] ;

with
T 1 l_pZT y 21_p2T
1—o2 T-p2 1-p2 " _02 Eveilieh
Ioo: p
_ 2
=0, 7(%, =1
2 o
and

I, =2T]o>.
The Jeffreys prior (4) is therefore given by
w(p,0) & (1/0) 172, ©)
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Figure 1. (i) & (ii) Ignorance priors for p

which is continuous in p for — o < p < . Observe that this prior depends on y,, which is
the given initialization of the model, and the sample size 7. Thus, just as the Jeffreys prior
recognizes the information content of the sample variance of the regressor in this model, it also
recognizes that the information content will grow as T increases and at a geometric rate when
o > 1. The prior is graphed and displayed as curve (a) in Figure 1(i) for the case yo =0, T= 100
and o = 1; the log density is graphed as curve (a) in Figure 1(iii) and shows the density over
a wider range of p values. Figure 1(i) shows how the prior increases slowly to the value
{T(T—1)[2}"* at p = 1 and then increases exponentially at the rate O(p”"?) for p > 1. The
higher density for p > 1 reflects the prior knowledge we always have from the model that when
the true value of the autoregressive coefficient po > 1 the data will carry more information
about po. Aside from carrying this generic feature of the model, the prior is uninformative
about p. As discussed in the preceding section, a flat prior on p is informative precisely because
it neglects this generic characteristic of the model and the time series nature of the data.

The shape of the prior (9) as a function of p sheds light on the simulation exercise performed
in Sims and Uhlig (1988/1991) whose outcome is summarized in the extract (SU1). The implicit
priors computed by Sims and Uhlig are purported to represent the prior under which classical
p-values would correspond to Bayesian posterior probabilities conditional on 5. Although
there is erratic sampling behaviour in the priors they compute, although their calculations are
truncated just beyond unity and although, as they put it, their approach is

not formally justified by either a Bayesian or a classical argument (Sims and Uhlig,
1988, p. 2), (SU2)

it is apparent that their simulation results (Figures 8 and 9, in Sims and Uhlig, 1988) provide
a very crude prior whose shape is not dissimilar to the Jeffreys prior (9), at least over the
restricted domain they consider. Sims and Uhlig take the shape of their imputed prior as strong
evidence of the unreasonableness of classical significance testing. Their assessment is based on
comparison with a flat prior which they mistakenly regard as uninformative, and on the
proposition that, were the p values truly uniformly distributed,

Everyone should agree that, on observing p=1, our uncertainty about p is (SUs)
symmetric about p =1 (Sims and Uhlig, 1988, p. 6). 3

However, as our calculations below show, posteriors computed under the Jeffreys prior are not
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Figure 1. (i) & (iv) Ignorance priors for p

symmetric, especially for values of g in the interval g6 < 1. Note that a Jeffreys prior, even in
the Sims—Uhlig hypothetical experiment, is still a very reasonable choice of prior, since once
p is drawn we would still expect the data to be more informative about p the greater p is. (We
cannot reasonably expect an investigator to be given the true distribution of p, for if this were
available, there would be no point in collecting and using the data from a single trial. In a
classical setting that would be equivalent to giving the investigator the true parameter value
po and then being surprised that he estimated p.) Thus, we see no reason to accept the
proposition (SU3), and we are surprised that it should be put forward as a universal belief.
In our view the proposition arises from an intuition that comes from treating time-series
models such as (1) like the linear regression model where flat priors on the coefficients have
good properties.
Under the Jeffreys prior (9), the joint posterior is

P, oy, y0) o~ T 1 exp{—(1/26%)[m(@) + (o — $)’m(M)} 1117, (10)

and integration over ¢ gives the following marginal posterior for p when y=0

pio 1) = | plo,oly.30=0) doox [2m(@) + (p - 5)'m(»)] 7% a1
Using the methods of Section 3.3 below it can be shown that (11) is an asymptotic
approximation to the marginal posterior for p when yo # 0. Thus, ye will not substantially
affect the posterior unless it is very large.

The marginal posterior (11) has a shape that can be very different from that of (7). Its main
properties are discussed in the comments that now follow.

1. ps(p|y) has Pareto tails of order O(|p|™%) as | p | = . Thus, upon standardization, (11)
is a proper density. But its tails are like those of a Cauchy distribution and it has no finite
integer moments.

2. Unlike (7), the density (11) is not symmetric about . It has one mode close to 5 and,
depending on the values of m (i) and m(y), it often has a significant second mode for some
lo| > 1.

