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OPTIMAL INFERENCE IN COINTEGRATED SYSTEMS

By P. C. B. Puripips!

This paper studies the properties of maximum likelihood estimates of cointegrated
systems. Alternative formulations of such models are considered including a new triangu-
lar system error correction mechanism. It 1s shown that full system maximum hkehhood
brings the problem of inference within the family that 1s covered by the locally asymptoti-
cally mixed normal asymptotic theory provided that all unit roots 1n the system have been
eliminated by specification and data transformation. This result has far reaching conse-
quences. It means that comntegrating coefficient estimates are symmetrically distributed
and meditan unbiased asymptotically, that an optimal asymptotic theory of inference
applies, and that hypothesis tests may be conducted using standard asymptotic chi-squared
tests. In short, this solves problems of specification and inference in comntegrated systems
that have recently troubled many investigators.

Methodological issues are also addressed and these provide the major focus of the
paper Our results favor the use of full system estimation in error correction mechamsms
or subsystem methods that are asymptotically equivalent They also point to disadvantages
in the use of unrestricted VAR’s that are formulated in levels and in certain single
equation approaches to the estimation of error correction mechamsms. Unrestricted
VAR’s mmplicitly estimate unit roots that are present in the system and the relevant
asymptotic theory for the VAR estimates of the cointegrating subspace mewvitably involves
unit root asymptotics. Single equation error correction mechanisms generally suffer from
similar disadvantages through the neglect of additional equations n the system. Both
examples point to the importance of the proper use of information 1n the estimation of
cointegrated systems. In classical estimation theory the neglect of information typically
results in a loss of statistical efficiency In cointegrated systems deeper consequences
occur. Single equation and VAR approaches sacrifice asymptotic median unbiasedness as
well as oprimality and they run into inferential difficulties through the presence of
nuisance parameters 1n the hmit distributions. The advantages of the use of fully specified
systems techniques are shown to be all the more compeling i the hght of these
alternatives

Attention 1s also given to the information content that is necessary to achieve optimal
estimation of the cointegrating coefficients. It is shown that optimal estimation of the
latter does not require simultaneous estimation of the transient dynamics even when
the parameters of the transient dynamics are functionally dependent on the parameters of
the cointegrating relationship. All that 1s required 1s consistent estimation of the long run
covartance matrix of the system residuals and this covariance matrix estimate can be
utilized in regression formulae of the generalized least squares type. Thus, optimal
estimation can be achieved without a detailed specification of the system’s transient
responses and thus, in practice, without the use of eigenvalue routines such as those
employed i the Johansen (1988) procedure.
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Iikelihood, SUR systems, unit roots.
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1 INTRODUCTION

COINTEGRATION SYSTEMS HAVE RECENTLY been attracting the attention of both
macro-economists and econometricians. The field is unusually active with theo-
retical and empirical research going forward together. It has proved particularly
interesting that well defined links exist between cointegrated systems, vector
autoregressions (VAR’s), and error correction models (ECM’s). These links
have served to bring different econometric methodologies closer together. But
there is still little agreement amongst researchers about how best to proceed in
empirical research. Is it appropriate to continue to use unrestricted VAR’s in
estimation and if so what theory of inference applies? Is it better to estimate a
model in ECM format rather than as an unrestricted VAR? If so, can one
improve further on the ECM methodology? Is it necessary for optimal estima-
tion of the cointegrating coeflicients that the transient dynamics be jointly
estimated, as they are in autoregressive ECM representations? What if the
parameters of the transient dynamics themselves rely on the cointegrating
coefficients? Are there any efficiency losses in the use of semiparametric
approaches that treat the residual in an ECM as a general stationary process?
What if the cointegrating coefficients are themselves constrained—do similar
results apply?

This paper attempts to address some of the questions above. Our approach is
to compare the properties of full information estimation of ECM systems with
alternatives such as unrestricted VAR’s and direct estimation of cointegrating
regressions. The critical differences between these procedures have not come to
light in the existing literature. But it turns out that they are easily understood.
In some cases, such as unrestricted VAR estimation, unit roots are implicitly or
explicitly estimated along with other parameters. In other cases, such as prop-
erly formulated ECM’s, they are not. This difference, which is rather obvious
from the formulation of the two systems once it is pointed out, has a critical
effect on the relevant asymptotic behavior of the likelihood function. In the
former case one cannot avoid a unit root theory in the characterization of the
likelihood. This puts us in the class of models which 1 have described elsewhere
in Phillips (1989) as a limiting Gaussian functional (LGF) family. In the latter
case, however, the problem turns out to belong to the locally asymptotically
mixed normal (LAMN) family. The distinction is critical because in the latter
case an optimal theory of inference exists (see Jeganathan (1980, 1982, 1988),
Basawa and Scott (1983), Davies (1986), and LeCam (1986)), whereas in the
former this is not so. Moreover, in the LAMN case conventional asymptotic
theory, which relies on tabulations of the chi-squared distribution, forms a valid
basis of inference. In the LGF case this is again not so and tabulations of
nonstandard distributions are required as well as elimination of surplus nui-
sance parameters.

The present paper is related to a recent study by Johansen (1988), which
appeared after the first version of this paper was written. Johansen considers a
nonstationary Gaussian VAR with some unit roots. He obtains the limit
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distribution of the maximum likelihood estimator (MLE) of the cointegrating
vectors and the limit distributions of likelihood ratio tests of the dimension of
the cointegrating space and of linear hypotheses about the coeflicients. We also
deal with full system maximum likelihood (ML) estimation of cointegrated
systems and derive an asymptotic theory for our estimators and tests. But we
distinguish between those cases where information about the presence of unit
roots is used in estimation and those where it is not. This enables us to compare
structural equation methods like FIML (which impose no unit roots) and full
system ML estimation of ECM models (which impose a certain number of unit
roots by virtue of their construction). These comparisons are facilitated by the
use of a triangular system ECM representation which is quite different from the
Engle-Granger (1987) representation that is employed by Johansen. Our system
is linear in the parameters that define the cointegration space, whereas in the
Engle-Granger representation the same parameters appear nonlinearly. This
simplification means that explicit formulae for the estimators are usually avail-
able 1 our set up, eigenvalue routines are not required, and the limit distribu-
tion theory is easy to derive. More general parametric and nonparametric
models for the errors are also easily accommodated in our approach and, as we
shall see, involve few complications over the simple case of iid errors. Finally,
the triangular structure that we introduce provides important insights concern-
ing the special conditions under which different estimators are related, in
particular when systems estimators are equivalent or asymptotically equivalent
to certain subsystem estimators. This helps to furnish a link between the models
and methods that we discuss here and the single equation ECM models that are
common in empirical research.

