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ERROR CORRECTION AND LONG-RUN EQUILIBRIUM IN
CONTINUOUS TIME

By P. C. B. PaiLuips’

This paper deals with error correction models (ECM’s) and cointegrated systems that
are formulated in continuous time. Long-run equilibrium coefficients 1n the continuous
system are always identified 1n the discrete time reduced form, so that there is no aliasing
problem for these parameters. The long-run relationships are also preserved under quite
general data filtering. Frequency domain procedures are outlined for estimation and
inference. These methods are asymptotically optimal under Gaussian assumptions and
they have the advantages of simplicity of computation and generality of specification,
thereby avoiding some methodological problems of dynamic specification. In addition,
they facilitate the treatment of data irregularities such as mixed stock and flow data and
temporally aggregated partial equilibrium formulations. Models with restricted cointegrat-
1ng matrices are also considered.
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1 INTRODUCTION

DurinG THE 1980’s, there has been a steady growth of interest in econometric
modeling in continuous time. The growing research activity in the field covers a
broad range of topics from theoretical work on computational and inferential
issues through to major empirical modeling projects. Readers are referred to
Bergstrom (1988) for a history and a review of recent developments in the field.
Econometric methods for estimating continuous time models fall into two
categories. The first approach is to work from discrete approximations to the
underlying continuous system, which may be constructed in either the time
domain or the frequency domain. The second approach is to work from the
exact discrete model that is induced by the continuous system. Much of the
applied work in the field now uses this approach and follows the paradigm laid
out by Bergstrom and Wymer (1976) in their model of the UK economy. For the
purpose of statistical inference, it has been conventional to assume that the
variables in the system are either stationary or stationary about deterministic
trends. This assumption aids the development of an asymptotic distribution
theory along traditional lines. As in discrete time models, however, the assump-
tion of stationarity is an important one and empirical evidence suggests that it is
unlikely to be satisfied either with economy-wide data or financial data. For
example, Bergstrom and Wymer (1976) found evidence of a statistically signifi-
cant unstable root in their empirical model of the UK.

1My thanks go to Rex Bergstrom and three referees for helpful comments on the first draft of
this paper. I also thank Glena Ames for her skill and effort in keyboarding the manuscript of this
paper and the NSF for research support under Grant No SES 8519595 and No. SES 8821180. The
paper was written 1n June 1988 and later revised while the author was visiting STICERD at the
London School of Economics 1n June 1989 The hospitality of STICERD and the LSE 1s gratefully
acknowledged. An abridgement of the paper was prepared in May 1990. The original version of the
paper 1s available from the author on request.
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The purpose of the present paper is to investigate what happens when the
assumption of stationarity is relaxed. We focus our attention on estimation and
inference rather than computation and on long-run equilibria rather than
dynamic adjustment mechanisms. Qur models are specified as simple first order
stochastic differential equations systems but we allow these systems to be driven
by general stationary errors. Stochastic trends are introduced by permitting the
system to-have some unstable latent roots at the origin. Such models may always
be written in a triangular system error correction model (ECM) format in
continuous time. Moreover, the equivalent discrete time system that is satisfied
by equispaced observations of the continuous system can also be written in an
analogous ECM format. This has major implications for identification and
estimation. First, since the long-run equilibria also appear in the discrete time
ECM, the corresponding coefficients are always identified. In effect, there is no
aliasing problem in the estimation of long-run equilibria. Second, the triangular
system format of the discrete time ECM opens the way to simple frequency
domain estimation methods of the type discussed by the author (1988b) else-
where. An important aspect of these methods is their nonparametric treatment
of the regression errors. At this level of generality, it is immaterial whether the
model is estimated using instantaneously observed data, flow data, or a mixture
of the two. Thus, problems of temporal aggregation which present impediments
to computation and inference in more traditional approaches simply do not
arise in the present context.

