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Our subject is estimation and inference concerning long-run economic equilibria in models
with stochastic trends. An asymptotic theory is provided to analyze a menu of currently existing
estimators of cointegrated systems. We study in detail the single-equation ECM (SEECM)
approach of Hendry. Our theoretical results lead 1o prescriptions for empirical work, such as
specifying SEECM’s nonlinearly and including lagged equilibrium relationships rather than lagged
differences of the dependent variable as covariates. Sumulations support these prescriptions, and
point to problems of overfitting not encountered in the semiparametric approach of Phillips and
Hansen (1990).

1. INTRODUCTION

An early stimulus for work on error-correction modelling was the research of A. W.
Phillips (1954, 1956, 1958, 1962) on trade cycle and cyclical growth models. The error-
correction models (ECM’s) used by Phillips were formulated in continuous time and
raised problems of econometric estimation that were dealt with only slowly over the next
two decades. Bergstrom (1988) provides an historical review of this line of research. A
more direct stimulus came from the work of Sargan (1964) on discrete time ECM’s and
their application to aggregate wage and price series in the U.K. Sargan argued for the
presence of levels in regressions that were specified in differences and that were designed
to model adjustment processes. During the 1970’s these ideas became key elements in
the methodology advocated by David Hendry. They served to distinguish this
methodology from the Box-Jenkins techniques that were of growing popularity in statistics
and from the astructural modelling methods that were beginning to emerge in North
America. The fact that the levels of nonstationary economic variables like wages and
prices appear in regressions that are formulated in differences requires that certain linear
combinations of the levels must be stationary if the regression is to have stationary
residuals. Otherwise the regression would have nonstationary residuals and would be
spurious in the sense of Granger and Newbold (1974). For this reason ECM’s were
recognized at an early stage to carry some interesting statistical implications for nonstation-
ary series—see the discussion by Hendry (1976) for example. Certainly the empirical
success of these models, especially the consumption equation of Davidson et al. (1978),
motivated analytic research and was in large part responsible for the birth of the concept
of cointegration in Granger (1981).

In the last few years cointegration has become an enormously active research area
with a wide range of participants. But, in spite of this enormous flurry of intellectual
activity, there is still no agreement about the prescriptions for applied econometric
research. This is unfortunate because, as we shall argue in the present paper, analytical
research provides some very clear pointers for empirical work. Moreover, in light of the
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empirical success of ECM modelling, empirical work itself provides some important
guidelines. Finally, since ECM modelling is the immediate precedent of cointegration,
it is enlightening to study the statistical properties of the single-equation empirical ECM’s
that gave rise to the concept of cointegration in the first place. In this sense the present
article extends the analysis that was begun in Phillips (1988a).

Let us start by looking at the presently available prescriptions. The principal of these
are:

(i) Unrestricted VAR and Bayesian VAR methods, such as those advocated by
Sims (1980) and Doan, Litterman and Sims (1984).

(ii) Two-step methods, such as those advocated by Engle and Granger (1987), in
which long-run equilibrium relationships are first estimated and subsequently
used in the fitting of short-run dynamics. Engle and Yoo (1990) have recently
suggested a three-step method in which the estimates of the long-run parameters
are revised in the third stage.

(iii) Single-equation ECM (SEECM) methods advocated by Hendry (1987) which
seek a tentatively adequate data-characterization that encompasses rival models,
displays parameter constancy, has martingale difference errors with respect to
a selected information set and parsimoniously orthonormalizes the regressors.

(iv) Systems maximum-likelihood methods proposed independently by Johansen
(1988) for VAR specifications and by Phillips (1991) in a general time-series
setting.

(v) Nonparametric spectral-regression methods proposed by Phillips (19885) which
permit the direct estimation of long-run equilibrium relationships in the
frequency domain.

(vi) Single-equation semiparametric least squares and instrumental-variables
methods proposed by Phillips and Hansen (1990). These, like (v), permit direct
estimation of the long-run relationship but involve a two-step method whereby
the data is filtered in the first step using a nonparametric correction.

With all of these differing prescriptions it is difficult for the applied researcher to
decide what is appropriate in practice. The diversity of the choices obscures the fact that
statistical theory is quite clear about optimal inference procedures. As discussed in
Phillips (1991) this depends on whether unit roots are incorporated in the specification,
as they are in systems ECM methods (iv), or whether they are implicitly estimated, as
they are in unrestricted VAR formulations (i). Of course, choices also depend on issues
of modelling methodology. This is particularly so in the case of (iii) where judgmental
exercises in model selection are an integral part of the procedure.

The main purpose of the present article is to discuss the issues that arise in the
context of the choices described above. We shall review what statistical theory has to
say about the properties of the various approaches and look into the question of whether
it has any guidance to offer empirical researchers. Since much of the empirical work in
the field has involved SEECM methods like (iii), this will form our central focus of
attention.

The plan of the paper is as follows. Section 2 describes various time-series representa-
tions of cointegrated systems. These include structural formulations, the trianguiar system
ECM representation, the autoregressive ECM representation, unrestricted VAR repre-
sentations, a latent variable representation and SEECM specifications. Section 3 provides
the asymptotic theory for a wide menu of estimator choices based on single-equation and
systems approaches and utilizing different prior information about the presence of unit




PHILLIPS & LORETAN LONG-RUN ECONOMIC EQUILIBRIA 409

roots and the nature of short-run dynamic adjustment. SEECM’s are studied in detail
and the use of lagged long-run equilibrium relations in dynamic specification is found
to have certain asymptotic advantages. Section 4 reports the results of a simulation study
that seeks to evaluate the sampling properties of single equation approaches, again with
an emphasis on the ECM methodology. Conclusions are given in Section 5.

For convenience of the reader we list the notation and acronyms used in the paper
in Table 1. -

TABLE 1

List of symbols and acronyms

OLS ordinary least squares FM fully modified OLS
GLS generalized least squares iid independently and identically
2SLS two stage least squares distributed
3SLS three stage least squares wd weakly dependent
NLS5 nonlinear least squares = converges weakly to
MLE maximum likelihood lrvar long-run variance
estimator mg martingale
LIML limited information mds martingale difference sequence
maximum likelihood BM (©2) Brownian motion with covariance
FIML full information maximum matrix
likelihood a.s. almost surely
ECM error correction model L lag operator, L%y, = y,_,
SEECM single equation error A first difference operator
correction model Ay,=(1-L)y,=y,~y,4
SEM simultaneous equations I(k) integrated process of order k.
model Suu(A) spectral density matrix of u,
VAR vector autoregression

2. COINTEGRATED SYSTEMS AND TIME-SERIES REPRESENTATIONS

2.1. A typical cointegrated system
Let y, be an n-vector I(1) process and u, be an n-vector stationary time series. We
partition these vectors as follows

o ] I bl R W

and assume that the generating mechanism for y, is the cointegrated system
Yie =Byt uy (2)
Ay, = uy,. (3)

This system is in structural equation format and (2) may be regarded as a stochastic
version of the partial equilibrium relationship y,, = By, with u,, representing stationary
deviations from equilibrium. Equation (3) is a reduced form which specifies y,, as a
general integrated process, the outcome of superimposed shocks u,, (s = ¢) that influence
the process period after period. The equation system (2) and (3) is typical of more general
models, such as those studied in Phillips (1991), where the cointegrating relationship is
multidimensional and where deterministic trends may coexist with the stochastic trend
in (3). We shall work with the single-equation relationship (2) because our attention will
later concentrate on SEECM methods.

In the general case u, is wd (0, £,.(A}) and absorbs all stationary short-run dynamic
adjustments towards the partial equilibrium. An important subcase is the prototypical
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system where u, =mds (0, Z) or even iid (0, 2). In both cases we shall assume that Z>0.
This is a useful simplification. Indeed, the prototypical case may be treated as a pseudo-
model for the general case of stationary errors. This is possible because we can construct
a martingale difference sequence u, =mds (0, X), with X =2sf,,(0), that approximates
the actual time series u, =wd (0, f,.(A)) in a well-defined sense—see Hall and Heyde
(1980, Chapter V). Subsequently it will be useful to work with X in partitioned format as

oy Oy
(o 2]
oy pn
with the partition conformable with (1).
The prototypical system is an important aid to intvition. Note that if we replace (3)

by
Vo =Ays_1tuy a3y

and require the coefficient matrix A to have stable roots, then the new system (2) and
(3)' is a conventional SEM. More than that, it is a triangular system because (3)' is a
reduced form. This means that when X is block diagonal (i.e. o,; =0) the Gaussian MLE
of B in (2) and (3) is derived by OLS on (2). When X is not block-diagonal and is
unrestricted, then GLS and feasible GLS procedures on (2) and (3)' are asymptotically
equivalent to the Gaussian MLE (see Lahiri and Schmidt (1978)).

These implications of a triangular structure continue to apply in the nonstationary
cointegrated system (2) and (3). Thus, when ¥, =iid N(0, X) and X is block-diagonal the
OLS estimate of 8 in (2} is the MLE. When X is not block-diagonal, the MLE is obtained
by using OLS on the augmented regression equation

Vi =Byt v Ay tu,,. 4)

Here u; 5, = u;, — 04,251y, and y =23 0;.