The paper is organized as follows. All of our results are given in Section 2.
This section sets up and motivates the triangular system ECM representation
referred to above. A prototypical model with iid errors is used to demonstrate
the properties of full system estimation of the ECM under a Gaussian like-
lihood. Theorem 1 gives the asymptotic distribution of the MLE of the co-
integrating matrix and the parameters on which it depends, in this simple
environment. The remainder, and the bulk, of Section 2 is organized as a series
of remarks on this theorem. These serve to relate the results to other ap-
proaches like structural equation methods, unrestricted VAR’s, nonlinear least
squares, and subsystem and single equation approaches. We further show how
the simplifying structure of the prototypical model and the conclusions of
Theorem 1 continue to apply in the general context of a cointegrated system
with linear process errors. These conclusions extend even to models where the
parameters of the transient dynamics and the cointegrating relationship are
variation dependent. Links with simultaneous equation methods and empirical
ECM methodology are also explored. Many of the remarks emphasize heuristics
and these are intended to help in understanding the similarities and the
differences between conventional structural equation econometric theory and
cointegrated systems theory. Some conclusions and recommendations for empir-
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ical research that emerge from the study are given in Section 3. Proofs are given
in the Appendix.

A word on notation. We use vec(A) to stack the rows of a matrix A into a
column vector, A* to represent the complex conjugate transpose of A4, P, to
represent the orthogonal projection operator onto the range space of A, || 4]} to
signify the matrix norm (tr(A4'A4))!/?, D to represent the duplication matrix for
which Do =vec(Z3) where o is the vector of nonredundant elements of the
symmetric matrix 3, [x] to denote the smallest integer <x and (x)’_ to
represent the collection (x,x,_,....). We use the symbol “= " to signify weak
convergence, the symbol “=" to signify equality in distribution, and the
inequality “ > 0” to signify positive definite when applied to matrices. Stochastic
processes such as the Brownian motion W(r) on [0, 1] are frequently written as
W to achieve notational economy. Similarly, we write integrals with respect to
Lebesgue measure such as [y W(s)ds more simply as [lW. Vector Brownian
motion with covariance matrix {2 is written “BM(£2)”. We use P(-) to signify
the probability measure of its argument, £ to denote wide sense conditional
expectation, and (1) to signify a time series that is integrated of order one.
Finally, all limits given in the paper are taken as the sample size T — .

2 COINTEGRATED MODELS, THE TRIANGULAR SYSTEM ECM
REPRESENTATION, ESTIMATION AND INFERENCE

Let y, be an n-vector I(1) process and u, be an n-vector stationary time
series whose long run covariance matrix (given by the value of the spectral
density of u, at zero) is nonsingular. We partition these vectors into subvectors
of dimension n, and n, with n=n, +n, and assume that the generating
mechanism for y, is the cointegrated system

(1) y1t=By2t+u1t7
(2) Ay, =uy,.

Here B is an n; Xn, matrix of coefficients and (1) may be thought of as a
stochastic version of the linear long run equilibrium relationship y,, = By,,, with
u,, representing stationary deviations from equilibrium. Equation (1) could well
be parameterized in other ways, for example by using a normalization that did
not attach specific importance to the variables in y,,. However, the parameteri-
zation given in (1) does help to simplify formulae and aids our heuristic
discussion especially in relation to traditional regression methods.

The ECM system arising from (1) and (2) can be obtained by differencing (1),
leading to the triangular system format:

(3) Ayt= —EAYt—1+Ut,

where

(4) E=[’"l}, A=[1, -B], v,=[1 B]
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Equation (3) is a very convenient representation of the ECM which preserves
the triangular structure of (1) and (2). It differs from the autoregressive ECM
representation that is used in Engle and Granger (1987) and Johansen (1988).
Autoregressive ECM’s may be included in (3) by giving the error process v, a
specialized parametric form. One consequence is that in autoregressive ECM’s
the parameters that govern v, and hence those that govern u, typically depend
on the parameters of the cointegrating relations. In particular, the deviations,
u,,, in the long run equilibrium relationship (1) have transient dynamics whose
parameters are then in general functionally dependent on those of the cointe-
grating relationship. It follows that autoregressive ECM’s have certain method-
ological implications that may be avoided by a nonparametric treatment of the
residual process in (3). Moreover, as we shall discuss in detail later on, optimal
estimation of B in (3) does not rely on joint estimation of the transient
dynamics of v, and this continues to be true even when the parameters of the
latter are functionally dependent on B. Thus, functional dependence of
the transient dynamics on B cannot be exploited to improve efficiency in the
estimation of B.

The system (3) offers other advantages in addition to its simplicity of form
and the generality with respect to its treatment of the transient dynamics that
underlie the process v,. First, the block triangular format of (3) ensures that
generalized least squares (GLS) procedures are asymptotically equivalent to full
maximum likelihood estimates. This is already a well known result of simultane-
ous equations theory in stationary models with iid errors but it applies in that
context only when the error covariance matrix is known or at least is efficiently
estimated (see Lahiri and Schmidt (1978)). An interesting feature of the
triangular system (3) is that the equivalence holds under much more general
conditions whereby only consistent estimates of the error covariance matrix
need be employed in the GLS regression formula. When v, in (3) is stationary
rather than iid its serial covariance properties need to be attended to. This can
be achieved by parametric maximum likelihood, by semiparametric corrections
(see Phillips and Hansen (1989)), or by generalized least squares in the fre-
quency domain (see Phillips (1988¢)). The latter method is especially appealing
since finite Fourier transforms preserve the triangular structure of (3) and
enable us to deal with rather general stationary errors u, on the original system.
Second, the cointegrating coefficient matrix 4 and submatrix B appear linearly
as the coefficients of y,_; in (3). This is a great advantage because it simplifies
estimation and makes the asymptotic theory much easier to follow. Third, all
short-run dynamic behavior is absorbed in the residual v, of (3). Again this
simplifies the theory because questions of optimal inference about the long-run
coefficients B are formally the same when v, is a general stationary process as
they are when v, is iid. We shall discuss this more fully in Remarks (j)—(m)
below, which deal with models with stationary time series errors. Remark (k) in
particular shows how a pseudo-model with iid errors may be constructed as a
valid approximation to (3) when v, is a stationary linear process.
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For the reasons just given let us now assume that (3) is a prototypical system
whose error vector v, =1iid N(0,2) with £ > 0. The normality theory is, as
usual, needed for the optimality theory but it is not necessary for the develop-
ment of the asymptotics. The Gaussian log likelihood of (3) is

(5) L(B,2)=—(T/2)n|0]
T
—(1/2) X (Ay, +EAy, ) (Ay, +EAy,_,).
i

Partition 2 conformably with y and define {2, ,=,, — 2,,025'2,,. Then
L(B, 2) may be written as the sum of the conditional log likelihood