The following notation is used in the paper. D =d /dt represents the mean
square differential operator with respect to continuous time and A the first
difference operator in discrete time. We use vec(.A) to stack rows of the matrix
A into a column vector and 4, A* to represent the complex conjugate and
complex conjugate transpose of A4 and l|A| to signify the matrix norm
(tr (A’ A)'/2. The symbol “ = ” signifies weak convergence of associated proba-
bility measures, the symbol “=" signifies equality in distribution and the
inequality “ > 0 signifies positive definite when applied to matrices. Vector
Brownian motion with covariance matrix {2 is written “BM(£2)”. We use [x] to
denote the smallest integer < x. All limits given in the paper are as the sample
size T — oo,

The symbolism “I(0)” will be taken to mean all covariance stationary pro-
cesses in continuous time with bounded continuous spectra f(A) for which
f(0) > 0. This will be taken to include some generalized random processes such
as the derivative of standard Brownian motion, i.e. {(t) = DW(t), whose spec-
trum is the constant function 1/27 on (—, ). Since DW(t) does not exist in
the mean square sense an alternative here would be to write dW(t) = {(dr) =
I(0), meaning that increments in W(¢) are stationary. Note that D?W(t), as a
generalized process, is not I(0) according to this definition because of the
bounded spectrum requirement. The continuous time process y(¢) is said to be
integrated of order one and we write y(¢)=1(1) if Dy(t)=1I(0). A vector
process will be 1(0) or I(1) if all of its elements are I(0) or I(1) respectively.
However, in the vector case we may have Dy(t)=u(t)=1(0), so that each
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element u,(t) has bounded spectrum f(A) with f,(0)>0, yet the spectral
density matrix f(A) of u(¢) may be singular at the origin. In this case the
elements of y(z) are cointegrated.

2 REPRESENTATION, IDENTIFICATION, AND FILTERING
2.1. Representation

Let y(¢) be an m-vector I(1) process in continuous time and u(¢) be an
m-vector stationary time series. The process u(¢) will be used to represent a
stationary continuous time residual. It is not necessary at this stage to be more
explicit about its properties. Indeed, as we shall soon see, it is advantageous to
our approach to preserve generality in the specification of the residual. We
partition the vectors y(¢) and u(t) into the subvectors

)’1([)}’”1 u(t)z[ul(t)lml

yo(1) |mye uy(t) |my

and assume that the generating mechanism for y(¢) is the cointegrated system
(2) yi(1) = Byy(1) +uy(t),

(3) Dy, (1) =uy(t).

As in discrete time formulations, the idea here is that (2) embodies a long-run
equilibrium relationship between the variables. This relationship is sufficiently
strong that it is perturbed only by stationary deviations, which are represented
by u(¢). In particular, high frequency perturbations that are unimportant to the
long-run relationship are absorbed by the process u,(¢). Solving (3) with initial
conditions at ¢ = 0 we have

(4 y()= [0 uy(5) ds +y,(0)

so that y,(¢) is the outcome of accumulated innovations over the interval [0, ¢].
If u,(t) =I(0), then y,(¢) is an I(1) process and the system (2) and (3) may be
regarded as being driven by the superposition of accumulated innovations over
time and stationary deviations from long-run equilibrium. According to our
usage of the symbolism I(0), u,(s) may be a generalized process such as
continuous time white noise. In this case it is more usual to write the first
member on the right side of (4) as a stochastic integral of the form [/{(ds)
where £(-) is a process of orthogonal increments.

We also have an ECM representation of (2) and (3). This is obtained by
writing the derivative of (2) in the form

Dy (t) = —[1I, = Bly(t) +uy(t) + Bu,(t) + Du(t)
and combining this equation with (3) to give the system
(5) Dy(t) = —EAy(t) +w(1),

(1) Y(t)=[
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where

| m oty | wa(2) +Buy(t) +Duy(t)
E—[O]mz, A=[I,-B], w(t)= (1)

The coefficient matrix E in (5) is known. Only the cointegrating matrix A is to
be estimated and this matrix is normalized to accord with the normalization of
the long-run equilibrium formulation (2). Thus, it is the submatrix B that is the
focus of interest in what follows.

The representation (5) is a continuous time analogue of the ECM representa-
tion given in Phillips (1991) for discrete time models. It has the same advantage
as the discrete time counterpart that it is in triangular system format. There is a
converse version of this relationship. Suppose we start with the stochastic
differential equation system

(6) Dy(1) =Fy(1) +w(1),
where w(¢) = I(0) and the coefficient matrix F is known to have m, latent roots
in the left half plane and m, zero latent roots. We simply write F as F = HG,

where H (m Xm,) and G (m; X m) both have rank m,, and then (6) can be
recast as

(7) Dy(t) =EGy(t) + (H—E)Gy(t) +w(t) =EGy(t) +v(t),

where v(¢) = I(0), putting the system into the same error correction format as
(5). Discrete time series generated by (5) also satisfy the exact discrete model