Observe that (4) is a regression in levels that is augmented by the differences Ay,,.
In this respect (4) is related to typical ECM formulations, which are specified in differences
but include levels amongst the regressors. Indeed, subtracting y,,_; from (4) we obtain
the equation

Ay =8(y1-1—B'Yar—1) H (¥ +B) Ayt uy 5, (4)
where 8 = —1. Equation (4)" is now explicitly in ECM format.

2.2. The triangular system ECM representation
Taking differences of (2) we obtain a direct 7(1) representation for the system viz.
Ay, =B'uy, + Auy, (5)
Ay, =u,, (6)
in which the errors are stationary. This can be written as
Ay =—uy, 1+ (1, By,
Ayz = uy,
or in systems format as

Ay,=—ea'y,_;+uv, (7)
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e=[(1)], a'=(1,B"), v,=[(1) [;I]u,-

Equation (7) is a triangular system ECM representation. The model explains the
differences Ay, in terms of the lagged levels y,_, and stationary errors v, that are a simple
transform of the original errors u, (2) and (3).

Triangular system representations like (7) are discussed in detail in Phillips (1991).
They have several natural advantages which are worth emphasizing here:

where

1. The model (7) is linear in the unknown parameter 8 of the long-run equilibrium
relationship;

2. The coeflicient vector e is specified and is not estimated. This means that iden-
tification is achieved from the specificatiion of e rather than the specification of
martingale difference errors on an equation with explicit dynamics. Further, since
v, is stationary, the usual interpretation of a coefficient like the first component
of e in (7) as an adjustment coefficient loses its normal meaning because it is no
longer natural to think of the equation as explaining the extent of the adjustment
towards equilibrium each period. In place of this interpretation it is more natural
to think of the equation as explaining the stationary deviations about the equili-
brium level that persist period upon period. The same interpretation was given
to (2), and (7) is simply an algebraic reformulation of that original system.

3. All of the transient dynamics are absorbed into the residual process v, in (7).
Note that if u, in (2) and (3) is a finite-order ARMA process then so is v,.

4. Model (7) retains the triangular structure of (2) and (3). This simplifies issues of
inference. And, as discussed above, many ideas from structural SEM theory
continue to apply, such as the reduction of the Gaussian MLE to OLS on a
suitably augmented single equation.

2.3. The autoregressive ECM representation

This works from an explicit version of the I(1) representation (5) and (6) which we
write in systems form as

A}’r=Wz 5 W, = C(L)Ela C(L)=Zjo=0 C]Lja C0=I' (8)
Here w, is a linear process and g, is mds (0, ) with 2> 0. Under the summability condition
U iNC <o (9)

and the assumption that y, is cointegrated with cointegratinf; dimension one we may
extract an autoregressive form of the ECM

J(L) Ay, =va'y,_1+e,. (10)

A recent demonstration of this representation and the converse is given by Solo (1989).
Systems estimation of (10) is recommended and discussed by Johansen (1988).

In (10) J(L) is usually an infinite autoregressive lag polynomial although in practice
finite-order approximations are employed. We observe:

1. The cointegrating coefficient « and subvector 8 appear nonlinearly in (10).
2. The coefficient vector vy is unknown and must be estimated. Identification in (10)
is achieved by the reduction of the regression error to the mds g,. This requires
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that an autoregressive operator J(L) of infinite order be accommodated. In
practice consistent estimation methods necessitate the use of consistent order
selection routines, such as those that are incorporated in the Hannan and Kavalieris
(1984) recursions. For vector systems these involve some nontrivial complica-
tions—see Hannan and Deistler (1988, pp. 246, 292ff) for details and discussion.
Note that these problems are bypassed in Johansen’s (1988) approach by the
assumption that the autoregression in (10) is of known finite order and that this
model is the data-generating mechanism.

3. The representation (10) is effectively a nonlinear in parameters reduced form.
Since y is unknown the model loses the simplicity of the triangular structure of
(7) and its linear in parameters feature. This is the price that is paid for the
explicit autoregressive representation.

4. Unlike (7), all short-run dynamics are now embodied in J(L). Full system
estimation requires that these coefficients be estimated simultaneously with y and
a. As remarked above, since the order of J(L) is unknown in practice, this will
necessitate order-selection methods and the use of nonlinear methods.

5. An advantage of (10) is that the model may be used to test the rank of the
cointegration space, i.e. the row rank of a’. This means that the Johansen (1988)
methodology permits estimation of the number of cointegrating vectors as well
as a itself.

2.4. The latent variable representation

Working from (8) we replace w, by a martingale difference sequence approximation. In
the present case this may be achieved by the so-called Beveridge- Nelson decomposition
(see Beveridge and Nelson (1981) and Solo (1989)):

C(L)=C()+(L-DE(L)
=3¢, &=3%,C.
Under (9), the series é(L) is square summable, i.e. Z:’ I é’, |?< 0, and then we can write
w,=C(L)eg,
=C(1)g,+ Wy — W, (12)

(11)

where W, = é(L)s, is covariance stationary. Now, writing W, = C(1)g, = mds (0, () where
Q= C(1)XC(1), we have the decomposition

W, = “’l+wl——1_wl
where W, is an mds approximation to w,. This yields the mg approximation to y, from
}’t=Yz+ﬁ’o‘Vf’u Yr=Z; ‘V]

The mg Y, may be considered as a latent variable for y,, differing from it by the stationary
process W,—w,. This formalization was mentioned recently by Deistler and Anderson
(1989).

Taking the argument further, we next observe that y, is cointegrated with cointegrating
vector a or a'y, =I(0)iff a’'W, =0 as., iff @'Y, =0as, iff a'Q=0, iff a’'C(1)=0. This
leads us directly to the latent variable representation

a'Y,=0 (13)
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where Y, =mg ((1), i.e. an mg whose differences have covariance matrix (). Suppose a
is normalized so that a’a =1 and let H, be its orthogonal complement. Then we have
Y, = H,Y¢ a.s. where Y; =mg (H}(H,) is the “common trend” of Y,. The mg approxima-
tion to y, is then

y:=H2Yf+VT’0"VT’:

which is a common trends representation of y,. Stock and Watson (1988) provide a
detailed study of this type of representation.

From the practical standpoint it would appear that the representation (13) has few
uses. However, under Gaussian assumptions and zero initial conditions we find that
Y, = N(0, tQ}). Thus (13) makes it apparent that asymptotically efficient estimation of
the cointegrating vector a will rely on consistent estimation of {)-the long-run covariance
matrix of w,. From this standpoint (13) is useful because it points to the fact that the
entire matrix () must be estimated for efficient estimation of a.

The last observation is suggestive. It indicates that, in general, systems estimation
is required for the efficient estimation of a. This was the conclusion reached earlier in
Phillips (1991). However, as the discussion of the prototypical model in section 2.2 and
the augmented regression equation (4) indicates, there are cases where single-equation
least squares is asymptotically efficient. Further examples are given in the methodological
discussion in Phillips (1988a). One of our objectives here is to extend that treatment to
the general case of stationary errors. In particular, we shall develop a modification to
the SEECM methodology which ensures that least squares is asymptotically equivalent
to full systems Gaussian estimation of a. :

2.5. Single-equation ECM (SEECM) methodology

The vector autoregressive ECM representation given in (10} is quite different from the
single-equation empirical specifications that follow in the Davidson et al. (1978) tradition
for the consumption function. The single-equation approach to ECM modelling is
explained in detail in two papers by Hendry and Richard (1982, 1983) and in recent years
has become known as the Hendry methodology for empirical research. It is also supported
by a suite of computer software written by Hendry (1989) and designed to assist in its
implementation. The approach is to seek out a tentatively adequate single-equation
specification that meets the following criteria, which we refer to as the Hendry-Richard
prescriptions: (i) data coherency; (ii) valid conditioning; (iii) encompassing; (iv) theory
compatibility; (v) parsimonious, orthogonal decision variables; (vi) parameter constancy.
The empirical determination of a model that satisfies these prescriptions inevitably involves
judgmental elements. These are illustrated in the Hendry-Richard papers, in Hendry
(1989) and in many of the references cited therein. We shall not go into more detail
about the general methogology here.

For a model such as (2) and (3) above, the starting point in the single-equation
approach to modelling y,, is a general unrestricted regression of the form:

Vie=8'Vo+ x4 W, (14)

Here x, is a p-vector of autoregressive and distributed lag components. Typically it will
contain lagged values of Ay,, and present and lagged values of Ay,,. Temporal transforma-
tions and pre-testing may reduce the number of elements in this vector and replace some
differences by higher-order differences to achieve a parsimonious partial orthogonalization
of the regressors. In the Hendry approach what appears to be important is that the chosen
regressors adequately represent the information set embodied in the past history of Ay,
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and the present and past history of Ay,,. We could write (14) explicitly as
Y= @Y+ L fiubyi it Tho fubya it W, (15)

allowing for the fact that in practice some of these regressors may be eliminated and
others may be higher differences. An alternative specification is to use an SEECM format
that takes the form

Ay, =fo()’n—1 — @'y )+ Y0, ﬁkAylr—k+Zi=of~£kAy2t—k+ W, (16)

Of course, (16) involves a change in the regressand as well as a change in the regressors,
so it is not suggested that (15) and (16) are equivalent. However, both types of specification
are employed in empirical searches conducted under the Hendry methodology, a good
example being the searches described in Mizon and Hendry (1980) for a quarterly
consumption function for Canadian consumer durable expenditures. Moreover, to the
extent that the transient dynamics are properly modelled, we might expect estimates of
the long run parameters (viz. @ and d) derived from (15) and (16) to be asymptotically
equivalent.