T
(6) —(T/2)In|2y; ,|-(1/2) Z (ylt — By, — lengzlAyzt)’
1

'Qﬁlz(Y1t — By, — 91292_214)’2:)

and the marginal likelihood
T
—(T/2)In |02y (1/2) ZAyét'ngl Ay,,.
1

Of course, the latter does not depend on the matrix B because of the triangular
structure of (3). Moreover, provided B is unrestricted, it is apparent from (6)
that the maximum likelihood estimate of B is equivalent to the ordinary least
squares (OLS) estimate from the linear model

(7) Vie=Byy -1+ CAy,, + vy 5,

where C=02,,05" and v, ,,=v,,— 2,,825'v,,. Partitioned regression on (7)
now vields in an obvious notation the formula

(8) T(B-B)=(T"W/ ,0,Y,(T72Y5Q,Y,) "

where Y, is the matrix of observations of y,,_, and Q, is the orthogonal
projection matrix onto the space spanned by the matrix of observations of 4y,,.
If there are restrictions on B, which lead, let us say, to the form vec B =Ja for
some p-vector o and known matrix J of rank p, then the MLE of a makes use
of the MLE {2, , of the error covariance matrix in (7). We then have

1

A (O~ ’ -1 (A- ’ ’
a=[r(01eY10.Y,)7] [7(05'2 @ Y0,) vee(Y, )]
To extract the relevant asymptotics we use the fact that the innovations v, in
(3) satisfy the invariance principle

[Tr]
9 T"I/ZZU,=S(r)EBM(.Q).
1

This will certainly be true when v, is iid (0, £2) or a strictly stationary and ergodic
sequence of martingale differences with conditional variance matrix {2—see
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Billingsley (1968, Theorem 23.1). It also holds for much more general stationary
processes, as discussed in Phillips and Durlauf (1986). We partition the limit
process S conformably with {2 as S'=(S},S5) and define the component
process S, , =S, —2,,025'S, = BM(£2,, ,), which is independent of S,. Using
arguments analogous to those developed in Phillips (1986, 1987) we obtain the
following asymptotics:

THEOREM 1:

(10) T(é—B):(jOldsl255)([()‘5255) —:—fG>0N(O,Q“2®G)dP(G),

where G = ([3S,83)"" and P s its associated probability measure. When vec B =
Ja for some p-vector a and matrix J of rank p, we have

-1
1 1
(11) T(@d—a)= [J’(Q;llzoaf 8285)1] [J’(Q;fz@I)f ds, 2®Sz]
0 0
= fG
ReMARK (a): The mixture representation of the limit distribution given in
(10) is a simple consequence of the independence of the Brownian motions §, ,

and §,. The mixing variate may be a matrix as in (10) or a scalar as in the
following representation established in Phillips (1989, Theorem 3.2):

N(o, [7(251, ® G)T] ) dP(G).

>0

-1
f N(O,g.(2112®.(22‘21)dP(g), g=e’(j;]lW2W2’) e,

g>0

where W, =BM(I,) and e is any unit vector (with unity in one coordinate
position and zeroes elsewhere).

ReMARK (b): The asymptotics of Theorem 1 fall within the LAMN theory for
the likelihood ratio as developed by Jeganathan (1980, 1982), LeCam (1986),
and Davies (1986). This theory tells us that the likelihood ratio may be locally
approximated by a quadratic in which the Hessian has a random limit. This
leads to a random information matrix in the limit and mixed normal asymp-
totics. It is worth showing the details in the present case. Let (Hy, H,) be
matrices of deviations for the parameter matrices (B, {2). Set hy = vec(Hpy),
ho=D" vec(Hy), and k' =(hj, hy), where D*=(D'D)"'D’ is the Moore-
Penrose inverse of the duplication matrix D and thus eliminates the redundant
entries of vec(H,)) arising from the symmetry of H,. We expand the likelihood
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ratio that is based on (4) to the second order as follows:
(12)  Ap(h)=L(B+T 'Hy, 2+ T"?H,) ~ L(B, )
= [(12) tr{@7'TV2(M,, - 2) Q" 'H,)
—tr {Hp(T7 'Y,V )02 'E}]
+(1/2)[-(1/2) r (Q~'H, 27 'H,,)
~tr {Q7'EHy(T~2Y;Y,)HLE'}] +0,(1)
=hwy— (1/2)W'Qrh +0,(1),

where
T
MUUZT_IZUtU;, XZ’=[Y20,--->)’2T—1]’
1
T
[w,r —(E'Q_1®I)T_12Ut®)’21—1
Wr= Wor = 1 ’
‘ (1/2)D'(27 '@ 27 ) vec (TVA(M,, ~ 2))
0. [E'Q7'E 0 T2Y}Y, 0
| 0 (1/2)D'(2 e H)D|
Now
(13) (WT’ QT) = (W, Q)
with

rwl] (e @1)[014151 ® S,

W, . E=N(0,2Py(22N0)),

(1/2)D(R7'e 07 1)¢

where the components w, and w, are independent, and

1
EQ'E® [ 8,S; 0
0- JJRR .
0 (1/2)D(2"'e 0D

The approximation (12) and the limit behavior given in (13) ensure that the log
likelihood ratio belongs to the LAMN family of Jeganathan (1980).

Note that if we let % denote the o-field generated by {S(r): r <¢} and if
var (-|%;) signifies the conditional variance relative to .%, then we have

(14) folvar(E'n—l S8 $,|% ) =EQ'E® j:Sz(t)Sz(t)’dt.
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This follows because the increments in a Brownian motion are independent of
its past history. But note that E'Q7'S=05',(S, - 2,,025,'S,) =02;',5, , =
BM(£27;',) and this process is independent of §,. The random matrix (14) is the
leading submatrix of Q. It is also a finite dimensional element of the quadratic
variation process of [(£25,';dS, , ® S,. Thus, in the notation of Metivier (1982)
we have the square bracketed process

[ _ t
[fnlllz das; 2®Sz] =91112®_[sté-
0 t 0

With this interpretation, the leading submatrix of Q is a natural candidate as a
random variance for the limit process wy.
In addition we have

var (w,) = (1/4)D'(27 ' 2 Y [2Px(20 M) (2 e 271D
=(1/2)D'(2"'e 02~ Y)D

corresponding to the lower diagonal submatrix of Q.
Finally, the inverse of Q is the information matrix

-1

1
Q—l= 9112®(j(;525§) 0
0 2D+ (R ®02)D*

The leading submatrix of Q! is random and signifies random information in
the limit for the maximum likelihood estimates of the cointegrating matrix B.
This corresponds with the normal mixture given in (10). The lower diagonal
submatrix gives the asymptotic variance matrix of the maximum likelihood
estimates of the nonredundant elements of f2. If (2 is the corresponding
element of {2, we have

VT (2 —02) = N(0,2P, (23 R2)).