3. When the true coefficient po =1 in (1), the asymptotic behaviour of the density based on
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(11) depends on that of
1 ~-T/2
1,%2[1 +Te-p)* | WZ}
0

which we see to be of O(T) for p =1, of O(T~ 792 for 0 < p < 1 and of O(T~7"?) for
p > 1. Thus, Bayes estimators that are based on (11) are consistent but at a faster rate for
o > 1 than for p < 1.
. Figure 2 illustrates typical shapes of the posterior (11) for data generated from a random
walk with initialization yo=0 and T= 50. The figure graphs the normalized posterior
densities based on a Jeffreys prior against those based on a flat prior. The figure displays
the posteriors for two different data sets simulated from the model (1) with p = 1, and these
are designated (a) and (b), respectively. The results are chosen because they are
representative of the typical posterior shapes that emerge from a large number of
simulations. The sample data characteristics for the two figures are as shown in Table I.
The flat prior posteriors (hereafter, F-posteriors) have symmetric bell shapes centered on
the regression estimate 5. In the case of the curves designated (a), the estimated regression
coefficient 5 = 0-804 is low and the F-posterior is so seriously biased downwards that the
posterior probability, of o > 1, i.e. Pr(p > 1) = 0-02, is negligible. By contrast, the Jeffreys
prior posterior (hereafter, J-posterior) is bimodal in case (a). The principal mode is located
slightly to the right of 5 and there is a second mode around the value 1-25. The posterior
probability Ps;(p > 1) = 0-54 is appreciable. Thus, while the F-posterior effectively rules out
a true p of unity, the J-posterior indicates considerable uncertainty about p and a true p
of unity would definitely not be ruled out. Note that because of the bimodality of the J-
posterior, Bayes confidence sets of shortest length would be disjoint and are therefore
formally analogous to those that are generated by classical methods as discussed under 2(c)

Table I. Posterior probabilities of nonstationarity: data for figure 2 (T = 50)

~

b m(#) m(y) Ps(p21-0) Pr(p 21-0)

Figure 2a
(@) curves  0-804 33-62 78-49 0-5494 0-0209
(b) curves  0-990 58-99 2002-71 0-5250 0-3626
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above. There is no ‘disconcerting topology’ here, simply genuine uncertainty about the
generating mechanism, given the observed time-series. The J-posteriors manifest this
uncertainty, the F-posteriors do not. Thus complaints about the disconcerting shape of
confidence sets are as easily levelled against Bayes methods in practice as they are against
classical theory. But this is a diversion from the real issue, which is the inherent uncertainty
in time series estimation that results from the serial dependence on the data. Flat priors
mask this uncertainty because they focus the posterior solely on the value of the fitted
regression coefficient 5, just as if the data came from an independent sample with fixed
regressors. In so doing they neglect the fact that we know a priori that the true value of
o influences the autocorrelation structure of the time series and hence the anticipated
amount of information that is carried by the data about p. By ignoring this information,
flat priors are informative and, in consequence, they bias the posterior towards stationary,
or more specifically, independent data alternatives.

The second set of curves, which are designated ‘(b)’ in Figure 2, represent another typical
outcome, in this case where the fitted regression coefficient 5 is close to unity. From Table I,
we have 6 = 0-99. Both posteriors now attach an appreciable probability to the set {p > 1}
and thereby generally conform the data generating mechanism in both cases, although
Pj(p 2 1) is still higher than Pr(p > 1). The J-posterior is also unimodal, like the F-
posterior, and the two densities are close in location as well as shape. Thus, for the sample
outcomes given in (b) there is no great difference between the posteriors, and Bayesian
methods as well as classical tests confirm the presence of a unit root.

5. As indicated above, the flat prior has a tendency to bias the posterior towards the i.i.d.
alternative (i.e. p = 0 in (1)). By centering the posterior on § it will in any event inherit the
downward bias of the regression estimator. But even when 4 is close to unity there may still
be a non-negligible downward bias in the F-posteiror probabilities. For instance, in case (b)
of Figure 2, in Table I we have a fitted coefficient 6 = 0-99 and yet Pr(o > 1-0)= 0-3626
which is substantially less than 50%.

The extent of the bias that is on average transmitted to the F-posterior can be measured
by computing the expected posterior probability of the nonstationary set {p > 1}. This is
easily done by simulation, and we found the following estimates of these expected
probabilities for the case 7= 50 from 20,000 replications:

E{Pr(o > 1)} =0:389, E{P;(p = 1)} =0-625, (12)

which confirm the downward bias of the F-posterior.

3.3. The AR(1) with Fitted Intercept and Trend

The methods of the previous section that employ ignorance priors may be used in much more
complicated time series models. We shall illustrate the ideas first by extending the analysis to
a model with a fitted intercept and trend, i.e.

Ve=p+Bt+pyi-1 + u, u = ii.d. N0, 0?). (13)

We choose this particular parameterization, rather than the one used by Sargan and Bhargava
(1983) and by Schmidt and Phillips (1989), because it will facilitate comparisons with earlier
work, especially when it is extended to accommodate transient dynamics.

Solving for y, in (13), we have for p # 1 (the value at p =1 may be calculated directly or
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by means of 1’Hopital’s rule)
=1
Y= %‘ puc—i+p(1—pH A —p)+B{t/ (1 - p)—p(1 - p") (1 - p)*} +p'yo,
and when yo =0,
E(y})=0*(1-p*) (L =p?) +p* {1 =) (A - p)} >+ B*{t/ (1 — p) —p(1 = p") (1 = p)*}?
+2uB{(1 =) (L =B A —p)—p(1 - 0" (1 - p)?)
= 0200:(p) + a1:(p, 1, 3), say.