To this end and in order that the past history be fully captured in the information
set, we would expect to have to allow p-0 in both (15) and (16) as the sample size
T -0, The intended equation on which the empirical regression (15) is based would
then have the form

Yu= a'}’z: +ZZO=1f1kAy1t—k +Z<:=ofékA.)’Zt‘k + 7. (17)

The error on (17), 7,, is a martingale difference sequence with respect to the filtration
F1=0{BY1—1, BY1—2y - - AV, Ayay, . . ), 6. E(| %,_,)=0. In fact, from (2) we
have a=8 and
1;,=u,,—E(u1,IFf,_1). (18)
The intended equation (17) would seem to satisfy the Hendry-Richard prescriptions.
However, as we shall explore in Section 3.4 below, regression specifications such as (15)
encounter difficulties in general because the truncation error is non-negligible due to
shock persistence. Moreover, as pointed out earlier in Phillips (1988a) there is a general
failure of valid conditioning (No. (ii) in the prescriptions) in (15) and (17), due to the
presence of feedback from u,, to u,,. We shall systematically explore the effects of this
failure below and suggest an antidote for the general case.

2.6. The unrestricted VAR representation
We can write (2) and (3) in the form
Y1:=B'ya1+(1, B,
Yar = Ay + Uy, A=1T

or

0 14
y:=Gy,_+u, G=[0 i]

Then, if v, has the autoregressive form K(L)v, = ¢, with g, =iid (0, =,) and with the lag
operator K (L) possible of infinite order we deduce the representation

B(L)y, =&,  B(L)=K(L)(1-GL). (19)
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The autoregressive polynomial B(L) has m =n—1 unit roots, which are implicitly esti-
mated in an unrestricted regression. As discussed in Phillips (1991), this has nontrivial
effects on the asymptotic theory of inference concerning 8. Park and Phillips (1989) and
Sims, Stock and Watson (1990) provide a detailed study of the asymptotics in this case.

2.7. Implications

With so many ways of representing and working with cointegrated systems it is hardly
surprising that there is no consensus about how best to proceed in empirical research.

We can classify the many possibilities as follows:

[ restricted by
imposition of
unit roots

Time-
(i) domain
methods

| unrestricted
restricted

Frequency
(ii) domain
methods

Frequency-domain methods were suggested in Phillips (1988b). Since these methods
were originally designed for regression models with strictly exogenous regressors, they
raise questions concerning the treatment of endogeneity of the regressors (e.g. in (2)) and
issues about the choice of spectral bands to be used in the regression. More will be said

|

unrestricted l

(single-

equation
methods

systems

| methods

[ single

equation

| systems
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[OLS, limited information

|structural estimation

[two step cointegrated
systems estimators

full systems maximum
| likelihood

[autoregressive distributed
lag estimation

|OLS, 2SLS, LIML

[FIML, 3SLS or
asymptotically equivalent
structural methods

(VAR’s, vector ARMA'’s

single equation

systems estimation

single equation

systems estimation

about the alternative provided by these methods in Section 3.2. below.
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Asymptotic theory, at least, provides some guidance concerning optimal choices in
(i) and (ii). These are shown in italic in the various branches of the tree above and they
involve the use of systems methods on the model in restricted form so that all unit roots
are explicitly included. On the face of it, this optimal decision path would seem to
exclude single-equation methods. However, it is known that semiparametric corrections,
as in Phillips and Hansen (1990} can produce optimal single-equation techniques. As
we shall see below in Section 3.4, the same is true of the Hendry approach with some
appropriate modifications to the implementation procedure described above.

3. ASYMPTOTIC THEORY

Throughout this section we assume that (2) is correctly specified in that there is a
cointegrated relationship to estimate. If this were not so then u, would be I(1) and (2)
would be a spurious regression. The asymptotic theory for that case is given in Phillips
(1986). If there is more than one cointegrating relationship then it follows from Theorem
1 of Phillips (1991) that asympiotically efficient estimates of a single cointegrating
relationship may be obtained even if the other cointegrating relations are ignored provided
there are no across-relationship restrictions on the parameters of the long-run equilibria.
The latter case does require joint estimation and is explored in the cited paper.

3.1. The prototypical case

This is the simple cointegrated system (2) and (3) with u,=iid (0,X). We shall select
typical entries in the tree of time-domain estimation possibilities shown in Section 2.7(i).
It will be helpful in presenting the outcomes to set S(r)= BM(X) and to partition S
conformably with u, in (1) as $'=(S;, S5). The asymptotic results given below for this
prototypical case are easily derived from those given in Phillips (1988b, 1991) and Phillips

and Hansen (1990).
(i) OLS: Let B* be the single equation OLS estimator of 8 in (1). Then

1 —1 1
T(B*—B)= (J SZSQ) (J S;dSl+0'21) . (20)
0 0
Using Lemma 3.1 of Phillips (1989) we write
Si=0525 5+85.2

where S, ,(r)= BM(0,.,) and oy, ;=0,,— 05,25, 05, is the conditional variance of u,,
given u,,. Then the limit variate given in (20) may be written

1 -1 1 1 —1 1 1 -1
(‘[ sté) (‘[ SzdSm) +(J SZSQ) (‘[ SzdSQ) 22—210'21+(‘[ SZSQ) oa- (21)
0 0 ] 0 ]

The first term of (21) is a Gaussian mixture of the form

1 -1
G>0 0
The second term is a matrix unit root distribution, arising from the m unit roots in y,,.
The third term is a bias term arising from the contemporaneous correlation of u,, and
u,, and thereby the endogeneity of the regressor y,,.
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Observe that in general (i.e. when o, # 0) the second and third terms of (21) induce
asymptotic bias, asymmetry and nuisance parameters (i.e. 2,,, 0} into the limit distribu-
tion. These effects make the OLS estimator B* a poor candidate for inference, even
though it is O(1/T) consistent.

When o, =0, the second and third terms of (21) are null and the limit theory comes
from the first term alone and is therefore the Gaussian mixture (22). This component is,
in fact, the same as the limit theory for the Gaussian MLE of 8. Indeed 8* is the Gaussian
MLE in this case because the system is completely triangular (i.e. has a diagonal error
covariance matrix as well as a triangular structural matrix). Note also that when o,; =0
the regressor y,, in (2) is strictly exogeneous.

(ii) 2SLS, LIML and FIML: Using y,,_, as the vector of mstruments from the
reduced form (3) we obtain the 2SLS estimator B in (2). The asymptotics for B are given

by:
T(B-B) = (J szsa)ﬂ (J szdsl)
= (Jl SZSQ)_ (Jl SzdSI.z) +(J1 stg)_ (Jl szds;) 2{210-21. (23)

Compared with (21) this limit variate eliminates one source of asymptotic bias—the third
term of (21). But it still involves a matrix unit root distribution. This is because the unit
roots in (3) are implicitly estimated in the first stage of the 2SLS regression. Also, the
nuisance parameters (2,,, 0, ) still figure in the limit except when o,; =0. Thus, although
single-equation structural methods like 2SLS seem to provide some improvement over
single-equation least squares, they are still poor candidates for inference.

Observe that since (2) and (3) are triangular and (3) is in reduced form, FIML on
the system of equations is the same as LIML on (2). But LIML and 2SLS are asymptotically
equivalent (as in the stationary regressor case). Thus, (23) gives the asymptotics for the
FIML estimator of B as well as 2SLS.

(iii) Full system MLE (restricted by unit roots): In this case the Gaussian likelihood
is the product of the conditional and marginal densities of u;, and u,,:

T17 pdf (.| uz,) pdf (uy,).
The conditional log-likelihood is
—(T/2) In (04, 2) = (1/204, 2) 21 ¥4 = B'Ya = 0525 s I, (24)
The marginal log-likelihood is
~(T/2) In|Sx| = (1/2) T 43,25 s,

and does not involve 8. Thus the full system MLE of B is obtained by maximizing (24).
Equivalently, this is just OLS on the augmented linear model (4), given earlier. Let B'
be the estimate of B obtained in this way. Then, in an obvious partitioned regression
notation,

B =(Y5Qs Yz)_l(YQQA}H) (25)
and the following asymptotics apply:

T(B'-B) = (J st§)~ (L S,ds, 2) . (26)
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This is equivalent to the first term of (21) and thus the limit distribution is the Gaussian
mixture given in (22). Full system MLE with prior information about the unit roots in
(3) is therefore consistent and asymptotically median unbiased. As shown in Theorem
3.2 of Phillips (1989) the limit distribution (22) involves only scale parameters. It can
be expressed in the equivalent form

J N(0, goy, 222_21)dP(g) (27)

where g =j'[f, W,W3]™'j, W,= BM(I,,) and j is any unit vector.