This final result refers to the model (3) with error vector v, = iid N(0, {2) and
normality plays a key role in simplifying the form of the covariance matrix to
2P,(02 ® ). In the general case of stationary v,, {2 is the long-run variance of
v, and kernel methods are usually employed in its estimation to deal with the
fact that {2 depends on the entire serial covariance structure of v,. This
naturally affects the asymptotics for estimates of (2. But the discussion above
continues to apply in this case for the estimation of B.

The sense in which the estimator B is optimal under Gaussian assumptions is
quite precise, just as in traditional ML estimation with a nonrandom informa-
tion matrix. A theory of optimality for inference from stochastic processes that
is suitable in the present context has been developed by Sweeting (1983) and is
discussed by Prakasa Rao (1986). We shall rely on their treatment here. We first
observe that from the proof of Theorem 1 it is apparent that convergence to the
limit distribution in (10) is uniform in B since the weak convergence results that
are used there are independent of and hence uniform in B. If R denotes the
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limit probability measure in (10), .# is the class of sets in R™*™ that are
convex and symmetric about the origin, and M €.#, then

P(T(B-B) €M) >, Ry(M)

where “—” signifies uniform convergence on compact subsets of R™*"2. Now
let 7 be a class of estimators B, of B for which

T(B;—B) =.7B

where 75 is a limit variate with probability measure Qp on R™*" and “ = ”
signifies uniform weak convergence (with respect to B € R"*"2). Under Gauss-
ian assumptions the MLE B is optimal asymptotically in the class .7 in the
sense that for any alternative estimator B, whose limit variate is 7, we have the
inequality

Qp(M) <Rp(M)

VM e.# and YB € R™"”*™, This implies that the MLE is efficient in the usual
sense of having an asymptotic maximum concentration probability for all estima-
tors in the class 7. When y, is not Gaussian, Theorem 1 still holds provided
partial sums of v, satisfy the invariance principle (9). But the Gaussian estima-
tor B is no longer necessarily optimal. In this event the possibility of adaptive
estimation exists. It has been mentioned recently in a deep and extensive study
by Jeganathan (1988).

REMARK (¢): Note that the coefficient matrix E in (3) is known and the ECM
is just another algebraic representation of the original cointegrated system (1)
and (2). The MLE B may therefore be obtained by applying ML directly to this
original system rather than (3). ML estimation requires full specification of the
model that generates u, and the system must be estimated as specified with the
n, unit roots eliminated as they are in (3). If the unit roots are estimated, either
explicitly or implicitly, then the asymptotic distribution of the maximum likeli-
hood estimator of B is different from that of B and, with one important
exception that will be discussed below, no longer belongs to the LAMN family.

To see this, it is simplest to write (1) and (2) in simultaneous equations format
as

I —-B 0 .
(15) [0 I ]yt=[ﬂ]y2t_l+ut Wlth H=In2.

It is also convenient for the purposes of this demonstration to continue to
assume serially independent errors and to set u, =1iid(0,3). Then (15) is a
conventional simultaneous system with predetermined variables y,, ;. Note
that (15), like (3), is in triangular format and the second block is in reduced
form. Assuming that there are no restrictions on I1 or 3, the full information
maximum likelihood estimator (FIML) of B in (15) is simply the subsystem
limited information maximum likelihood (LIML) estimator of B from the first
n, equations. We shall derive the asymptotic distribution of this estimator.
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As in the stationary simultaneous equations case, subsystem LIML is asymp-
totically equivalent to subsystem three stage least squares (3SLS)—the proof of
this statement follows the same lines as the proof given by Sargan (1988,
Theorem 5, p. 120) for the usual stationary case with some minor changes to the
standardization factors for sample moment matrices. Furthermore, when there
are no restrictions on the matrix B, subsystem 3SLS is equivalent to equation by
equation two stage least squares (2SLS). The 2SLS estimator of B can be
written quite simply as the matrix quotient B* =Y/P_,Y,(Y;P_,Y,)™!, where
P_, is the orthogonal projector onto the range of Y,. The asymptotic distribu-
tion theory for this estimator is straightforward and leads directly to the
following result.

TueoreM 2: If B is the FIML estimator of B in the simultaneous system (15),
then

—1

(16) T(B-B)= (AEdSSé)(fOlSzSé)
= (foldsl 235)“015235)_1

+21222‘2‘(f0]d32 Sg)(ESZSé)

The FIML estimator of B in (15) is asymptotically equivalent to the MLE in (3) iff
2,=0, e iff y,, is strictly exogenous in the first block of (15).

Note that, in general, the limit distribution (16) is a linear combination of the
“unit root” distribution given by (fg dS, $3)([3S,S5)”" and the compound
normal distribution (f; dS, , S3)([95,S5)~". This limit distribution falls within
the LAMN family iff 3, =0, ie. iff y,, is strictly exogenous in (15). The
presence of the “unit root” component in the limit distribution is the conse-
quence of the fact that FIML applied to (15) (or equivalently subsystem LIML,
3SLS, or 2SLS) involves the (implicit) estimation of the reduced form and,
thereby, the unit roots that occur in the model. This inevitably means a
breakdown in the LAMN theory, evidenced here by the form of (16). Only in
the special case where y,, is exogenous does the LAMN theory apply.

Remark (d): Tt is of interest to observe that the special case above in which
3,,=0 is precisely the case when FIML and subsystem LIML reduce to
ordinary least squares (OLS) on the first n, equations of (15). This is explained
by the fact that when 3, =0 (15) becomes a triangular system in which the
covariance matrix Y is block diagonal. The stated reduction of FIML to OLS is
then well known from traditional econometric theory when n, = 1. When n, > 1
the reduction continues to apply provided the matrix B is unrestricted. Note
that the equivalence of LIML and OLS on the first block of (15) means that the
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unit roots in the second block of (15) are not estimated either implicitly or
explicitly and therefore the LAMN theory goes through.

RemMARK (e): When ¥, # 0, subsystem LIML and OLS on the first block of
(15) are not equivalent. In this event the OLS estimator B* has the following
asymptotics (from Phillips and Durlauf (1986) and Stock (1987)):

-1
T(B* —B) ~ (AEdSS§+212)(f01SZS§)

which differs from (16) by the additional bias term 3, in the numerator of the
matrix quotient. Thus, in the general case, the use of simultaneous equations
methods like LIML would seem to reduce the second order bias effects that
occur with OLS but not to eliminate them entirely.

Theorem 1 shows that maximum likelihood estimation eliminates all bias
effects asymptotically. This is of particular interest when we compare the
asymptotic distributions of the MLE B and the FIML estimator B in (15). Note
that the usual effect in asymptotic statistical theory from employing more
information is greater statistical efficiency. Here the extra information is the
knowledge that the submatrix of the reduced form coefficient matrix I1=1 in
(15). Use of this information is all that distinguishes B from B. The effect on
the asymptotic distribution of the use of this information is dramatic. All second
order bias effects are removed, the asymptotic distribution becomes symmetric
about B, it belongs to the LAMN family, and an optimal theory of inference
applies. None of these advantages apply if the information is not used, except
when 5, =0 and y,, is strictly exogenous.