Summing over ¢ we have

T
ZIJ E(yi-1)=0’aolp) + a1 (p, i, B),

where

T
oo = ap(p) = ZIJ ag-1=T(1 = p?) ™' = (1 =p*)72(1 = p*T), (14)

T
ar(o, p, B) = 2 atr-1
1

231

T-1
%‘ 1 =0) (A =p)+BIL-p) i=p(1-p) 2L -0 NI~ (15)

Again, these formulae yield the correct results by I’Hopital’s rule when o = 1. The diagonal
element corresponding to p of the information matrix for the model (13) is then

T
o? ZIJ E(yi-1)=oo(p) + a1(p, p, B)] 0.
The diagonal elements of the information matrix corresponding to u, 8 and o2 are,
respectively, ¢ 27, o 2T(T+ 1)QT+ 1)/6 and 0~%2T. Rather than work with the
determinantal form of the Jeffreys prior (3), it is most convenient here to use the product of
the diagonal elements of the information matrix. This leads to the following form of the
ignorance prior for the model (13):

W(p’ UsllmB)“0_3{010(17)4'011(0’[/',:3)/02} 1/2' (16)

The prior (16) is graphed in Figures 1(i) and (ii) for 6 =1 and for various values of y and 3;
and the log density is graphed in Figures 1(iii) and (iv) for a wider range of o values. These
graphs display the same characteristics as those of the earlier ignorance prior (9) for the simple
AR(1). As p and B depart from zero, the prior (16) obviously increases. However, as
shown in Figures 1(iii) and (iv) the proportional increase in the prior is greater for p < 1
than it is for p > 1. Thus, we anticipate that the introduction of deterministic components
in the model puts, relatively speaking, more additional weight on stationary p than it does on
nonstationary p.

Let ¥ ' =(u,8), 6’ =(p,v’) and use y-;, X and Z to represent the observation matrices of
(ye-1), (1,¢) and (y(-1, 1, 2), respectively. Under a Gaussian likelihood the joint posterior for

(p,0,7)is

T
pp,o,v|y)cm(p,0,9)0 " eXp{—(IIZOZ) ZIJ (yi—p—Bt- pyt-x)Z}- (17
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We decompose the exponent sum of squares as
T
D= n—Bt—pye-1): =m(@)+ (6—8)'Z'Z(5 - §)
1

=m(@) + (o= p)’mx(y) + (y— 7)' X' X(y — ¥), (18)

where
T ~
m(ﬁ)= Z ﬁtzs ﬁt=yt—ﬁ—,6’t—5y,_1
1
are the OLS residuals and

mx(y)=y-10xy-1,0x= I - X(X'X)"' X'
F=9+X'X)'X'y1( - p).

The component form (18) is especially useful in marginalizing the joint posterior (17).
Although the prior # (- ) is an awkward function of the parameters, the posterior (17) may be
easily marginalized using the Laplace approximation for multivariate integrals. This approach
was developed and used by Phillips (1983) in earlier related work on marginalizing exact
multivariate densities. The reader is referred to that paper for a detailed discussion of the
technique in this context. The method has subsequently received a good deal of attention in
the Bayesian literature (see, especially, Tierney and Kadane, 1986; Tierney, Kass, and Kadane
1989). It provides a convenient and effective alternative to simulation-based numerical
integration. In the present case we use the method to integrate out vy from (17) as follows,
noting that the major contribution to the integral arises from a neighbourhood of v =7,

plp,oly)e SRZ (0, 0,7)0” " exp{—(1/20%)[m(@) + (o = 5)*mx ()]}

x exp{~(1/26")(y - §)' X' X (y - ¥)} dv
~@m)| X' X| ™21 (p, 0, §)0 T+ 2 exp{~(1/207) [m(@) + (o = p)mx(]}.  (19)

Since the elements of X'X are at least O(T'), the approximation (19) has a relative error of
O(T™1). For our purposes this will generally be quite adequate.

It remains to marginalize (19) with respect to ¢. The derivations are given in Appendix B
and lead the following marginal posterior for p:

pslp | y) < ao(p) () T (T2, (T + 3)[2; (1200 Im(@) + (p = $)’mx(»)]),  (20)

where 7(p) = a1(0, ¥(p)) and V¥ is a confluent hypergeometric function of the second kind (e.g.
Erdélyi, 1953, p. 255).

This is a useful but complicated analytic formula for the posterior density. It may be
simplified considerably when the order of magnitude of the final argument of the ¥ function
is known. In the illustration we shall consider below, the true values of the coefficients in (13)
are 3=0, p# 0 and po=1. The model then delivers a stochastic trend with drift and the
quadratic form mx(y) = O,(T*). For a range of values of p we find that

(/29N Im@) + (o = 5)’mx(»)] 2D

is very large relative to the other arguments. In this case, as shown in Appendix B, there is
a very simple approximation to the posterior (20) given by the following

pilp| ¥) = ao(e) 2 Im(@) + (p = 6)*mx(»)1 "7 (22)
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Although this approximation to (20) does not hold uniformly in p, computations comparing
(20) and (22) show that (22) it is quite satisfactory for our present purposes.
We make the following observations.