A major effect of (27) is that the scale nuisance parameters are readily eliminated
by the use of conventional test statistics. In particular, asymptotic chi-squared criteria
are obtained from the usual construction of Wald, Lagrange multiplier and likelihood-ratio
tests. Thus, full system maximum likelihood in the presence of prior information about
unit roots offers major advantages for statistical inference.

3.2. Models with weakly-dependent errors

(i) MLE: As argued in Phillips (1991), models with dependent errors offer no new
complications as far as the asymptotic theory is concerned. The prototypical model
considered above is then simply an approximation to the true model in which the
weakly-dependent error is replaced by its mds approximation. The only change in the
theory given in the last section for full system maximum likelihood (restricted by the use
of prior information on the number of unit roots) is that the covariance matrix % is now
the long-run covariance matrix 2#f,,(0) where f,,(A) is the spectral density matrix of the
true error sequence u,. The above remarks apply equally well to the case of finite-order
autoregressive ECM representations such as (10), with the order of the matrix polynomial
J(L) finite. Thus, the asymptotic theory of estimation in Johansen (1988) is included,
although we note again that Johansen also deals with the asymptotics of testing the rank
of the cointegration space, which we do not treat here.

The remarks in the preceding paragraph do not apply to unrestricted VAR’s in levels,
where unit roots are not imposed but are implicitly estimated by the unrestricted regression.
In such cases the limit distribution theory for the estimated vector B is of the same form
as (23) and carries the matrix unit root component [{; S,55]7'(J, S,dS5). By contrast,
ECM formulations have the natural advantage that they work to model stationary
deviations about the long-run equilibria and eliminate unit roots by construction.

(ii) Spectral Regression: The time-series case may be handled most simply by employ-
ing speciral regression methods. These are the subject of Phillips (1988¢) to which the
reader is referred. We shall mention only the main ideas and results of that paper here
but we shall suggest a new single-step method of estimation. Model (2) and (3) is
transformed to the frequency domain by taking discrete Fourier transforms (dft’s) leading
to

we(A) = eB'wy(A)+ w,(A), e'=(1,0) (28)
where, for example, w,(A)=Q2aT) VT y .e™ is the dft of y,, = (y,,, Ay},)'. Efficient
and band spectral estimators of B are obtained by applying weighted least squares to
(28), using estimates of the spectra of u, as the weights. Because (28) is linear in B8 the
estimators have the simple form:

B” =13} efui(@,)ef2(@,) T[T} fos(@,)fuu(w,)e]
BE = 1n(0) " fox(0)f 2 (0)e/ €' (0) e
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Here w,=mj/M (j=—M+1,..., M), f,,,,( -) denotes any consistent estimate of the cross
spectrum of y,, and y, and M is a bandwidth parameter satisfying M > and M =
o(T"?).

The asymptotics for * and B7 are identical with that of the full system MLE given
in (26). They have the advantage of allowing for general stationary errors and they avoid
methodological issues of specifying finite parameter error schemes and model selection
issues with respect to short-run dynamics. Both estimates 8* and B7 arise from linear
estimating equations and amount to the use of feasible GLS in the frequency domain on
(28) over full and restricted frequency bands respectively.

One disadvantage of B” and B is that they both rely on an initial estimate of the
residual spectrum f,,(-). It is possible to avoid this two-step procedure by using an
augmented regression in the frequency domain that is analogous to (4) in the time domain.
Indeed, extending (4) to the frequency domain we have

wi(A)=B'wy(A)+ 0"2121721 WAyz(/\ )+ wy5(A)
with w;.2(A) = w, () — 05,233 w, (1) and ¥ =2f,,(0). Now if A >0 as T—>00 we have
W, (/\)]
= ! N 1/2
wid) [w,,zm =N, (1/27)%)
so that w; (A ) is asymptotically independent of w, (1) = Wa,,(A). The system of equations
(28) is now
wi(A) = B'wy(A) + 05,25 wy,, (X)) + w5 (A) (29)
wAyz(’\) = wuz(’\ ) (30)
When A >0 as T-> 00 we have

W12(A) L Ti12 0
[wuz(A)]ﬁN(o’zw[ 0 zzz])'

Thus, the system (29) and (30) has block-independent errors asymptotically and at the
same time retains the triangular structure of (2) and (3). It is therefore apparent that
OLS applied to (29) using frequencies in the vicinity of the origin is asymptotically
equivalent to the systems estimators 87 and B”.

Hence the arguments that lead to the use of OLS in the time domain on the augmented
regression (4) apply equally well to the frequency domain augmented regression (29).

3.3. Fully modified OLS

This is an optimal single-equation method based on the use of OLS on (2) with semipara-
metric corrections for serial correlation and endogeneity. The method is developed in
Phillips and Hansen (1990}, to which the reader is referred for a detailed discussion. The
heuristic idea in the procedure is to modify the OLS estimator 8* = (Y;Y,)"' Y}y, so
that the limit distribution given in (21) involves only the leading term. The third term
may be eliminated by employing a serial correlation correction to remove o,;. Recall
that in the time-series case

T2 =Zf=o E (uyou).

If &5, is a consistent estimator of o,, then we have a modified OLS estimator

B**=(Y;Y;)™Y( Yiy:— T6,)
whose asymptotics are

1 -1 1
T(ﬁ**-ﬁ)=>(f sté) (J Szdsl)a (31)
0 0
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thereby eliminating the third term of (21). The further modification for the endogeneity
of y,, in (2) is required to remove the correlation between the Brownian motions S, and
S, in (31). This is achieved by constructing

+ _ ar $-1
Yie=Y1— G235 Ay,,

A A 1
8+ N A [ 3516 ]
_2221 On
where A is a consistent estimate of A=Zf=0 E (uyouj) and 3 is consistent for . These
estimates can be constructed from the residuals of a preliminary OLS regression on (2).

The fully modified OLS estimator employs both the serial correlation and endogeneity
corrections and is given by

B =(Y3Y,) Yyt —T8"). (32)

With these corrections the new estimator 8 has the same asymptotic behaviour as the
full systems MLE. Observe that it is a two-step estimator, however, and relies on the
preliminary construction of y7, and 8*.

Fully modified test statistics that are based on 8 may be constructed in the usual
way. Thus, for i-ratios we define

t=(B -B)/s’
where (s7) =611 ,[(Y3Y2)'],.. Here &,,.,= Gy, — 65,25 65, and is based on components

of X which is again an estimate of the long-run covariance matrix X =2xf,,(0). With
this construction s, is a fully modified standard error and we have

t;=>N(0,1)
so that conventional asymptotic #-tests apply. General tests of analytic restrictions such
as
H,: h(8)=0 with H(B)=4ah/dB’ of full rank ¢
may also be conducted in the usual manner. Thus, the Wald test has the form
Wr= h(3+)'[H+ VTH+']_lh(ﬁ+)
with V=&, (Y3Y,) ' and H = H(B"). Since
Wr = x;
under H,, conventional chi-squared critical values apply.
Simulations reported in Hansen and Phillips (1990) and Phillips and Hansen (1990)

indicate that these tests perform adequately in samples of size T = 50, at least for small
scale models with only two or three variables in the long-run relationship.

3.4. Single-equation ECM’s (SEECM’s)

Suppose we are interested in building a SEECM to model the long-run cointegrating
relationship (2) and the stationary deviations u,, about it. As we have seen in Section
2.5, the Hendry methodology works with an equation of the form (15) or (16), allowing
for the fact that some of the regressors may be eliminated due to insignificant coeflicients
and others may be replaced by higher-order differences for reasons of explanatory power,
parsimony or economic interpretability. As argued in that section, these equations are
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empirical versions of (17), whose error u, is an mds with respect to the filtration

9;—1 = U{Aylt—l ’ Aylt—Za cey Atha Ay2t—-1a .. '}'
Suppose the generating mechanism for u, in (2) and (3) is the linear process

u=Y"_oAs_; Ac=1 X5 %A | <o (33)
where (g,) =iid N(0, X). Assume also that (33) can be inverted and written in autoregres-
sive form as

B(Lyu, =g, B(L)=Y_,BL, By=1 (34)
This will be useful in what follows. We shall now try to build a single-equation model
from this explicit representation for the error.

Observe that if 7, is orthogonal to Ay,, and the past history (Ay;—_,, Ay,—,,...) then

7. is orthogonal to ,, and the past history (&,—,, &, . . .), Where we partition ¢, conform-
ably with u,. Under Gaussian assumptions we deduce that

M= €1~ 0'5122_2152, =iid N(0, oy, ,).

Thus, 7, is just £,, centred about its conditional mean given &,,. The conditional
log-likelihood of (,,)T given (&,,)7 is:

—(T/2)Inoyy,—(1/204:.2) Z;r (61— 0022 65,)%
Maximizing this is equivalent to minimizing the sum of squares

X1 {(bu(L), bio(L)) U — 0255 (by1(L), Bun(L))u}

where B(L) in (34) is partitioned conformably with u,. This is the same as running least
squares on the equation

Yie=B'y2+d((L)(y1,— B'y2) + d(L) Ays + m, (35)
where
di(L)= by(L) 03,35, by(L)~1=3" d,L’, say
dy(L) = b1o(L) ~ 05,25 B,y(L)=X ", dy L', say.