(8) y(n)=exp{—EA}y(n—1) +e(n),
e(n) = [lexp{ —sEA}w(n —s) ds.
0
Indeed, from the series representation

exp (—EA) =1—EA+ (1/2))(EA)’ — (1/3!)(EA)* + - - -
and the fact that AE =1 we have exp(—FEA) =1 — fEA where f=(e—1)/e. kt
follows that (8) may be rewritten as
(9 Ay(n) = —EAy(n—1)+x(n),  with

x(n)=ge(n)+(1/e) EAy(n—1),
where x(n) = I(0) since both &(n) and Ay(n) are stationary. Model (9) is now in
triangular system ECM format for discrete time models. Such models have been

studied in earlier work by the author (1991, 1988b) and results in those papers
will be drawn on below.

2.2. Identification

The continuous time error correction model (5) generates equispaced data
that satisfy the analogous discrete time model (9). Moreover, the long-run
cquilibrium coefficients in the two models are the same. This leads to the
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conclusion that the long-run parameters of a continuous time model may be
estimated directly from discrete data by formulating and estimating the corre-
sponding discrete time ECM. This shows that at least for these parameters
there is no aliasing or identification problem. Note that the discrete time
cointegrated system induced by (9) is obtained from (2) simply by sampling at
integer intervals. The problem of identifying the coefficient matrix B in the
cointegrating equation (2) using only discrete data then reduces to the problem
of identifying the submatrix B of A in (9). In discrete time these are issues that
have been fully explored elsewhere—see Phillips and Durlauf (1986) and Stock
(1987a) for details.

It is worth observing how this result on identification bears on the usual
aliasing problem. Let f¢ (A) be the spectral density matrix of the residual
process w(t) in (5). Suppose f.5,(A) is continuous and bounded over the interval
(—, ). The spectral matrix of y(t)is

(10)  £5(A) = (=il EA) £, (A) (iM ~ A'E) ™

and the spectrum of the discrete sequence {y(n)}] is given by the folding
formula f2(A) =X, _.f5 (A +2mj). (Note that spectra such as (10), which
represent nonstationary I(1) processes and have a singularity at the origin, may
be defined as the pointwise limit of the expectation of the periodogram—see
Solo (1987).) Now f<,(A + 27j) is bounded for all j# 0 in the vicinity of A =0
whereas when j =0 we have f£,(1)=0(1/A%) as A — 0. Thus, the behavior of
the discrete spectrum fZ(A) at the origin is prescribed by that of f,(A) as
A — 0. This means that we can identify the long-run components that dominate
the behavior of f;,(A) from the discrete spectrum f2(A). Next observe that
AGAT +EA)~'=(1 +iA)"'4 and therefore the spectrum of Ay(¢) is the contin-
uous and bounded function (1 + A*)~'4f<, (A)A'. Clearly, A is identified from
() as the linear transformation of y(¢) that annihilates the pole at the origin
in f; (A). The matrix A4 is then unique up to normalization. However, since the
behavior of f2 () mirrors the behavior of f7,(A) at the origin we may equiva-
lently identify 4 from fZ(A). This eliminates the aliasing problem for the
long-run equilibrium parameters in continuous time.

2.3. Filtered Series and Temporal Aggregation

Suppose Y(n) is obtained from the original series y(¢) by the action of a filter
of the form Y(n) = [bg(s)y(n —s)ds, [21g(s)Ids < ». This filter may be inter-
preted as a linear operator on the space of random functions where y(¢) is
defined. Its frequency response function is G(A) = [Pg(s)e'** ds. The spectral
matrix of the filtered series Y(n) is f5,(1) = G(A)f5, (A)G(A)*. From the above
analysis we know that f7 (1)=0( /A?) as A — 0 and that the matrix 4 for
which AfS(0)A" = Af;;,(0) A’ < = is uniquely defined up to normalization. The
spectral matrix of AY(n) at the origin is AG(0)f;,(0)G(0Y A’ and this matrix is
bounded iff the rows of the matrix AG(0) are spanned by the rows of A, i.e. iff
G(0y A' € Z#(A"). This leads us to the following result.
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THEOREM: Suppose Y(n) is obtained from y(t) by a linear filter whose response
function is G(A). Then AY(n) = I(0) and the cointegrating relationship is preserved
under the filter iff

(11)  G(0yd' e B(A).