RemMark (f): The comments just made apply equally well in time series
models to the comparison between unrestricted VAR estimation and maximum
likelihood estimation of the full system ECM. In the former case unit roots are
implicitly estimated unless, of course, the system is formulated in differences,
which is not the approach followed in most empirical implementations of
VAR’s. It follows that the asymptotic theory for VAR based estimates of
cointegrating vectors involves “unit root” type asymptotics, as in the case of the
conventional FIML estimator discussed in Remark (c) above. These asymptotics
have been studied elsewhere (see Park and Phillips (1988, 1989), Phillips
(1988a), and Sims, Stock, and Watson (1990)) and we will not go into details
here. It is sufficient to remark that the VAR estimates of the cointegrating
subspace (i.e. the space spanned by the rows of A4) involve nuisance parameters
asymptotically and the relevant asymptotic theory is LGF, in the terminology of
Phillips (1989), not LAMN. This means that nonstandard limit distributions are
needed for inference, tabulations of these distributions need to allow for
nuisance parameters, which have to be estimated, and no optimal asymptotic
theory of inference is applicable. Provided the unit root configuration is known
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and correctly imposed a priori, none of these drawbacks apply to full system
ECM estimation by maximum likelihood.

RemaRrk (g): As discussed in (e) and (f), knowledge of the presence of the n,
unit roots in (2) has major statistical effects. The methodological aspects of this
information are also interesting. From the form of the conditional Gaussian
likelihood (6) we observed earlier that the MLE of B is just OLS on the linear
model (7). By adding and subtracting Bu,, to the right side of (7) it is easy to
see that this model may be written in the equivalent form

(7)’ Vi=Byy + DAy, +u, 5,
where
D=0,0,'"-B=3,3,",
Uy = Uy, _ZIZZZ;ZIuZt =Uy— (912-0231 _B)u2t = Uy 2¢-

Of course (7Y is just the original equation (1) with the error corrected for its
conditional mean given Ay,, =u,,. Note that (7) is specified in levels (unlike
the ECM) but it involves differences as additional regressors (whereas the ECM
has levels as additional regressors). In the present case, the role of the
difference Ay,, in (7)Y as an additional regressor is simply to adjust the
conditional mean and thereby remove the second order asymptotic bias effects
that are present when OLS is applied directly to (1).

It should now be clear that what is important in estimation and inference in
cointegrated systems, at least as far as ensuring the applicability of the LAMN
theory, is not the precise form of the specification but the information concern-
ing the presence of unit roots that is employed in estimation. If unit roots are
known to be present, then our results argue that they should be directly
incorporated in model specification. It is perhaps one of the central advantages
of the ECM formulation that it does this in a constructive way as part of the
overall specification.

Remark (h): The above remark should not be construed to mean that ECM
formulations as they are presently used in econometric research automatically
embody the advantages of the LAMN asymptotic theory. Virtually all ECM
empirical work is conducted on a single equation basis and this is generally
insufficient for the LAMN theory to apply. Our own analysis, and Theorem 1 in
particular, is based on full system maximum likelihood estimation of (3). Since
(3) is block triangular, it is tempting to focus attention on the first block of (3).
However, neglect of the second block of equations in estimation involves more
than a loss of efficiency, as we have seen. In most cases single equation
estimation leads to a second order asymptotic bias of the type discussed earlier
and complicates inference through the presence of nuisance parameters.
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When the error vector u, = iid N(0, 3) (or v, = iid N(0, 2)), there is a simple
way of incorporating the information that is necessary for efficient estimation
into the first block of (3). In this case we have seen that full system maximum
likelihood is equivalent to OLS on the regression equation (7)—i.e. the first
block of (3) augmented by the regressor u,, = Ay,,. Thus, subsystem estimation
is optimal on the augmented equation (7) or (7). When the error vector u, is
serially dependent the situation is more complex because there are feedbacks
among the errors and the minimal information set for efficient estimation
depends on the serial covariance structure of the errors. This issue, together
with the link between ECM formulations and optimal estimation of cointe-
grated systems, is explored in Phillips (1988d). It is shown there that typical
ECM specifications that include the present and past history of Ay,, in the
regressor set lead to optimal estimation by OLS when u,=A4y,, is strongly
exogenous in the sense of Engle et al. (1983). In addition to weak exogeneity
(viz. that the marginal distribution of (u,)! carries no information about the
cointegrating coefficient matrix B), this requires that u, does not Granger cause
u, (see Definition 2.6 of Engle et al. (1983)). When this applies we have the
equivalence of the wide sense conditional expectations (cf. Sims (1972)):

(17) E(ulzl(uz)t—w) =E(ult|(u2)t—oo’(u2):o+l)‘

Obviously (17) is true when u,=1iid (0, 3). But when (17) does not hold and
Ay,, is not strongly exogenous for B, it is necessary to augment the regression
further by the inclusion of leads as well as lags of Ay,. Clearly, such augmenta-
tion reduces the advantages of working with single equation ECM formulations.
An alternative semiparametric single equation (or subsystem) method that
avoids this problem is developed in Phillips and Hansen (1989).

We observe that the nonlinear least squares (NLS) procedure studied by
Stock (1987) falls into the single equation category just described. This proce-
dure involves a single equation NLS applied to an autoregressive version of the
first equation of (3). In general, this approach has the same disadvantages of
bias and nuisance parameter dependencies that have been discussed above. In
fact, the simulation evidence reported in Stock (1987) indicates that the bias in
the NLS cointegrating coefficient estimates can be substantial even in large
samples. Stock’s experimental study is based on the following two variable
system (formulated with Stock’s notation for the parameters):

’y ! !
(18) (1—pL)Ay,=—[y;]ayt_l+5,, o =(1,-0),

where ¢,=iid N(0, I,). Stock reports large biases in the estimation of § when
v, # 0 and p is small. On the other hand, a careful study of Stock’s simulation
results shows that the bias in the estimation of § seems negligible when vy, =10
and, in this case, the sampling distribution of the estimate is nearly symmetric
about the true coefficient. Interestingly, v, = 0 is a special case in which the
asymptotic distribution of the NLS estimate of # is the same as that of full
system maximum likelihood and in this special case the LAMN theory applies.
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It is easy to see why this is true. Since var(g,) =1, and p is scalar it is clear
that when vy, = 0 there is no information about 6 in the second equation of (18).
Moreover, with the autoregressive operator in (18) being diagonal there is no
feedback from &, to Ay,. Thus, full system maximum likelihood estimation of 6
in (18) is asymptotically equivalent to NLS on the first equation when vy, =0,
thereby explaining the good simulation performance of NLS in this case. In
general, this asymptotic equivalence does not hold. In order to bring the NLS
procedure within the realm of the LAMN theory and to remove the second
order asymptotic bias, it is generally necessary to do systems estimation. For
Stock’s procedure this amounts to seemingly unrelated systems NLS.