Models, such as (35), that involve lagged equilibria as regressors have been employed in
SEECM empirical work, e.g. Hendry and von Ungern-Sternberg (1981).

In spite of their apparent similarity, equations (35) and (17) can have very different
implications in practice. Suppose, for example, that the polynomials d,(L) and d,(L) in
(35) are of finite degree with d,(L)=d,,L and d,(L) =d,,+d, L. Then (35) is simply

Yie=B'Ya+ dy((y10-1— B'V2e-1) T doyAyy, + Ay Ay + .. (36)

Estimation of B in (36) involves a simple nonlinear least-squares regression.
The corresponding equation (17) can be deduced from (36) by taking initial conditions
at ¢t =0 setting y,=0 and writing

Yie—1 =ZL—=1, Ay::—ka Yar—1 =Z;<_=l1 Ayz:—k- (37)
Then (17) is
V1o =B'Y2+ T iy firViik+ T o foxBPa—i+ 1, (38)
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where fix = d,((Vk), fro=dao, f1=dn—dnB, /i =0, k>1. As is apparent from these
formulae, the coefficients in (38) and by implication the coefficients in (17), in general,
do not decay as the lag increases. This is because the representation relies on the partial
sums (37) where the weight of individual innovations is unity. Thus, in order to model
short-run dynamics using the variables Ay, and Ay,,_, it is necessary, in general, to
include all lags because of shock persistence. Of course, this is quite impractical in
applications and cannot be justified in theory where truncation arguments are needed to
develop the asymptotics. These arguments strongly support the use of nonlinear formula-
tion (35) over linear models like (17).

It is illuminating to develop the asymptotics in the special case (36) and examine
the practical impact of truncation in the formulation that is based on (38). For specificity
assume that terms in (38) are truncated at a single lag. The fitted regression is

Yu= 3'Y2t +f11AY1:—1 +f20AY2t +f21AYZr—1 + 7. (39)

This is equivalent to replacing the composite variable y;,_; — B'y,,—, in (36) by the regressor
Ay,,—,. Next suppose that the true generating mechanism for the error u, in (2) and (3)
is (34) with a diagonal autoregressive operator and a scalar error covariance matrix, i.e.

bu(L) 0

2
) Bzz(L)]’ s =d?l, (40)

o

Let the degrees of the block diagonal elements of B(L) all be unity. Then we have
d(L)=b(L)—-1=d,,L, By (LYy=I1-D,,L, say
and
d)(L)=b,(L)— 05,25 B,,(L) =0. (41)

Equation (36) is correctly specified but has surplus variables Ay,, and Ay,,_, since
dyy=d,,; =0 in view of (41). The error in (36) is simply 7, = ¢, =iid N(0, ¢*) and is
independent of u,, for all ¢ and s. Some standard asymptotic calculations now lead to
the following results.

(i) OLS on equation (2)

T(8*-B) = ( j ' szs;)_ ( j 1 szds,) - j N(0, 01,G)dP(G)
0 G>0

0

where G = (J, $,53)7" and

S _ _ | @1 0 _ 2 bu(l)_z 0
[sz]‘BM(m’ “‘[o nzz]“’[ 0 Bzz(l)—‘Baz(l)-‘]

(il) NLS on equation (36)

T(é—3)=>(J szs;)— (J szdsl)sj N(0, w,,G)dP(G).
G>0

0 0

(iii) OLS on equation (39)

1 -1 1 1
T(é—ﬁ)=>(J SzSé) “ SzdSi—U SzdS5L0+L1] Q"q}
0 0 ]
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where
Lo=[B8,L1I], Li=[AiB,A0,A]
Ao=Y 5o E(tsottsi) = Vap(I - Dy,)™"
A=Y, E(uyoub) = Dy Vyy+ Vao(I — Dyy) ™!

B'VuB+2(1—dy)vy, B'DyVy B'Vy
Q = szDﬁzﬁ sz D,, Vo,
Va8 VD3, Vi

q’=[(l_d11)vllaoa O]a UII=E(u%r)'

_ These results show that for this special autoregressive cointegrated system, B* and
B are asymptotically equivalent and the limit distribution given in (i) and (ii) is the same
as that of the full system MLE and spectral regression estimators described in Sections
3.1 and 3.2. Observe that OLS in (2) ignores the dynamic error structure of u,,. Yet it
is still asymptotically equivalent to the MLE which jointly estimates the error dynamics.
This outcome is indicative of a general result: viz. that efficient estimation of 8 can be
achieved without fully estimating the error dynamics of equation (2). Note that NLS on
equation (36) does fit the error dynamics on (2) by the inclusion of the autoregressive
term. Yet this does not improve the asymptotic efficiency of the estimator. On the other
hand, there is a clear advantage to the use of NLS on (36) in practice, even in this simple
case. This is that the error 7, is an mds and inference can proceed in the usual way with
asymptotic normal ¢-ratios and asymptotic chi-squared criteria constructed in the usual
fashion. This is not true of OLS on (2). The usual test statistics need to be modified in
the latter case to allow for the serial dependence in u,,. This is achieved by the use of
long-run variance estimates in the construction of the statistics rather than the usual error
sum of squares. The situation is identical to that described in the study of Phillips and
Park (1988) on the asymptotic equivalence of OLS and GLS in cointegrating regressions
with exogenous regressors.

The outcome for case (iii) shows the disadvantages of working with equation (39).
In fact, Ay,,_, is not an adequate proxy for the lagged cointegrating relationship y,,_,—
B'y,,-; that appears in (36). As a result, the limit distribution of [3 in (39) involves
second-order bias effects, is asymmetric and involves non-scale nuisance parameters.
These factors suggest that, at least on the basis of asymptotic theory, this type of
specification will be a poor choice for inference compared with models like (36). The
extent of these problems in finite samples will be explored in Section 4.

The structure imposed by (40) on the error dynamics is very special because it ensures
that u;, and u,, are incoherent time series, i.e. they are uncorrelated at all lags and the
spectral density matrix of u, is block diagonal, just like the matrices in (40). This ensures
that the regressor y,, in (2} is strongly exogenous and we have the following equivalence
of the wide sense conditional expectations

E(uy | (42) o) = E(ty, | ()" o, (u2)20). (42)

Of course u;, and u,, will generally be coherent time series and (42) will not apply.
Some simple examples are studied in Phillips (1988a). When this happens there is a
failure of valid conditioning in models like (2) and (35). The consequences are easy to
explore in the general case. We shall work with the general ECM specification (35) and
assume that the lag polynomials d,(L) and d,(L) are either of finite degree p or that they
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are of infinite degree and in the regression p is permitted to move to infinity as T >0
but at the controlled rate p = o(T"?), so that conventional asymptotic arguments, as in
Berk (1974) and Said and Dickey (1984), may be employed to accommodate the infinite-
dimensional case. The relevant first-order conditions for NLS are:

Z1T e ‘EJ’m - al(L)(ylt _é}’m) - liz(L)AYm}(}’zr - al(L)Ym) =0
which we may rewrite in the form
ST {d(L)~ di(L)](y1,— B'v2) + (B~ BY (1= di(L))ya
+[dy(L) — do( L) Ayz,+ m 1~ di(L) ]y = 0. (43)

Since ﬁl(L) —-d,(L), 32( L) —d,(L) = 0,(1) and since the sample moments {T°Y] y2iyied
are asymptotically collinear for all fixed k (the case of infinite operators d,(L) can be
dealt with by truncation arguments) we find that (43) gives rise to the asymptotics

T(E—ﬁ)=>{(1—d1(1))zj sté}_ {(1~d1(1))J SzdS,,} (44)
where
[S”] ~BM (@) (45)
S, '

We define {, =(mn,, u,) and then
1 -0 5122_21]
§r=[ g, = G(L)e,, say.
an(L)  Ax(L) (L)e., say
The limit covariance matrix in (45) is therefore
® = wf,(0) = G(1)2G(1)".
The limit distribution represented by (44) can alternatively be decomposed as
1 -1 1 1
(1 _dl(l))—_l (J sté) {J Szdsn 2+J Szdséq);zl‘le} . (46)
(4] [¢] 0

As is apparent from this formula bias, asymmetry and non-scale nuisance parameters are
a feature of the limit distribution in the general case. These features are due to the
non-diagonal nature of ® arising from the feedback from %, to u,,.

The antidote to the failure of (35) to produce an asymptotically efficient estimator
of B in the general case is the elimination of this feedback. This can be achieved by
including leads of Ay,, in the regression so that in the limit 7, is orthogonal to the entire
history (Ay,,)®»." The revised specification has the form

Vo= B'ya + di(L)(y1.— B'y2) + dy(L)Ay,, + ds(L_l)'AYm + 35y
where
ds(L_l) = Zle dskL_k

and d,(L) and d,(L) are as before in (35). The coefficients of d3(L ") are delivered from
the linear least-squares projection

E("Ir I(uZS)ﬁ-l) = Zf:l itk

1. The inclusion of leads of Ay,, as a means of achieving valid conditioning has also been advanced by
Saikkonen (1991) and Stock and Watson (1991). We became aware of the existence of these papers after our
own work was completed.
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The new error on (35)' is
Ve ="M — d3(L_l),u2t

and is an mds with respect to the filtration #,_; = o (U1, Us—2, - - - 5 (42:)Z0)-
Observe that (35)' has the alternate SEECM format
Ay, = d_l(L)(ylt —B'y2)+ d_Z(L)Ath + ds(L_I)'AYm + v, (35)"
where

d(L)=d,(L)-L, dyL)=d,(L)+L.