Condition (11) is necessary and sufficient for the invariance of the cointegrat-
ing relationship (1) under the action of the linear filter with response function
G()A). Three filters that are of interest in applications are the following.

() Flow data. Here, Y(n)= [7_;y(t)dt and G(A)=h(MI, with A(A)=
(e** — 1)/iX. Observe that G(0) =1, and (11) holds trivially.

(ii) Mixed stock and flow data. Write y(t) in partitioned format as

y*(t)
yi(1)

Here, the affixes “s” and “f” signify that the associated components are
measured as stocks or as flows, respectively. Let there be m, and m s compo-
nents in each category. Q is a permutation matrix which reorders the elements
to conform with the earlier format given in (1). Define the filtered series
Y(n) = Q,y*(n) + Q,;Y'(n), where Y’(n)=[r ,y/(+)d:. Then the response
function of the filter is

(12) y(t)=Q[ ]=sts(t)+nyf(t).

L, 0
(13) G(A)=Q[O Y ]Q'-
ms

Again, G(0) =1, and (11) holds trivially, so that cointegrating relationships are
preserved under the action of this filter. Stock (1987b) made a similar observa-
tion and gave an example for the case m,=m = 1.

(iii) General time averaging filters. Here, the length (8) of the time averaging
filter may be distinct from the sampling interval of the econometrician, which is
set to unity. Weights may also be assigned in averaging the data. In general, we
might have Y{(n) = [Sw(s)y/(¢t —s)ds with [Sw(s)ds = 1. In place of (13), the
response function of the filter that accommodates instantaneous observations
(i.e. y*(n)) and time averaged data such as Y{(n) is

L, 0
GS()\) =Q 0 hg()\)lmf Q7

where hg(A) = [2e'"**w(s)ds. When A =0, we obtain G(0) =1, again and (11)
continues to hold.

General time averaging filters like st (n) arise in models not only because of
the manner in which data are actually collected. They can also arise because
partial equilibrium formulations in continuous time models may distinguish
between the decision making intervals of agents and the time unit that is used in
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the model. The cointegrating long-run relationship between the variables is then
invariant to the replacement of Y{(n) by y(n) or Y/(n). Ideally, one would like
the asymptotic properties of the estimation procedure that is employed to be
invariant to this type of replacement. This would be especially helpful in cases
where the filter was itself unknown. The methods now to be discussed have this

property.

3 ESTIMATION, INFERENCE, AND ASYMPTOTICS
3.1. Unrestricted Cointegrating Matrices

In this subsection we shall work with the linear model (9) where the cointe-
grating matrix A is unrestricted other than by normalization, i.e. the submatrix
B is unrestricted. The approach we suggest is to use the discrete time ECM
formulation (9) rather than to attempt to estimate the differential equation
system (5) directly. Since (9) has the triangular system format, a number of
different estimation methods are available including instrumental variables
(Phillips and Hansen (1990)), maximum likelihood (Phillips (1991)) and spectral
regression (Phillips (1988b).) Of these, spectral regression procedures seem
desirable in the present context because of the generality they permit with
regard to the regression errors. Generality is important here since the only
conditions on the regression errors that have been used in our discussion of
representation and identification are stationarity and the existence of a continu-
ous spectral density matrix. In view of their nonparametric treatment of residu-
als, spectral regression methods allow us to proceed at a comparable level of
generality, thereby facilitating the treatment of data irregularities such as the
presence of mixed stock and flow data. Spectral methods also have the advan-
tage of computational simplicity since at least when B is unrestricted they avoid
the nonlinear optimization problems of other approaches.

Before we detail formulae for our estimators we shall make explicit the
conditions that we require on (9). We assume that the residual process x(n) in
(9) is stationary with spectral matrix £ (A)> 0 that is continuous at the origin
A=0. We set 2=27f%(0) and decompose this long-run covariance matrix as
follows: 2=23 + A+ A', where 3 = E(x(0)x(0)), A=X}_,E(x(0)x(k)) and
we define A =3 + A. We further assume that the partial sum process P, =
¥ _,x(n) satisfies the invariance principle

(14) T~ '/?Piy = S(r) =BM(2)
and the sample covariance matrix between P, and x(n) converges weakly as
follows:

(15)  T7'5[™Px(ny = [ SdS'+ra,
0

where the first term on the right side of (15) is a matrix stochastic integral with
respect to the Brownian motion S(r). Results (14) and (15) are known to hold
under quite mild moment and weak dependence assumptions on the residual
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process x(n). These conditions and results are discussed in earlier work (e.g.,
see Phillips and Durlauf (1986)) and are reviewed by the author in (1988a). They
certainly apply when x(n) is a linear process of the type

(16)  x(m= T Ce, 3 (e} =iid(0,3,), L)<,
J=—o =
This also accommodates discrete sampling of a wide class of continuous pro-
cesses such as stable ARMA systems in continuous time.

It is convenient for the statement of our results to partition the limit
Brownian motion § and the matrices {2, X, A and A conformably with the
partition of y(¢) given in (1). For example, we shall write

S 2y, 951] [211 Eél]
S= s ‘{2 = ’ 2 = ’
[Sz] [921 2 Zn 2y

and so on. We also define 2, ,=0,, — 2,,025,,'Q2,..

The estimators we suggest are the Hannan efficient and band spectral
estimators (see Hannan (1963a, 1963b)) of the regression coefficient matrix B in
(9). These are simply the matrix extensions of the spectral regression estimators
developed for the single equation ECM setting in the (1988b) paper. It will be
helpful, therefore, to use the same notation.

Specifically, we define

T
ye(n) =(yi(n), Ay, (n)), w.(A)=QaT) "> ¥ yu(n)e™,

n=1

T
wo(M)=Q27T) 2 ¥ yy(n-1e™ for re[-m, 7]
n=1

Some natural economies in the computation of the discrete Fourier transforms
(dft’s) w, and w, can be achieved, e.g., by the use of (e~** — Dw,(A) for the dft
of Ay,(n). We also need an estimate of the spectral matrix f, (1) and this may
be based on the residuals of an initial least- -squares regression on the first m,
equations of (9). We write £(n)=Ay(n) + EAy(n — 1) = v (n)— EByz(n -1
and may then compute the smoothed periodogram estimate

R M A R
fxx(wj) = 7 % [W*(As) _EBWZ()‘S)] [W*()‘s) _EBWZ()‘s)]*a

where the summation is over A, € &, = (0, —~7/2M <A <w,+ 7/2M), a fre-
quency band of width =/M centered onw =mj/M, j= —M +1,...,M for M
integer. Setting [=[T/M], we are effectlvely averaging [ nelghbormg peri-
odogram ordinates around the frequency w, to obtain the estimate f (w ). We
requlre M — » so that the band shrinks as T-w but in such a way that
= 0(T*/?). Since the lcast-squares estimator B is consistent (see Phllhps and
Durlauf (1986) and Stock (1987a)) we find that when w, —» » we have f”(w )
=, fix(@) as T — . This follows because f, (@) is continuous in view of (16)

although we make use of the consistency of f;x(w]) only for sequences w, — 0.
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The Hannan efficient estimator of B here takes the form:

-1
) I S
J=—-M+1

[ LY (Efue) e l)vec(fux ))}
B w vec W R
2 M = a1 xx J * 2 J
where f(w,) = 7' ZgwaAwy(A)* and faro) = I g w o (A)wy(A )",
The band spectral estimator l-fo is similarly defined but is based only on spectral
estimates at the origin.

The computational requirements of the two estimators B and l§0 are small,
particularly in comparison with direct maximum likelihood methods applied to
(9) or the exact discrete model (8), more especially when there are data
irregularities to accommodate. Note that the latter methods also require explicit
modeling of the error process and, hence, the short run dynamics of the model
with the attendant difficulties of model selection.

Both B and B0 rely on an initial estlmate of B such as least-squares in order
to construct the residual spectral estimate fM B and B, are therefore two-step
estimators. Further iterations are possible and may lead to some improvement
in finite sample performance because of the second order bias in first stage
estimates like least squares (Phillips and Durlauf (1986), Stock (1987a)). Further
iterations will not, of course, influence the asymptotics. Finally, we observe that
many alternative choices of spectral estimates for f;x, f;z, and f,, other than
the smoothed periodogram estimates may be used in the estimation formulae
without affecting asymptotic behavior.