1. Formula (22) is the direct analogue of our earlier formula (11) for the posterior density of
o in the AR(1). All that differs is that the regression from which § and # arise now involves
an intercept and trend as in (13) and the sample sum of squares m(y) in (11) is replaced
by the sum of squares, mx(y), of the detrended data. Given the correspondence between
(22) and (11) it might be thought that (22) could be obtained much more simply through
the direct use of the prior w(p) o ao(0)'?/s, which employs independent uniform priors on
pand B, in place of (16). However, such a prior leads to a posterior for p in which the power
of the quadratic form in square brackets in (22) is — (7' — 2)/2 not — 72, and this posterior
is improper. The posterior (22), on the other hand, is proper and, like (11), has Cauchy-type
tails.

2. In view of this correspondence, the remarks we have already made in Section 3.2 regarding
the properties of (11) also apply to (22). In particular, the posterior density (22) is
asymmetric, it can be bimodal and the confidence sets that it generates display considerable
uncertainty about the true coefficient po. In each of these respects if differs from the
posterior density obtained from a flat prior. The latter, like (5), has the form
w(p,0,v) o 1o and we may therefore integrate out both 4 and ¢ directly leading to the
posterior density

pr(p| y) o [m(@) + (p - 5)’mx(y)] ~T~272. 23)

This density, like (7), is symmetric about the regression estimate p. As before, it inherits
the bias of 5. But this bias is more severe in models with a fitted trend such as (13) than
it is for the simple AR(1). We can therefore expect confidence sets that are based on (23)
to exhibit a stronger downward bias than similar confidence sets from models with no fitted
trend.

Note that (23), unlike (22), involves a degrees of freedom adjustment in the exponent
resulting from the marginalization with respect to y and the use of a uniform prior. A
common critique of the Jeffreys prior, originally expressed by Jeffreys (1961, p. 182)
himself, is that it leads to no such degrees of freedom adjustment in multivariate contexts,
at least without modification. Note, however, that were such an adjustment to be made to
(22), the resulting posterior would be non integrable, as discussed in (i) above. In
consequence, the degrees of freedom differential between (22) and (23) is quite justified in
this context.

3. Figure 3 illustrates typical shapes for the posterior densities p,(o | ¥) and pr(p| y) for data
generated from (13) with p =0-025, =00, 6>=1, p=1 and T=50. Two different data
sets are used and the sample characteristics are given in Table II. The (a) curves in Figure 3
show a typical outcome where 5 = 0-801 is low. The J-posterior is bimodal and gives a
posterior probability, Ps(p > 1), to the nonstationary set of 7 per cent. The F-posterior is
centered on p and gives only a 2 per cent probability to a stochastic nonstationary process.
The (b) curves show a typical outcome where 5( = 0-974) is close to unity. In this case both
posteriors give an appreciable probability to the presence of a stochastic trend, although
P;(p > 1-0) is substantially greater than Pr(p > 1).

4. Expected posterior probabilities of the nonstationary set {p > 1} were computed by
simulation. From 20,000 replications using the model (13) with g = 0-025, 8=0:0, ¢* =1,
o=1and T= 50, we found:

E{Pr(p 2 1)) =0-0456, E{P,;(p = 1)} =0-2975. (24)
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Figure 3. Posterior densities for p
Table II. Posterior probabilities of nonstationarity: data for figure 3
Regression outcomes Posterior probabilities
b B B m(i) mx(y) Pyp21-0) Pr(p21-0)
(a) Curves 0-801 —-0-228 —-0-026 39-25 94-75 0-4658 0-0203
(b) Curves 0-974 —0-274 0-0175 45-79 463-60 0-6348 0-2996

Compared with the corresponding figures given in (12) for the simple AR(1) model, both
expected posterior probabilities are smaller. But the J-posterior still gives an appreciable
probability on average to {p > 1}, whereas the expected F-posterior probability is so small
that inferences are certain to be biased away from finding evidence in support of a unit root.
Indeed, in using the model (13) and flat priors for its coefficients, we must expect to find
little evidence from the posterior distribution in support of a stochastic trend when such a

trend is, in fact, present.