Estimates of B obtained from (35)" and (35)” using NLS will be asymptotically equivalent.
We shall therefore focus on (35)’ in the following discussion.

Following the same line of argument as that above based on first-order conditions
we deduce the following asymptotics for the NLS estimator of 8 in (35)":

1 -1 1
(G- B)=(1- (1) (f 5:5%) (f 5:d5,). 7)
[¢] [¢]
Now observe that
S|
[Sz] =BM(¥)
with covariance matrix
_ (1-d(1))w2 0 ]
v = [ 0 Mk (48)

To verify the form of the matrix given in (48) we note the following:

(i) ¥ is block-diagonal because if £, =(»,, u5,)’ then by virtue of the construction
of v, we have a block-diagonal autocovariance function y,(h) = E({,{:+n). Thus
the spectral density matrix

S =Qm) ' T ve(h) €™

is also block-diagonal. This includes the value of f;(A) at the origin and,
hence, V.

(ii) The error v, is that part of u,, that is orthogonal to (u,,)'% and (u,,)%,. The
long-run variance of (1—d,(1)) 'y, is the same as the long-run variance of
(1—d,(L))"'v, or v, where v, = d,(L)v, + v,. But this is equivalent to the long-run
variance of uy, given (u,,) =, which is w,;.,. Hence

lr var (1 - dl(l))_l V= Wyq1.2
so that
Irvar (v,) = (1-dy(1)) w0y, 2.
Next we observe that
(1 - dl(l))_lsv =8

and thus (47) may also be written as

T(ﬁ—ﬁ)=>(I szsg)n (J S,dS, ) .

Hence the NLS estimator of 8 from (35)’ is asymptotically equivalent to the full
system MLE and spectral regression estimator.
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To sum up, the results of this section are as follows:

1)

()

(3)

(4)

Asymptotically efficient estimation of long-run equilibrium relationships can be
achieved by a variety of methods. In particular, the following methods are fully
efficient and asymptotically median unbiased:
o full systems MLE (restricted by the imposition of unit roots)
® fully modified OLS (with semiparametric serial correlation and endogeneity
corrections)
® systems estimation in the frequency domain (restricted by the imposition of
unit roots).
o single-equation band spectral estimation (with the dft of Ay,, as an additional
regressor)
e nonlinear ECM’s (with lagged equilibrium relations and both lags and leads
of Ay,, as regressors)
Each of these methods achieves full efficiency in the limit by working to estimate
(and eliminate) the effects of long-run feedback between the errors on the long-run
equilibrium relationship (i.e. u;,) and the errors that drive the regressors (i.e.
u,.). The methods are asymptotically equivalent for the estimation of long-run
economic equilibria and lead to conventional chi-squared criteria for inferential
purposes with respect to these coefficients.
OLS, conventional SEM methods, and unrestricted VAR’s lead in general to
estimators that are asymptotically biased and whose distributions involve unit
root asymptotics and nontrivial nuisance parameters.
In SEECM modelling, valid conditioning on the regressors generally fails. With
feedback from wu; to u,, leads of Ay,, must be included in the SEECM
specifications to obtain errors that form an mds sequence with respect to the
past history of u; and the full history of u,. This is important for estimator
efficiency, unbiasedness and for inference.
In SEECM modelling there is an asymptotic advantage to the use of lagged
equilibrium relationships in the regression and thereby the use of nonlinear least
squares (NLS). This is because lags of Ay, are not in general an adequate proxy
for the past history of u,, because of the persistence in the effects of the
innovations that arises from the presence of unit roots in the system. Thus,
asymptotic theory favours the use of NLS on non-linear-in-parameters SEECM’s
rather than simply OLS on linear SEECM models formulated with lags (and
possibly leads) of differences in all variables in the system. In effect, the requisite
information set for valid conditioning is better modelled by employing lagged
equilibria than it is by the use of lagged differences in the dependent variable.
We note that such formulations have indeed been used in past empirical work—
see Hendry and von Ungern-Sternberg (1981).

4. SIMULATIONS

The simulations reported here are intended to address the small-sample performance of
the following procedures: OLS, full modified (“FM”) OLS, linear ECM or Hendry (“H”)
estimators based on (17) and (35), and our new estimator (“PL”’) based on the nonlinear
regression equations (35)’ that includes leads of Ay,,.' The data-generating process we
use is related to that of Banerjee et al. (1986) and is identical to the one in Phillips and
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Hansen (1990). The model is
Yie=a+ By, +uy, (49)
)’2z=)’2z—1+“2n t=19"" T (50)

[ult] = U, = g+ 0¢_,, g, =1id N(0, X).
Uy,

We set

a=0, B=2, T =50,

o [0-3 0-4] ’ z:[ 1 az,]
021 0-6 (2531 1
and allow 6,, and 03, to vary. Earlier work in Phillips and Hansen (1990) established
these as the critical parameters. We consider values of {0-8, 0-4, 0-0, —0-8} for 6., and
{~0-85, —0-5,0:5} for 0,,. Our simulation model is thus a special case of the general
cointegrated system (2) and (3) studied earlier. Here y,, is a scalar regressor and the
time-series dynamics are generated by an MA (1). The number of replications for all
simulations is 10,000.

To make the OLS #-statistic comparable to those of the other estimators, we use an
estimate of the long-run variance &,, rather than the standard variance estimator, thus
following the recommended procedure in Phillips and Park (1988) for models with
exogenous regressors. The nuisance parameter estimates that enter the fully-modified
procedure are obtained by using a triangular Bartlett window of lag length 5, the OLS
residuals #,, and u,, = Ay,, to calculate (),, and A,,. In order to distinguish the separate
effects of including additional lags and adding leads to Hendry-style regression equations
based on (15), we employ models with the following combinations of lags and leads of
the covariates Ay,, and Ay,,: (2,0), (4,0), (2,1) and (4,2). The same combinations of
lags and leads are used for estimators based on (35) and (35), these being designated as
PL. Thus, 10 estimators were calculated at each replication. (The simulations reported
in Phillips and Hansen (1990) studied the first three (OLS, FM(5), and H(2, 0)) of these

estimators.)
For example, the nonlinear regression equation for the PL(2, 1) model is:

Vie=d+ é)’m + ‘211()’1:—1 —d - éth—l)
+ dAlZ()’lt—Z —-a- é)’m—z) + azoA)’m
+321A)’2z—1 +322AY21—2+331A)’2r+1 +7, (51)

i.e. two lags and one lead in (35). Since (51) is bilinear in the parameters {a, 8} and
{dn, diz, dyo, 4>y, 53, d}, nonmlinear least-squares estimation requires an iterative
method to minimize the residual sum of squares. Rather than use a general nonlinear
optimization method, we found that substantial gains were possible from using an
algorithm that takes advantage of the bilinearity of the model. One such algorithm,
proposed by Stone (1954) in a related context, is iterated OLS. However a drawback of
this method is that its rate of convergence is usually very slow. A superior method
described in Deaton (1973) is the “ridge-walking algorithm”™, a variant of the Newton-
Raphson method that fully exploits the bilinear structure of the model by solving one
subset of the first-order conditions conditional on the other subset of parameters. It relies
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on explicit calculation of the gradients and the Hessian, both of which are obtained
analytically for our model. The ridge-walking algorithm converges more quickly and is
computationally simpler than the generic Newton-Raphson method in the bilinear case.
But the ridge-walking algorithm, like the Newton-Raphson, has the drawback that the
Hessian is not necessarily positive definite for a given set of parameters (especially when
they are not yet close to the optimum), leading to an unacceptable step. Deaton (1973)
therefore used a modified ridge-walking algorithm (pp. 240-242), essentially using the
quadratic hill-climbing method (Marquardt (1963)). We found that this modification was
unsuccessful in many of our replications so we chose a different solution. Ateach iteration,
we computed the Hessian: if it was positive-definite we computed the updated parameter
vector by the ridge-walking method; if not, we caiculated the new parameters by iterated
OLS, using the parameters obtained in the preceding step as starting values. (Initial
parameter values were also obtained by iterated OLS.) One advantage of this combined
method is that the objective function need not be computed at each step, since the method
is guaranteed to produce a valid step. Furthermore, it is very simple to implement. The
good choice of starting values combined with the efficiency of the ridge-walking method
led to rapid convergence to an optimum for most replications, usually in not more than
four steps. This is in constrast to all the other methods mentioned above, which encoun-
tered convergence difficulties for a small percentage (5-10%) of the replications.

Monte Carlo means and standard deviations of the bias term (B B) and the t-ratio
statistic T(ﬂ) for the 10 estimators and the 12 combinations of {0,,, 0,,} are given in
Tables 2 and 3, respectively. The densities of the estimators and their f-ratios were
calculated using nonparametric density estimates computed with a standard normal kernel
and bandwidths of 0-02 for the bias terms and 0-4 for the ¢-ratios. These choices were
made after some experimentation with other values. Figures 1-6 graph the densities of
'T(B) for selected parameter configurations. Graphs of the densities of ﬂ B are given
in the original version of the paper, Phillips and Loretan (1989), which is available on
request.