ReMmARrk (i): When Theorem 1 applies, statistical testing may be conducted in
the usual fashion as for asymptotic chi-squared criteria. This is a consequence of
the mixed normal limit theory. For example, suppose we wish to test the
hypotheses H,: h(B) =0, where h(-) is a g-vector of twice continuously
differentiable functions of the elements of B and H = dh(B)/d vec B' has full
rank g. Then the Wald statistic for H, is M, =h(BY(HV;'H')~'h(B), where
H=H(B) and VT =EO'E® Y;Y,. When B satisfies Theorem 1 and €2 is any
consistent estimator of {2 we have M, = X;- This theory continues to apply
when the model has serially dependent errors but then 0 =2=f,,(0) is the
long-run rather than the short-run covariance matrix and it must be estimated
accordingly. The same result also holds for LR and LM tests of H; in the
present context. Indeed, as in the classical setting, these tests are asymptotically
equivalent with the same asymptotic X‘? distribution as the Wald test M, under
the null. A closely related result has been given by Johansen (1988), who
considers a Gaussian VAR with cointegrated variates. Johansen proves that the
likelihood ratio test of a linear hypothesis about the cointegrating vector is
asymptotically distributed as chi-squared. For the reasons given here his theory
applies also to more general hypotheses about the cointegrating coefficients and
to other tests.

Remark (j): Theorem 1 and the discussion contained in the preceding
remarks refer to the prototypical model (3) with v, = iid(0, £2). The time series
case where v, is stationary would seem prima facie to be much more complex.
Surprisingly, this is not the case. All of the above ideas and results, especially
our remarks concerning systems estimation and prior information about unit
roots, continue to apply. What is required for the continued validity of Theorem
1 is the use of full systems estimation on (3) or at least an asymptotically
equivalent subsystem procedure. If v, is driven by a parametric scheme such as
a vector ARMA model, then full system estimation by MLE involves the
simultaneous estimation of the parameters of the stationary ARMA system and
the coefficient matrix B of the long-run equilibrium relationship. Obviously this
involves the construction of the likelihood function for general ARMA systems.
An alternative approach that is developed in Phillips (1988¢) is to deal with the
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time series properties of v, nonparametrically by the use of systems spectral
regression procedures on (3). The latter approach turns out to be most conve-
nient because a discrete Fourier transform (dft) of (3) retains the basic form of
this equation, including its triangular structure and the linearity of the coeffi-
cients. Moreover, for Fourier frequencies w, = 27 /T that converge to zero as
T — o, the dft’s of v, are approximately distributed as iid N(0, 2) with Q=
2w f(0), where f(w) is the spectral density of v,. Thus, for frequencies in the
neighborhood of the origin, the dft of (3) is just a frequency domain version of
our prototypical model. Spectral regression methods on (3) therefore have the
same asymptotic properties for general stationary errors v, as those of the MLE
in Theorem 1 for v, = iid N(0, £2). All that is needed in adjusting the result is to
replace the contemporaneous (or short-run) covariance matrix 2 by the long-run
covariance matrix (2. Since this approach is explored in detail in the cited paper
(1988c) and in related work (1988e) by the author on continuous time systems
estimation we shall say no more about it here.

It is worthwhile to look further at the parametric likelihood approach.
Suppose, for example, that v, in (3) is generated by the parametric linear
process

(19) v, = i C](g)gt—p
1=0

where &, =iid (0, 3,(9)), 3.(0) >0, C;=1, and the coefficient matrices C,(-)
depend on a g-vector of parameters # and satisfy the summability condition

@ Livico]<

for all # in a prescribed parameter space ®. The model (19) includes most
parametric linear time series models. We have chosen to parameterize the MA
representation here and ¢ in (19) is taken to be functionally independent of the
cointegrating coefficient matrix B. In other representations (e.g. when there is a
finite order autoregressive ECM representation) the parameter 8 in the MA
representation (19) may be functionally dependent on B. However, as we shall
discuss in Remark (m), this variation dependence does not affect the asymptotic
theory for the MLE of B that is given in Theorem 1' below.

For observable processes v,, estimation of 6 in (19) has been extensively
studied in the stationary time series literature. In particular, Dunsmuir and
Hannan (1976) and Dunsmuir (1979) establish strong laws and central limit
theorems for Gaussian estimates of @ in (19) under quite general conditions
using frequency domain approximations to the Gaussian likelihood-—the so-
called Whittle likelihood. This approach may also be applied in the context of
the ECM (3) with linear process errors as in (19). In this case the Whittle
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likelihood that is to be minimized is given by
(21)  L(B,8) =In|3.(0)|+T7'S,ec{f(A;0) ' I(1,)},
-T/2<s<[T/2].

In this formula
f(r;0)=(1/27)D(e*;0)3.(0)D(e*;0)*, D(z;0) = iCJ(())z’
0

is the spectral density matrix of v,, I(A)=w(A)w(A)* is the periodogram at
frequency A € (—m, 7], w(A)=Q2aT) ?LT(Ay, + EAy,_)e"* is a dft and
Ay =2ms/T are the fundamental Fourier frequencies for —7/2<s < <I[T/2].

Now let B and 8 be the full system MLE’s obtained by minimizing (21). In
the case where B is restricted we set vec B=Ja as before and let & be the
corresponding systems MLE of a. Assuming that the regularity conditions used
by Dunsmuir (1979) are satisfied, we now have the following simple extension of
Theorem 1 to the general time series case.

Theorem 1: If @ =27f(0)> 0,
—1

(22) T(B-B)= (folds1 m)(folszs;) ,

where S =BM(), S, ,=BM(L2,; ), 21, =0y — 2,025'Qy, and S and 0
are partitioned conformably with y,. For the restricted case where vec B =Ja, we
have

(23) T(&—a):[ ( m@fssz) ]_I[J'(Q;gz@])foldsl2@52].

ReMmark (k): There is another, conceptually simpler way of looking at the
time series case. The idea is to find an approximate pseudo-model that leads to
the same asymptotics as Theorem 1’ but avoids the complications of explicit
time series modeling. This is possible because the I(1) character of y, is
determined by partial sums of the errors that enter the ECM (3) period by
period and these may be approximated by a suitable martingale. Thus, back
substitution in (3) and initialization at y, =0 gives rise to the representation

t=1
(24)  y=-EYX Ay, + E v,
j=1 =1

The partial sum process Z] W, in (24) can be replaced by the martingale
Y, =%} V, with an error that can be neglected in the asymptotics. When v, is
generated by (19) and (20) holds, we may use V, = (X7_,C, )¢, as the approximat-
ing martingale difference sequence, just as we do in the martingale approach to
central limit theory for a linear process (see Hall and Heyde (1980, Corollary



300 P. C. B. PHILLIPS

5.2, p. 135) or Phillips and Solo (1989) for a recent justification of this
approximation under condition (20)). Since ¢, = iid (0, ¥,) we have V, = iid (0, 2)
with @ =(X7_,C)3 (E5_,C/) =27 f(0), as in Theorem 1'. The approximating
pseudo-model for (3) is obtained simply by replacing v, with V,, giving

(3) Ay,= —EAy, | +V,.