3.4. Models with Fitted Trends and Transient Dynamics

Empirical models typically employ a richer dynamic structure than (13). So, as a final

illustration, we shall consider the following autoregressive model with fitted intercept and trend
ye=p+ Bt + Y (L)y: + up, u; = i.i.d. N(O, 0?), (25)

where (L) = Zfy,L*. This formulation includes the empirical specifications used in Nelson
and Plosser (1982), where k < 6, and the model used in the exercises conducted by DeJong and
Whiteman (1989b), where k= 3.
It is convenient to employ the following alternative parameterization of (25)
k=1
yi=p+Bt+poy-1+ Z o1 Ay + Uy, (26)
1

where
k
o= le ¥, 27
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is interpreted as the long-run autoregressive impact coefficient and where ¢, = — ¥, y,
(i=1,...,k— 1) are parameters of the transient dynamics. If ¥(L)=0 has a unit root, then
p =1 and (26) is the parametric specification used by Nelson and Plosser in conducting classical
augmented Dickey—Fuller tests for the presence of a unit root.

As an approximation to a Jeffreys prior for the parameters of (26), we shall use

(0, 0, 1, B, ¢) = 675 2 {ato (0) + a1 (o, , B)] 0} V2, (28)

where ¢’ = (¢1, ..., ox—1). This may be interpreted as an approximation to the square root of
the product of the diagonal elements of the information matrix for 8 = (p, o, u, 8, ¢)’'. The
approximation is based on the value of this product when ¢ = 0. Moreover, when k=1, (28)
reduces to the earlier expression (16) for the ignorance prior in the model (13). However, since
it fails to take into account the time series effects of the parameters ¢ and their impact on the
information matrix, the prior (28) is not a true ignorance prior except when ¢ = 0. For values
of ¢ very different from zero, we would expect this to lead to bias to the extent that (28) is
based on generic prior information concerning a model in which ¢ = 0. Thus, like the flat prior
for the coefficient o in model (1), the prior (28) will be an ‘informative’ prior in model (27)
when the transient dynamics play a major role in explaining the data. An adequate
methodology for dealing with this extra degree of complication is now under development and
will be reported elsewhere.

Let () = ()0, ..., y-k+1) be the vector of initial values for (25), let V be the matrix of
observations of (1,¢,Ayi-1,...,A¥i—k+1) and let 6= (g, B, ¢1,.--s0x-1) =(v',¢')" be the
corresponding vector of parameters. Then the joint posterior density for (p, g,6) is:

T k-1 2
(0, 0,8]y, y(O) < (0, 0,8)5°T exp{ - ()20%) (y, ~p=Br=pyii= 3 ¢,Ay,_,} }

= (0, 0,8)0 " Texp{—(1/20*) Im(@) + (0 — $)*my(¥)}exp(— (1/26*)(6 = 8) V'V (6 - B)},

where (29)

S=6+V'VY Yy 1(p-p),
my(»)=y.1Qvy-1,Qv=T-V(V'V)" !,

T
m(@) = 3 at
1

and &, =y — fi— Bt — pyi-1— ' @Ay, are the OLS residuals.

We now marginalize (29) with respect to é using the Laplace approximation described in the
previous section and subsequently marginalize with respect to o, leading to the following
marginal posterior for p:

pitp | ) < ao(p) (o)~ T PU(T[2,(T + 3)[2; (1 20 (0)) [m(@) + (0 = $)*mv(»)])  (30)
which may be approximated by
pilp] y) = aop)*[m@) + (p — $)>my()] ~ T2 (3D

when the third argument of ¥ is large.
We note the following:

1. The marginal density (31) has the same form as our earlier formulae (22) and (11) for
simpler models. It has the convenience of being applicable for an arbitrary choice of
autoregressive order k in (27). Again, it is integrable and has Cauchy-type tails.
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2. The posterior density for p corresponding to the flat prior 7 (o, 6, 0)  1/o is
pr(p| y) & [m@) + (0 — 8)°my(y)) ~T-K- V2 (32)

and this density has properties analogous to those of (23). Observe again the degrees of
freedom differential in the exponents of (31) and (32), arising for the same reasons as those
given earlier in Section 3.3.

3. Simulation exercises reported in Phillips (1990) show that the posterior densities (31) and
(32) have similar characteristics to those described earlier for the model without transient
dynamics. The main effect of the presence of the extra regressors that capture the transient
dynamics is to depress the estimated regression coefficient 5, relative to a model without
these extra regressors, and correspondingly to reduce the posterior probabilities of {p = 1}
computed from the F-posterior (32). The J-posterior (31) frequently manifests bimodality,
as it does in the simpler model, and this partly compensates for the reduction in the size
of p when computing posterior probabilities of {o = 1}.

3. The autoregressive formulation (25) is a popular agnostic model for accommodating
transient dynamics. It is clearly of interest to study the effects of using this model for
inference when the data follow an explicit ARMA structure. The analytic form of the
Bayesian posteriors (31) and (32) makes it very convenient for us to do this. Suppose, for
instance, that the errors on (13) follow an MA(1) leading to the revised model

Vi=p+Bt+pyi_1+u,u=e+0e-1,e=1iid. N(Q©,os?) 13)’

and we use this model to generate data for various values of 8, while the more convenient
AR model (26) is used for inference. We use p=1:0, p=0-025, 8=0-0 and
fe{—0-8,0-8) in (13)’ and k=3 in (26) to illustrate the effects of this extension.