3.2. Restricted Cointegrating Matrices

Now suppose that B = B(«), where « is a p-vector of underlying parameters.
Suppose also that a € @, a compact set in R?, that A(a) is a continuously
differentiable matrix function, and that the usual identification condition holds,
Viz.

(18) A(a) =A(a") implies a=a’,
where o is the trué value of «. The (nonlinear) efficient spectral regression
estimator of a is

&=argmin, ¥ [w (A,) — EB(@)w,(A,)]*
i
() [wa (1)) ~ EB(a)wy(1,)],

where ®(A)=f, (0)7, A,=27s/T€ % and = U™, %P, Both & and
the corresponding band spectral estimator are special cases of the nonlinear
spectral regression estimators studied in Robinson (1972). Again all that is new
here is that they are being applied in a context where the regressors are
nonstationary and coherent with the equation errors.
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3.3. Subsystem One Step Estimation

The above estimators rely on a preliminary regression in order to construct
the weighting matrix f;x(w])‘l. This can be avoided at least for the band
spectral estimator when there are no restrictions on B by working with the
equation

(19) Wi(Ag) = Bw,(A,) + Cwy, (A,) +w, 2(Ay).

Here w(A), wy, (1), and w, ,(1) denote the dft’s of y,(n), Ay,(n), and x; ,(n)
=x,(n)~ Cx,(n)=x(n) — CAy,(n) where C=0,,0;, respectively. Band
spectral regression on (19) for A, € &, is simply multivariate least-squares.
When there are no restrictions on B in (19) this produces an asymptotically
efficient estimation procedure, the reason being that w, ,(A,) is asymptotically
independent of w,, (A)) for A, € %, In effect, the efficiency of least squares on
(19) is just a frequency domain version of the result (from Phillips (1991)) that
OLS in the time domain on

yi(n) = By,(n) + CAy,(n) =u, ,(n)
is optimal when {u(n)} is iid N(0, £2).
The subsystem band spectral estimator of B in (19) has the form

20)  Bi=[£12(0) = £,40) far(0) ' fun(0) ]
[ £(0) = fo4(0) F2a(0) " i (@)]

where we use f,,(-) to denote the estimated spectral matrix of A y,(n) and
F() fid), fL4) to denote the estimated cross spectral matrices of
(y4(n), y,(n)),(y(n), Ay,(n)), and (y,(n), Ay,(n)), respectively. Again smoothed
periodogram estimates underlie the stated formulae but other types of spectral
estimates could equally well be employed.

3.4. Asymptotic Theory

Following the approach set out in the (1988b) paper, with some modifications
to deal with the multivariate character of the regressions, it is straightforward to
derive the asymptotic distribution of B, l-fo, and Bj. The estimators are
asymptotically equivalent, have the following limit theory, and are optimal
under Gaussian assumptions:

-1

(21)  T(B-B).T(B,~B).T(Bi~B) = ([Olds1 , Sé)([olSzSz’) ,

Sy, my 2, 0
[Sz]mz_BM([ 0 0,1

where
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The common limit distribution may alternatively be represented in the mixed
normal form

(22) [ N(0,2y,9G)dP(G)=[ N(0,80;, ,00%')dP(g),

G>0 g>0
where G = (35,897, g = [J(Q,W)? and Q,W, =W, — ([iW, W)
(foW,W})~'W; is the Hilbert projection in L,[0,1] of W, on the orthogonal
complement of the space spanned by the elements of W,. Here

will
Wz]mz 1 =BM(Im2).

As discussed in the (1988b) paper, the nuisance parameters of the limit
distribution (22) involve only scale effects and hypothesis testing may be con-
ducted in the usual way with conventional asymptotic chi-squared criteria. Thus,
if we wish to test

Hy:h(b) =0, b=vecB,

where A(") is a twice continuously differentiable g-vector function of restrictions
on b, the Wald statistic is constructed from b=vec B in the usual way, viz.
M =h(bY[HVH']"'h(b), where H =dh(b)/db" and

1] 1 M

Ve=—=|— E'f “Eef)
T T 2M]:§w+1 fXX(w]) fzz(w])

-1

Similar considerations apply to EO and By
The case of restricted cointegrating matrices 4 = 4(a) may be handled in
much the same way. Setting b = b(a) = vec(B(a)), we have

b(&@) —b(a®) =J(a*)(a-a),
where J(-)=0b/da’ and a* is on the line segment that connects @ and o’

Since b(-) is continuously differentiable, the asymptotic theory for T(@ — a®)
follows by conventional arguments, leading to

-1
T(d—-a’) = [J’(.Ql‘llz ® fOlSzSé)J} []’((21‘112 @1)]01 ds, ,® sz]

= G>ON(0,[J'(Q;112®G)J]' ) dP(G).