Our main results are:

(1) The bias term (ﬁ-«ﬂ): see Table 2

(i) When (6,,>0, 0,,<0) OLS is usually the most biased estimator. The FM
procedure reduces the bias substantially. Adding additional lags—e.g. going
from H(2,0) to H(4,0)—or including leads—e.g., going from H (2,0) to
H (2, 1)—of the covariates reduces the bias of the linear SEECM estimators.
These results strongly endorse the asymptotic theory of Section 3.

(ii) When 8, # 0, adding leads is more effective than increasing the number of lags
in terms of bias reduction. Conversely, adding leads is less useful when 6,, = 0.

(iii) When 6,, =0 (i.e. when there is no feedback from u, to u,) all SEECM’s provide
essentially unbiased estimates of 8, and are better centred than the FM distribu-
tion. This supports the theoretical result that 6,, =0 is an essential ingredient
of valid asymptotic conditioning in conventional SEECM methodology.

(iv) The FM method is more biased than OLS when (8,,<0, 05,>0). The failure
of the semiparametric corrections procedure in this case is analogous to the
size distortions of the unit root tests of Phillips (1987) and Phillips and Perron
(1988) in the presence of negative serial correlation of the errors. The simulations
in Schwert (1987) reveal these effects for unit root tests under MA (1) errors
with negative serial correlation.
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TABLE 2

Means and standard deviations of the bias term (ﬁ — B), for various values of a,, and 6,,

03 =—0-85 0,,=0-8 0, =04 0,,=0-0 6,=-08
oLS —0-1466 (0-124)  —0-0957(0-092)  —0-0564 (0-060)  —0-0204 (0-030)
FM (5) —0-0092(0:122)  —0-0278 (0-077)  —0-0252(0-050)  —0-0038 (0-022)
H(2,0) —0-0573 (0:099)  —0-0188(0-060)  —0-0021 (0-036) 0-0073 (0-017)
H(4,0) —0-0430 (0-103)  —0-0146 (0-065)  —0-0016 (0-041) 0-0069 (0-021)
H(2,1) —0-0358 (0:100)  —0-0095(0-063)  —0-0015(0-038)  —0-0059 (0-017)
H(4,2) —0-0189 (0-113)  —0-0067 (0-075)  —0-0017 (0-048) 0-0065 (0-023)
PL(2,0) ~0-0789 (0-118)  —0-0249 (0-064)  —0-0036 (0-035) 0-0057 (0-015)
PL(4,0) ~0-0498 (0-121)  —0-0144 (0:072)  —0-0022 (0-042) 0-0049 (0-018)
PL(2,1) —0-0284 (0-108)  —0-0101(0-066)  —0-0030 (0-038)  —0-0049 (0-016)
PL (4,2) —0-0006 (0-128)  —0-0025(0-083)  —0-0028 (0-049) 0-0035 (0-020)
Oy =—0.5 0,,=0-8 0, =04 0, =00 0, =~0-8
OLS —0-0782 (0-089)  —0-0611(0-077)  —0-0433 (0-061)  —0-0144 (0-033)
FM (5) ~0.0435(0.101)  —0-0262 (0-082) 0-0170 (0-062) 0-0067 (0-033)
H(2,0) —0-0552(0-092)  —0-0283 (0-075)  —0-0060 (0-057) 0-0180 (0-034)
H (4,0) —0-0466 (0-098)  —0-0227 (0-083)  —0-0024 (0-065) 0-0190 (0-040)
H(2,1) —0-0165(0-088)  —0-0069 (0-078)  —0-0056 (0-061)  —0-0086 (0-032)
H(4,2) —0-0100 (0-104)  —0-0086 (0-094)  —0-0033 (0-077) 0-0073 (0-041)
PL(2,0) —0-0806 (0-117)  —0-0337(0-082)  —0-0066 (0-058) 0-0111 (0-030)
PL (4,0) —0-0657 (0-133)  —0-0253(0-093)  —0-0026 (0-067) 0-0121 (0-036)
PL(2,1) —0-0079 (0-096)  —0-0013 (0-084)  —0-0061(0-062)  —0-0096 (0-031)
PL, (4,2) —0-0005(0:123)  —0-0044 (0:103)  —0-0033 (0-078) - 0-0033 (0-037)
Oy =+0-5 0,,=0-8 0, =0-4 0,,=0-0 0,,=—=08
OLS —0-0219 (0-036)  —0-0173 (0-042)  —0-0071 (0-048) 0-0296 (0-058)
FM (5) ~0-0213 (0-044)  —0-0105 (0-048) 0-0063 (0-056) 0-0697 (0-094)
H(2,0) —0-0193 (0-041)  —0-0164 (0-048)  —0-0090 (0-057) 0-0270 (0-068)
- H(4,0) —0-0155(0-046)  —0-0116 (0-055)  —0-0042 (0-064) 0-0323 (0-079)
H(2,1) 0-0070 (0-040) 0-0025 (0-049)  —0-0083 (0-061)  —0-0125 (0-068)
H(4,2) —0-0069 (0-048)  —0-0061 (0-062)  —0-0043 (0-075)  —0-0048 (0-082)
PL(2,0) —0-0223 (0-048)  —0-0185 (0-053)  —0-0098 (0-059) 0-0320 (0-070)
PL(4,0) —-0-0163 (0-048)  —0-0122(0-057)  —0-0042 (0-067) 0-0375 (0-086)
PL(2,1) 0-0145 (0-048) 0-0066 (0-054)  —0-0085(0-063)  —0-0115 (0-067)
PL (4, 2) —0-0087 (0-054)  —0-0066 (0-066)  —0-0042(0-080)  —0-0032 (0-083)

(v) The nonlinear models do not, in general, reduce the bias of the estimates
compared to the corresponding linear specifications.

(vi) Densities of ﬁ — B are graphed in Phillips and Loretan (1989). These show the
bias and skewness of the OLS estimator and the effect of adding additional lags
and. leads of the covariates in the SEECM’s in reducing these deficiencies.
When 8,, =0 the densities of the various SEECM estimators are essentially
indistinguishable.

(2) The t-ratio statistic T(é): see Table 3 and Figures 1-6.

(i) When (6,,>> 0, 0,,<0), OLS again yields the greatest bias for the t-ratios. The
FM estimator performs very well in these cases.

(ii) The advantage of the nonlinear over the linear specification of the SEECM’s is
strongly evident. The nonlinear estimators improve the performance of the
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TABLE 3
Means and standard deviations of the t-ratios () for various values of o3, and 6,,

0y =—0-85 05, =0-8 0,, =04 0,,=00 05, =—0-8

OLS —1-679 (1-22) -1-279(1-08) —0-938 (0-95) —0-504 (0-83)
FM (5) —0-216 (1-35) —0-426 (1-02) —0-454 (0-82) -0-137(0-61)
H(2,0) —1-266 (2-07) —-0-532 (1-71) —0-079 (1-37) 0-383 (0-89)
H (4,0) —1-015 (2-30) —0-433 (1-86) —0-056 (1-44) 0-336 (0-99)
H(2,1) —0-790 (2-18) —0-251(1-76) —0-051 (1-40) 0-342 (0-99)
H(4,2) —0-421 (2-51) —0-191 (1-95) —0-053 (1-51) 0-351(1-18)
PL (2,0) —0-921 (1-33) -0-510 (1-36) —0-137 (1-37) 0-422 (1-24)
PL (4,0) —0-646 (1-68) -0-317 (1-69) —0-076 (1-65) 0-359 (1-54)
PL(2,1) —0-394 (1-45) —0-222(1-41) ~0-108 (1-41) -0-377 (1-32)
PL (4,2) —0-029 (1-86) ~0-079 (1-79) —0-086 (1-75) 0-244(1-72)
0y =-05 0,,=0-8 0, =04 05, =0-0 0,,=—0-8

OLS —-1-258 (1-31) —-1-020 (1-23) —0-788 (1-12) —0-353 (0-92)
FM(5) —0-724 (1-49) —0-492 (1-33) 0-360 (1-14) 0-102 (0-82)
H(2,0) —1-140(1-77) —0-604 (1-61) —0-138 (1-:39) 0-577(1-:00)
H(4,0) —0-942 (1-85) —0-472(1-69) —0-057 (1-47) 0-558 (1-09)
H(2,1) —0-384(2-01) —0-149 (1-69) —0-118 (1-42) -0-302(1-14)
H(4,2) —0-229 (2-19) —0-180 (1-83) —0-067 (1-53) 0-246 (1-31)
PL (2,0) —0-907 (1-25) —0-496 (1-34) —0-131(1-40) 0-464 (1-30)
PL (4,0) —0-731 (1-54) —0-374(1-62) —0-055 (1-67) 0-476 (1-54)
PL(2,1) —0-125 (1-44) —0-031 (1-42) —0-110 (1-43) —0-397 (1-37)
PL (4,2) -0-022(1-79) -0-084 (1-75) —0-066 (1-77) 0-127 (1-72)
0y =105 0,,=0-8 0, =04 0,,=0-0 0,,=-0-8