Table III provides simulation results for the expected posterior probabilities of {p > 1} from
20,000 replications when 7= 100 for different values of 6. In all cases the F-posterior
probability leads to inferences that are biased away from models with stochastic trends. The
expected J-posterior probability of {p > 1} is more consonant with the true data-generating
mechanism for each value of 6. But we notice that its value is sensitive to 8, especially as
becomes large and negative. Indeed, for 6§ = —0-8 the posterior probability of p > 1 is on
average unity. This outcome is the result of the bias, discussed earlier in connection with the
prior (28), that results from the fact that (28) is no longer an ignorance prior when ¢ # 0. As
6 in (13)’ approaches the value —1-0, the true data-generating process when 8=0-0 and

Table III. Expected posterior probabilities of p
(model (13)’, T=100)

0 E[Pr(p 2 1)] E[Ps(p 2 1)
—0-8 0-000 0-999
-0-6 0-012 0-993
-0-4 0-033 0-914
-0-2 0-044 0-678

0-0 0-046 0-395

0-2 0-049 0-242

0-4 0-054 0-192

0-6 0-063 0-183

0-8 0-072 0-188
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p=1-0 tends to
(13)//

Y= ut+ é.
In this case the prior (28), which is flat for ¢, effectively downweights trend stationary
alternatives such as (13)” in favour of difference stationarity. A true ignorance prior would
take into account that confidence sets for p are substantially different for MA coefficients 6
around — 1.00 compared with those around 6 = 0-0. Indeed, in a classical setting with p = 1-0
and # = —1-0 the coefficients p and 8 are strictly unidentified in an ARMA(, 1).

4. EMPIRICAL APPLICATION TO THE NELSON-PLOSSER SERIES

We apply the methodology of the previous section to the historical time series studied by
Nelson and Plosser (1982). For each of the 14 series we obtain the F-posterior and J-posterior
for p from a fitted model of the form (27). Nelson and Plosser chose values of k in the range
1 £ k<6, and DeJong and Whiteman (1989b) in their reconsideration of these data chose
k =3 for all series. Since our approach uses analytic methods rather than simulation it is easy
and convenient to compute posteriors for an entire family of empirical model specifications.
An investigator who wished to use our methods could indeed do so, and even incorporate a
prior distribution on the lag length parameter in the analysis. However, we shall not go as far
as this in our present illustration. Instead, we shall report results for both k=1 and k=3 to
achieve some comparability with earlier work, and to illustrate the impact of different time
series specifications on Bayesian inference.

Figures 4(i)—(xiv) give the posterior densities of p for the series. In each figure the two solid
lines represent the J-posterior computed from ignorance priors using the AR(3) and AR(1)
models, coded ‘(a)’ and ‘(b)’, respectively; the dashed line gives the F posterior computed for
the AR(3) model—it may be regarded as a smooth and untruncated approximation to the
posterior of the largest autoregressive root given by DeJong and Whiteman (for k=1 the
approaches would be equivalent apart from the truncation). Table IV reports the posterior
probabilities of nonstationarity (o > 1) and near nonstationarity (p > 0-975) for each series
and for each fitted model.

The observed differences in the posterior distributions are major, especially between the use
of the AR(1) and AR(3) models, showing that time series specifications have an important
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influence on posterior probabilities. For all series the J-posterior is located to the right of the
F-posterior and attributes a greater probability to the nonstationary set {p > 1}. The J-
posteriors are skewed to the right and for four series, notably industrial production (iv), the
unemployment rate (vi), velocity (xii) and stock prices (xiv), they are bimodal. In the case of
industrial production and the unemployment rate the bimodality arises in such a way that the
main body of the distribution is located to the left of unity around the first mode and the
density declines almost to zero between the modes. These two cases are very similar to
the typical simulation outcomes given earlier in Figure 2. Like those cases, the bimodality here
leads to disjoint shortest confidence sets and indicates substantial uncertainty about p. The
bimodal posterior for velocity and stock prices takes a different form in that the density is
substantial between the modes and confidence sets for p would not be disjoint. For these series
there is less uncertainty about p and the posterior probability of nonstationarity is substantial
in each case.

Table IV allows us to compare the posterior probabilities of nonstationarity for different
model specifications and for flat prior and ignorance prior approaches. For the AR(1) + trend
model with an ignorance prior, we have P;(p > 1) > 0-30 for seven series (nominal GNP,
consumer prices, nominal wages, money stock, velocity, bond yields and stock prices) whereas
for the same model with a flat prior, Pr(o > 1) > 0-30 for only a single series (bond yields).
For the AR(3) +trend model with our approximate ignorance prior (28), we have
P;(p =2 1) > 0-15 for five series (industrial production, consumer prices, velocity, bond yields
and stock prices), whereas for the same model with a flat prior, we have Pr(o > 1) > 0-15
again for only one series (bond yields).