Again, hypothesis testing about a” may be conducted using asymptotic chi-

squared criteria constructed in the usual way.

4 SOME CONCLUDING REMARKS

The model on which our attention has focused is the first order stochastic
differential equation system (5). This model includes a wider class of continuous
systems than may be apparent from its simple form. For example, w(z) could be
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generated by a stable ARMA (p, q) system in continuous time of the form
A(D)w(t) =B(D){(1),

where A(D)=YfA,D' and B(D)= X4 (B D’ (q <p) are matrix polynomials
in D and {(¢) is a pure noise vector with constant spectral matrix (1/2m)3, > 0.
The system (5) is then the higher order model

(5)'  A(D)(DI+EA)y(t) =B(D){(t)

in which the coefficients of A(D) and B(D) embody the transient dynamics.
The model also accommodates stationary exogenous inputs z(¢). These may be
absorbed into the generating process for the residuals by writing the complete
model for y(¢) as

(5)2 Dy(t) = —EAy(t) + Cz(t) +w(t) = —EAy(t) +w(?),

where C is some constant matrix of coefficients. Interestingly, for the purposes
of inference, no (asymptotic) efficiency is lost by absorbing the stationary
process z(t) into the residual in this way. This is so in spite of the fact that
discrete observations of z(¢) are available. The reason is that the effects of z(z)
are already accounted for in our estimation procedure. By systems estimation
we are, in effect, adjusting for the conditional mean in (the first m, equations
of) (5)? and this adjustment deals in a nonparametric way with the input z(¢).
One might expect, however, that for correctly specified models the explicit use
of observable exogenous series like z(¢) would lead to some finite sample gains.
This is something that could be explored in Monte Carlo work.

The model may also be extended to allow for deterministic as well as
stochastic trends. All that is needed is to replace (5) by the system

(5)°  Dy(t)=k(r) — EAy(t) +w(t),

where k(t) =X  k,t' and Ak, =0 (i=0,..., p). The latter condition ensures
that the cointegrating relationship (2) persists and the matrix A4 annihilates the
deterministic as well as the stochastic trends. Note from (5)° that Ay(¢) then
satisfies the stable system

D(Ay(1)) = —Ay(t) + Aw(1).
The discrete time equivalent of (5)° is
(9" Ay(n) =ky(n) —Edy(n—1) +x(n)

which replaces our earlier equation (9). In (9)! we find, after a small calculation,
that

k*(n)=éok, ¥ ()ﬁ

’4
] n=3 k,n.
o\ i—i+1 =0 *

Now we need only remove the deterministic trend k,(n) from the data by
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regression before applying the methods of Section 3 to estimate 4. The
asymptotic results are unchanged except that suitably detrended Brownian
motions appear in the limit distributions and inferential procedures are unaf-
fected.

We end this paper with some brief comments that bear on the interpretation
of empirical results and Monte Carlo experiments. As shown in Section 3,
estimates of the long-run equilibrium coefficients converge at the rate Op(T‘l).
Correspondingly, conventional standard error estimates are also OP(T‘I). This
suggests that standard errors of maximum likelihood estimates in models of the
type we have studied will tend to be smaller than is usual in applied economet-
ric work with stationary series of a comparable length. This is borne out by some
of the empirical results in the area, where long-run equilibrium coefficients
seem to be estimated very precisely—see, for example, Table 1 of Bergstrom
and Wymer (1976). Asymptotics of the type discussed here can also be used to
help explain some of the empirical differences between the use of the discrete
approximation and the exact discrete model in the estimation of continuous
time systems. For instance, estimated standard errors obtained from the exact
discrete model seem on the whole to be much smaller than those from the
discrete approximation (see Phillips (1972) and Bergstrom and Wymer (1976)).
In part this may be a simple consequence of the optimality of Gaussian
estimates of the exact discrete model. But it may also be explained by the fact
that the specification error that is inherent in the discrete approximation
induces a serial dependence in the residual which will often lead to an increase
in residual variance. These are matters that could be explored in appropriately
designed sampling experiments.
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