The Gaussian likelihood for (3) is identical with that of our earlier prototypical
model (viz. (5)) upon replacement of the short-run covariance matrix {2 with (2.
The asymptotic behavior of the full system MLE B may be obtained by working
from the pseudo model (3) with iid errors V,, just as in Theorem 1.

Remark (I): The simple heuristics of the last remark point to another
interesting feature of optimal estimates of B. Such estimates rely only on
consistent estimates of the covariance matrix—here the long-run covariance
matrix 2. It is not necessary for optimal estimation of B that 2 be jointly
estimated. This is true even when {2 is restricted as it may be, for instance, in
the linear process case where {2 = (). Interestingly, even in the prototypical
model where v, = iid N(0,0) and (2 = (2, with £, a known matrix, there is
no information loss asymptotically for the estimation of B in estimating the full
matrix . Thus, if £2, is known the coefficient matrix C = 2,,05,! in (7) is also
known and may be used in estimating the contracted system

(7)” Yar =By + 01 5, yat=ylt—CAy2!

rather than (7), where C is estimated. Indeed, the MLE of B in this case is
obtained simply by the use of least squares on (7)'. However, least squares on
(7)" has the same asymptotic distribution as the estimate of B derived from (7)
and is the same as that given in Theorem 1. Thus, in contrast to conventional
simultaneous equations theory where there are efficiency gains in coefficient
estimation from restrictions on the covariance matrix, there are no such gains in
cointegrated systems estimation. The situation is analogous to SUR systems,
where the regressors are exogenous and the information matrix is block diago-
nal. In cointegrated systems the regressors are not exogenous but they may be
treated as such in systems estimation when 2 (or Q as appropriate) is consis-
tently estimated. The pseudo-model (3 where y,_; and V, are independent
helps to explain this in the general time series case.

RemARrk (m): The foregoing remark emphasizes that it is not necessary for
optimal estimation of B that £ = () be jointly estimated. Interestingly, this
conclusion continues to hold even when B and 6 are not variation independent.
Thus, if 9 itself depends on B or some of its components, we still need only
employ a consistent estimate of {2 to achieve optimal estimation of B. Suppose,
for example, that § = (8, ') where the subparameter ¢ is variation indepen-
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dent of B and B is a vector of arbitrary elements of B. Let B and ¢ be the
full system MLE’s of B and ¢ obtained by minimizing (21) taking into account
the dependence of @ on B. Let a' be the corresponding MLE of « in the
restricted case where vec B =Ja. We have the following theorem:

THeorReM 1”1 The limit theory of Theorem 1’ continues to apply for the MLE’s
BT and o even when 8 and B are not vanation independent.

This result tells us that we may proceed to estimate the long-run coefficients
in a cointegrated system as if the parameters of the transient dynamics were
variation independent, even though this may not in fact be the case. Thus,
information about B that may be present in the transient response of the
system does not lead to an efficiency gain in the estimation of B. Again, all that
is required for optimal estimation of B is a consistent estimate of the contribu-
tion from the short-run dynamics to the long run, i.e. a consistent estimate of
the long-run covariance matrix of the system error v,.

Remark (n): A dual problem to the one discussed in Remark (1) is the role of
the cointegrating coefficient matrix B in the estimation of the parameter vector
0 that governs the transient dynamics. If B were known then it could be
employed in the construction of the Whittle likelihood (21), which could then be
used to produce an optimal estimate of . A sequential procedure in which B
was first estimated consistently by a semiparametric method and this estimate
was subsequently employed in forming the Whittle likelihood would lead to
estimates of @ with the same asymptotic properties. Moreover, the limit distri-
butions of such optimal estimates of B and 6 are statistically independent.
However, if the transient dynamics were misspecified, then estimates of 6
obtained from the likelihood (21) would be asymptotically correlated with
estimates of B, whether or not the latter were optimal. This means that there
will, in general, be asymptotic spillover effects in the joint estimation of B and 8
when the transient responses involve errors of specification. An exercise that
deals with a problem of this type is given in Phillips (1990).

3. CONCLUSIONS

This paper started with two main objectives. The first was to study the
asymptotic properties of maximum likelihood estimates of cointegrated systems.
It has been shown that full system estimation by maximum likelihood brings the
problem within the family that is covered by the LAMN theory of inference,
provided all unit roots have been eliminated by specification and data transfor-
mation. This condition is crucial. If maximum likelihood does involve the
estimation of unit roots, then the likelihood no longer belongs to the LAMN
family. Instead it involves unit root asymptotics in terms of Gaussian function-
als. These asymptotics import a bias and asymmetry into the cointegrating
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coefficient estimates and they carry nuisance parameter dependencies into the
limit theory which inhibit inference.

The second and more important objective of the paper was to address the
general question of how best to proceed in empirical research with cointegrated
systems. Fortunately, the answer seems unambiguous. Full system estimation by
maximum likelihood or asymptotically equivalent subsystem techniques that
incorporate all prior knowledge about the presence of unit roots are most
desirable. This approach ensures that coefficient estimates are symmetrically
distributed and median unbiased, that an optimal theory of inference applies
under Gaussian assumptions and that hypothesis tests may be conducted using
standard asymptotic chi-squared tests. These are major advantages. The sim-
plest approach in practice is to perform systems estimation of a fully specified
ECM. Single equation estimation of an ECM is generally not sufficient unless
the variables in the regressor set are strongly exogenous for the cointegrating
coefficients. In stationary time series regression single equation estimation
usually leads to a loss of statistical efficiency, as in the seemingly unrelated
regression context. But in cointegrated systems the use of single equation
techniques imports bias, nuisance parameter dependencies, and loses optimal-
ity. As a result the arguments for the use of systems methods in cointegrated
systems seem more compelling than they are in a classical regression context.

We remark that in the cases where the system falls within the VAR frame-
work unrestricted estimation of the VAR in levels does not bring the likelihood
within the LAMN family. This is because in an unrestricted estimation in levels,
unit roots are implicitly estimated in the regression. In consequence, the use of
VAR’s for inferential purposes about the cointegrating subspace suffers draw-
backs relative to systems ECM estimation. However, as we stressed in Remark
(g), the formulation of the model is less important than the information that it
incorporates. If unit roots are known to be present, then our results indicate
that it is best to incorporate them directly in the model specification. This can
be done in VAR'’s, just as it is done constructively in ECM’s. It might even be
argued that suitably chosen Bayesian priors in VAR’s go some way towards
achieving the same end.