It scems reasonable to conclude that, under conditions that approximate ignorance about p,
there is substantially more evidence in support of stochastic trends than there is under an
informative flat prior on p. Moreover, this conclusion appears robust to model specification.
Note that for those series where the posterior probability of o > 1 may be considered small
(less than 10 per cent, say) Ps(o > 1) is still always greater than Pg(p > 1) and often by a large
multiple (usually 3-10 times greater). Thus, even in cases where inferences about
nonstationarity are the same, the Jeffreys prior still has a large relative impact on the posterior
probability.

Our empirical results under a flat prior on p are very similar to those reported in DeJong
and Whiteman (1989b) for the dominant root, A, in the AR(3) characteristic equation. Their
results were obtained by simulation-based numerical integration of the joint posterior and they
base their inferences on the posterior probability of the near nonstationary set {A > 0-975}.
The final column of Table IV reports this probability as Ppsw(A > 0-975) and is taken from
Table 2 of DeJong and Whiteman (1989b). Recall from our earlier discussion that DeJong and
Whiteman employ a truncated flat prior on the autoregressive coefficients, but use A instead
of p for their inferences. Since the flat prior is not invariant to parameter transformations, in
contrast to the Jeffreys prior, their implied prior on A is not flat but is actually increasing in
p. In spite of this, note that our Pr(p = 0-975) = Ppsw(A = 0-975) for all of the series except
velocity. DeJong and Whiteman infer from their results that evidence in support of a stochastic
trend is present for only two series (velocity and bond yields) and they deem the evidence to
be marginal in the case of a third series (consumer prices). An inspection of the penultimate
column of Table IV, which reports our Pr(o > 0-975), shows that our methods support a
similar inference. We differ by unequivocally including consumer prices, for which
Pr(p 2 0-975)=0-528, in contrast to DeJong and Whiteman’s Ppsw(o = 0-975)=0-196.
Only for these three series, viz. velocity, bond yields and consumer prices, are the posterior
probabilities of {p > 0-975} and {A > 0-975} appreciable. For all other series the posterior
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probability of a near nonstationary set is negligible: less than 6 per cent for Pr(p > 0-975) and
less than 4 per cent for Ppsw(p = 0-975). We would not, of course, expect our flat prior results
to be identical with those of DeJong and Whiteman because, as we have stated, they base their
inferences on A not p and the implied prior for A, being a nonlinear function of the
autoregressive coefficients, is not flat. However, this difference is simply one of
parameterization. The starting point in the DeJong and Whiteman investigation is a flat prior
on the autoregressive coefficients and in this respect is entirely analogous to our flat prior
analysis.

Using flat priors, therefore, the evidence from the Nelson—Plosser time-series is that
stochastic trends are unlikely for most of the series. Our results with ignorance priors show
that these inferences based on flat priors are fragile for some of the series (especially stock
prices) and they are always biased away from stochastic trend alternatives. The DeJong and
Whiteman conclusions, we believe, should be interpreted with these qualifications in mind.

Although we have not discussed it above, DeJong and Whiteman also extract Bayesian
posteriors for the trend coefficient, 8, in (25) and, further, calculate the posterior for A under
a prior for which 8 = 0. The latter exercise serves to highlight the role of the deterministic trend
parameter in rendering stochastic trends ‘unlikely’ in their analysis. Our own analysis could
be applied in a simple way and with no essential changes to perform exercises of this type. The
remaining methodological development that would seem to be important for the use of our
methods is the construction of a suitable Jeffreys prior which allows for the full transient
dynamics in the general model (26). This is especially important because as k increases the
transient dynamics soak up more of the observed variation in the series and inevitably reduce
the role played by p or the largest autoregressive root A. Similar effects operate, of course,
when there are more sophisticated deterministic trends in the model. A Jeffreys prior, which
accommodates the information content of the moments of all of the regressors, should take
these effects into account @ priori. Work on this particular line of development is presently
under way.

5. CONCLUSION

This paper set out to criticize recent Bayesian critiques of unit root econometrics. In so doing
we have put forward an alternative Bayesian methodology based on the notion of ignorance
priors, we have shown how to develop these priors for models where no stationarity
assumption is made and we have shown how the methodology can be used in quite general
autoregressive models with fitted trends. Our simulation exercises and our empirical
application of these methods both indicate divergences that can be substantial from the results
of a flat prior Bayesian analysis. This alone should be sufficient to alert us to the possibility
of fragile inferences. But, as we have shown in addition, flat priors on the autoregressive
coefficients are informative in time-series models, contrary to their apparent intent, and they
typically downweight unit root and explosive alternatives in the posterior distribution.
Moreover, as our illustrations demonstrate, Bayesian inferences are by no means robust to
different time-series specifications and in some cases choice of lag length in an autoregression
can have a major impact on inference. Finally, our simulation exercises and empirical results
lead us to expect that an objective Bayesian analysis of stochastic trends will sometimes
produce outcomes that are quite ambiguous due to a widely dispersed bimodality in the
posterior distribution. In these cases, Bayesian methods reproduce in their own way a type of
uncertainty that we normally associate with low discriminatory power in classical statistical
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tests. Each of these factors should be borne in mind when interpreting Bayesian analyses of
time series models.