OLS —0-676 (1-14) -0-477 (1-20) -0-172(1-22) 0-596 (1-20)
FM (5) -0-583 (1-22) ~0-238 (1-28) 0-174 (1-34) 1-334 (1-51)
H(2,0) —0-622 (1:26) -0-458 (1-34) -0-208 (1-37) 0-545 (1:33)
H(4,0) -0-470 (1-35) —0-308 (1-41) -0-088 (1-46) 0-627 (1-43)
H(2,1) -0-252 (1-50) ~0-064 (1-42) —0-184 (1-39) -0-269 (1-46)
H@4,2) -0-260 (1-72) —0-168 (1-55) —0-081 (1-52) -0-093 (1-61)
PL(2,0) -0-503 (1-17) -0-394 (1-21) -0-204 (1-:27) 0-548 (1-29)
PL (4,0) -0-463 (1-67) ~0-283 (1-62) —0-084 (1-60) 0-597 (1-51)
PL(2,1) 0-341 (1-30) -0-135(1-31) -0-168 (1-30) -0-262(1-46)
PL (4,2) -0-226 (1-79) -0-154 (1-75) —0-080 (1-70) -0-097 (1-77)

(iii)

t-ratios: both the bias and the standard deviations are lower in the PL models
than in the corresponding H models. This illustrates the consequences of
over-fitting that occurs in the H models when many lags and leads of covariates
are included: the fit obtained is often “too good™ and the estimated residual
variance therefore too low, leading to t-ratios with excessive dispersion.

The case of 8,, =0 shows that although FM is less biased than OLS, it is
outperformed by SEECM’s. On the other hand, FM’s standard deviation is less
than that of the SEECM’s, leaving it with a superior mean square error.

(iv) When 0, > 0 neither the linear nor the nonlinear SEECM’s have a clear advan-

tage over the other. As was the case for the FM bias term, when 6,, <0, the
FM t-ratio suffers from bias, increased variance, and skewness. Adding lags
and leads of the covariates strongly reduces the bias of the SEECM
estimators.
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(v) We present three pairs of figures in which we graph the densities of the ¢-ratios
for selected estimators and combinations of 6,, and o,,. The standard normal
density is included in all figures as the “benchmark” asymptotic distribution.
The first two figures are based on (6,, =0-8, 05, =—0-85), a case of strong
positive feedback from y,, to y,,, and show how biased and skewed the distribu-
tion of the OLS estimator is in comparison to the other estimators. The density
of the FM t-ratio is the least biased and skewed, and comes reasonably close
to its limiting distribution, given the moderate size of the sample (T = 50). In
comparison to fully modified OLS, the linear SEECM’s perform less well (Figure
1), even when a lead term is included to capture the feedback effect. Figure 2
compares the linear and nonlinear SEECM’s, and makes clear the substantial
improvement achieved by the nonlinear specification of the model: both PL (2, 0)
and PL (2, 1) have densities which are much closer to the standard normal
density than those of the linear models H(2,0) and H (2, 1). In Figures 3 and
4 we graph the densities of the same estimators as for Figures 1 and 2, but now
for (8,,=0, 0, =—0.85). The density of the t-ratio of the OLS estimator is
again negatively biased, and the FM (5) estimator has good location and size
properties. Since 8,, = 0 represents the case of no-feedback from the dependent
variable to the independent variable, so that valid conditioning on %,_, applies,
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we would not expect inclusion of leads of Ay,, to improve the properties of the
H model, which is confirmed (Figure 3). The case of no-feedback is also one
where the nonlinear (PL) specification is not noticeably superior to the linear
(H) model (Figure 4). Finally, densities of the t-ratios in the case of negative
feedback are graphed in Figures 5 and 6, for (65, = —0-8, 0,;, =0-5). Figure 5
illustrates the skewness problems the FM estimator has for 6,, close to —1 and
02,>0. The nonlinear SEECM’s perform somewhat better than their linear
counterparts (Figure 6), and inclusion of a lead term of Ay,, helps to better
centre the distributions about the origin.

We close by remarking that our simulations suggest that one area in which the
performance of SEECM’s might be improved substantially is in further reducing the
dispersion of the t-ratios. We expect that methods which reduce the number of parameters
to be estimated and which orthogonalize the remaining regressors in the model would
attenuate the overfitting problem without sacrificing much in terms of bias reduction.
The process of successive elimination of insignificant regressors and variable orthogonaliz-
ation is, in practice, as much an art as a science. For our simulations, we tried a few
methods that are intended to mimic the variable reduction stage of the Hendry-Richard
modelling strategy. For example, we tried retaining only the first few leading principal
components of the covariates in the linear SEECM’s and employing them as the new
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regressors. However, this mechanical approach did not produce good resuits. The
reduction of the standard deviations was minimal, whereas the bias problem became
immediately apparent. The shift to the nonlinear specification of the SEECM’s, on the
other hand, brought the desired effect of simultaneous reductions of bias and variance
in the #-ratios, at least for negative values of o,. But the ¢-ratio statistics of the nonlinear
SEECM’s are still more dispersed than those of the FM method, suggesting that they can
be improved even further.

5. CONCLUSIONS

We have studied various methods of estimating long-run economic equilibria or co-
integrated relations. At present, the multitude of available methods for estimation and
inference in cointegrated systems is potentially confusing and disconcerting to applied
researchers. We have argued that asymptotic theory actually provides some clear guide-
lines on the most suitable choice of methods. However, there are still a wide range of
asymptotically equivalent choices ranging from full systems to single-equation methods
(see our summary at the end of Section 3). Our focus in this paper has been on the
performance of single-equation methods. We use the method of fully-modified OLS, with
its semiparametric corrections, as a benchmark in evaluating the parametric estimation
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methodology of Hendry. On the basis of asymptotic theory we propose a nonlinear
SEECM specification augmented by leads as well as lags in the differences of the regressors.
For such specifications, the use of (parametric) nonlinear least squares on the SEECM
is asymptotically equivalent to (semiparametric) fully-modified OLS and to full systems
maximum likelihood on the entire system of equations (restricted by the imposition of
unit roots).

Our simulations with a small-scale cointegrated system show that FM and SEECM
estimators are both substantially better than OLS. The performance of the SEECM
estimator is itself substantially improved by: (i) adding more lags, (ii) including leads of
differences in the regressor variables when these are not strongly exogenous, and (iii)
most importantly, by formulating the SEECM nonlinearly in the parameters through the
explicit used of lagged equilibria as regressors. These (nonlinear in parameters) variables
serve better to model the information set that is needed for valid conditioning than lagged
differences in the dependent variable. With these modifications, parametric SEECM
models seem to provide a sound basis for estimation.

However, our simulations show that there is size-distortion in inferences that are
based on SEECM estimates. This distortion is due to a tendency in SEECM regressions
to overfit and hence bias downwards the error sum of squares in the regression. Of the
many SEECM specifications considered here we found that the nonlinear in parameters
SEECM leads to the best performance in this respect; yet the size-distortion in this case
is still appreciable in simple asymptotic t-tests. We conclude that there is room for further
improvement in the methodology to deal with the potential problem of regression over-
fitting. In practice, this problem may be partially eliminated by careful residual diagnostic
checks that include some post-sample predictive tests, as indeed is recommended in the
Hendry approach.

It would be interesting to extend our simulations to systems methods of estimation.
In particular, it would be of interest to determine whether parametric methods, such as
the Johansen VAR approach, suffer from similar diffculties of overfitting and size distortion
as the single-equation ECM methods considered in this paper. In this respect it is
important to recognize that the asymptotic theory makes it clear that it is not necessary
to fully estimate (and a fortiori, efficiently estimate) the generating mechanism of u, in
order to efficiently estimate long-run equilibria. All that is needed for the latter is a
consistent estimate of the contribution from the short-run dynamics to the long-run
variance, viz. the value of the long-run covariance matrix of u,. One advantage of the
semiparametric approach is that this feature of the theory of efficient estimation is explicitly
recognized and used in the construction of the estimator.

Since short-run dynamics are important in other aspects of modelling, especially
prediction, it seems likely that the best operational methods in practice will always involve
some parametric elements. One way of proceeding in systems estimation that takes
advantage of the strong points of both approaches would be the following: (i) to estimate
efficiently the long-run equilibrium relationships by systems methods (or asymptotically
equivalent semiparametric single equation methods) and (ii) utilize the estimates from
stage (i) in the construction of parsimoniously parameterized ECM’s for each of the
dependent variables. This approach would lead to efficient estimates of long-run equilibria
and the short-run dynamics would be individually modelled on an equation-by-equation
basis following the present Hendry methodology. Anadditional advantage of this proposal
is that it would not be necessary to include leads in the ECM regressions since the
long-run equilibria are already efficiently estimated and incorporated in the regression.
Furthermore, the equation-by-equation approach would enable the investigator to employ
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many of the judgemental aspects in parsimoniously selecting and orthogonalizing the
regressor set that are presently an integral part of this methodology. Such a possibility
is not available in complete systems methods like the Johansen (1988) VAR approach.
The authors hope to pursue this idea in future research.
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