In the light of these conclusions we submit that a Bayesian analysis of stochastic trends is
by no means unequivocally superior to classical alternatives. Bayesian methods bring
convenience and simplicity but also a host of issues that complicate inference in time series
models and that go unmentioned in the Sims and Sims—Uhlig critiques. When these issues are
ignored, as they most certainly are in the mechanical use of flat prior Bayesian analysis, the
risk of misleadingly precise and biased inferences about stochastic trends is unacceptably large.
Potential users of Bayesian methods need to be alerted to these shortcomings. In our view, one
of the roles of scientific criticism is to do just this. To echo in the present context the
sentiments that T. S. Eliot expressed about literary criticism in his Convocation Address to the
University of Leeds, one would like to hope that one’s

critical writings may be less fired by enthusiasm but informed by wider interest and, one
hopes, by greater wisdom and humility (p. 26).

In criticizing the critics of unit root econometrics this essay has attempted to put forward
a wider and more objective perspective on Bayesian inference in time series models. We make
no bones about the fact that we disagree with the deconstructionism of Sims (1988) and of Sims
and Uhlig (1988/1991), we find their arguments about classical methods to be in error and their
prescription of flat prior Bayesian methodology to be flawed. But we do see value in a Bayesian
approach to inference that properly acknowledges the limitations of the approach. And we see
no reason why empirical researchers should not judiciously pursue this approach as well as
classical methods. If these perspectives on unit root econometrics are found by others to be
of interest then this essay will have served its purpose.

APPENDIX A

For the Gaussian AR(1) model (1) with 02 =1 and with a parameter sequence p=po+ T~ ‘A
adjacent to pe = 1 we have the log-likelihood ratio

In{pdf(y; o)/ pdf(¥; po)}

T T
-(1/2) 21; (y,—py,-1)2+(1/2) ; (,Vt—.Do.Vr—l)2

Ar(h)

=h<T"1 i} y,_le,) —(1/2)h2<T‘2 ;T y%.l).
Under po=1 we have the following asymptotic behaviour established in Phillips (1987)
Arih) = h<§; WdW) - (1/2)112( g; W2> = A(h).
Under p = po+ T~ 'h we have the alternative limit

Ar(h)7h<§; Jde> —(1/2)h2(§; J%),

from Phillips (1989), where Ju(r)= {g e~ "dW(s) is a diffusion process and W(r) is



362 P. C. B. PHILLIPS

standard Brownian motion. Observe that under the local alternative sequence
T 1

Yy | (A1)
1 0

a random limit which itself depends on /4 through the diffusion Jx(r). In this sense the Fisher
information is both random and variable (i.e. dependent on local departures) in the limit. The
usual local asymptotic quadratic approximation does not apply. Because of this complication,
the optimal asymptotic theory of inference of LeCam (1960, 1986) and Jeganathan (1980) is
inapplicable in models with fitted unit roots. However, as shown in the authors (1988/1991)
paper, these objections do not apply to models that are transformed to stationary form by
differencing and cointegrating transformations.

APPENDIX B

We show how to marginalize the joint posterior (19). As in (19) we use the notation 4 = 4(p)
and we write the factor involving the prior as

7(p,0,9) = 0 {ao(p) + a1(o, 7)[ 0%} 2 = 07 (a0 + & 0?) 2.

The required marginal posterior may now be written in integral form as
plo|y) = L (a0 + 62/ 0%) 2077~ exp{—(1/20°) [m (@) + (p — $)*mx (M)} do.
Let z=1/0%, 1 =&1/a and then

P y) o ad”? §: (14 12) 22 T/971 exp(— (2 2) [m(@) + (p — $)’mx(M)]} dz

=y T2 g: (1+v) 207271 exp{ — (v]29) [m@) + (p — $)*mx(»)]} dv
= ad 2y T2 (T2 (T]2, (T + 3)/2; (1 29) [m(d) + (o — p)2mx(»)D),

where I'(- ) is the gamma function and ¥ is a confluent hypergeometric function of the second
kind (see Erdélyi, 1953, p. 255). Taking out the constant of proportionality and noting that
n = @1/ ao = n(p) since oo = o (p) and &1 = a1(p, §) = a1 (o, 7(p)) are functions of p, we obtain
the following marginal posterior for p

pilp| ¥) = aole) (o) 72U (T]2,(T + 3)[2; (1/29(0)) Im(@) + (p — 8)*mx (M),

as given in equation (20).
When

(1/29(p)) Im(@) + (p — $)*mx ()]
is large relative to the other arguments of the ¥ function, the following approximation applies
(see Erdélyi, op. cit., p. 278):
(T]2, (T +3)2; AJ20) [m(@) + (p — p)°mx (] ~ ((A[20) [m(@) + (0 — 5)*mx ()]} "7

With this approximation, we deduce a very simple approximation to the posterior, viz.

pi(p| ¥) < ao(p) 2 m@) + (o — 5)’mx(»)] "2
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