We have also studied the information content in a system’s transient re-
sponses and have shown that simultaneous joint estimation of the transient
dynamics is unnecessary for optimal estimation of a system’s cointegrating
relationship. All that is needed for the latter is a consistent estimate of the
contribution that the short run dynamics make to the long run through the long
run covariance matrix of the system error. Interestingly, this conclusion contin-
ues to hold even when the parameters of the transient dynamics are functionally
dependent on those of the cointegrating relationship, as they can be for example
in autoregressive ECM specifications. There are important methodological
implications to this result. In particular, it means that optimal estimation of the
cointegrating coeflicients can be achieved without a detailed specification of the
system’s transient responses. The opportunity that such estimation affords is
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likely to be especially valuable when there is considerable uncertainty about a
model’s dynamic specification.

Cowles Foundation, Yale University, Box 2125 Yale Station, New Haven, CT
06520, U.S.A.
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APPENDIX

ProoF oF THEOREM 1: Continuing the partitioned regression notation in (8), we have

T=2Y10,Y, = T-2Y3Y, — T2(T~'Y4 AY,) (T~ ' 4Y; 4Y,) " (771 4Y3Y,)

1
= j{; 5,85
and

TV 20X, =T 'V{ ¥, ~ (T_ vy 2AY2)(T_ IAYz'AYz) —1( TﬁlAYz'Xz)

1
= fo ds, ,85,
with both limts following by conventional weak convergence arguments (see Phllips (1988a, 1988b)

for the required theory). Since joint weak convergence apphes and Xy, , — ,%; ,, both (10) and
(11) follow directly.

PRrOOF oF THEOREM 2 Since B and B* are asymptotically equivalent we need only consider
T(B* —B) = (T~'U/P_Y,)(T 2¥4P_Y,) .
But
TP Y= (T70) (17215) T (T725Y,) = ['5:54,
and
T-UP_ Y, =A(T-VY,)(T-2Y3Y,) (T-2Y3Y,) =>Af01d555.

Now note that

AS 2 212]
Sy = =BM .
7 [ Sz] [221 2

Decompose S, = AS as follows:
Sa=84 221,355,
where S, ,=BM(Z,, ,) and is independent of S,. Notice that:

Se2=8-(B+21,35")8,=5,
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since 2,,025' =B +3,,35!, and
3 2= 3y 2353 =ANA — (04~ BNR) 05 (0 — 0, B)
=0 — 02050y =0y 5.
Thus §, , =58, , =BM(£2,, ,) and the stated result follows

Proor oF THeEoreM 1% The first order conditions for B from the Whttle likelihood lead to the
following system of estimating equations up to an error of 0,,(1):

(25) S,EF(A.8) "E(B-Bywy(A,)wy(A,)* = 5,E "F(A,,0) 'w, (A Iwa(A,)%,

where w,( ) and w,( ) are the dft’s of v, and y,,_;, respectively. Under the regulanty conditions in

Dunsmuir (1979), 6 and B are consistent. Then, using the same lines of argument as those in the
proof of Theorem 3.1 of Phulhips (1988c), we find that

T25Ef(A,6) E®w,(A)wy(1,)* =EQ'E® ['5,5=07,8 ['5,5
0 0

and
TS EF(A,0) W, (A)wa(A)* = E'Q " [1dss;.
0
Thus
1 1 -1 1 1 -t
3 r0o-1 ' ’ - s 1
T(B-B)=, Z(EQ fodssz)(foszsz) ([D as, zsz)(foszsz)
since

E'R-'S=BM(E'Q 'F)=BM(Q25',) and
Sy =0, ,E'Q 'S =BM (£ 5).

In the restricted case where vec B =Ja we find that the first order conditions lead to the
following system up to an error of o,(1):

5,7 EF(1:0) T E@wy(A)wa(A) | (@~ )

=3 7(EF(A.0) " ®1)(w,(A,) @wy(—4,))
But

T2 [ E1(30) " Eows(a w1 =105 e ['5,85)s
0
and
_ o o = —1 _ 1
T 15,0 (Ef(A.6) " ©1)(w(A,) ®wa(=1,)) =T ( 25, @1)[0 (dS, ,®5,)
so that the stated result (23) now follows.

Proor orF Tueorem 1”; In this case 1t is convenient to use 1n place of (21) the following alternate
form of the Whattle likelihood (e.g., see Hannan and Destler (1988, p. 224)):

In]3,(0)]+ (217)‘1[:’ tr[ £(A;0) ' 1(A; B)] dA

= (zn)’lfjv{lnﬁwf()\;eﬂ +u[ f(A;0) " I(A; B)]} da.



OPTIMAL INFERENCE 305

Let f,,=3af/db,,, I,,=31/db,, and then the first order conditions take the form

@) 7 [ Fu00) (0N - fs80) T (07 (eh) T (4 BD)]

+f tr[ £(A,00) 71, (A BN dh =0

The second term of (26) leads to estimating equations that are asymptotically equivalent to those
gwven m (25), which were denved for the case where 8 1s functionally independent of B. Thus, to
establish the theorem we need only show that the first term of (26) tends in probabihty to zero (for
then the dependence of 6 on B has no nfluence on the asymptotic distribution of B' and the latter
1s the same as that given in Theorem 1').

To do so we first approximate f(A,8)™'f, (A, 6) f(A;0)"! by the Cesaro sum to M terms of 1ts
Fourter series, which we write as

FOLO) T (A0 (A, 0)F ~ (2m) T EIL (1 - lgl /M)Dy(8)e'®.

Then, for large enough M, ffvf()\;a")‘lf,l()\;6*)f()\;6*)‘11()\;B*) dA 1s arbitranly well approxi-
mated by

(27) @m)"'sM (1 gl /M)Dg(a*)[lz(m Bt)e'#* da

=Qr) '3 _,(1- gl /M)D,(6")C,(g;BT),
where
C,(2,B)=T"'3¥z,(B)z,,,(B), with z,(B)=4y, +EAy,

and 3 signifies summation over mdices for which 1<z, r+g<7 Now 2 (B =y, —
E(B"—B)y,, ., and since B 1s consistent we have C,(g;B") =, E(vw,,p)= [T, f(A;6)e's" dA.
The probability hmut of (27) 1s therefore

M

ff,{(%)” r a- lgI/M)Dg(ﬂ)e‘“}f(A)dA

g=—M

which s arbitranly close to

[0 (A 0)F(00) T F(As0)dr = [T F(K:0) 71, (A 0) -

Hence, the first term of (26) tends in probabihity to zero as required It follows that the limit theory
for BY 1s the same as that given for B in Theorem 1' The same simphfication 1n the first order
conditions occurs 1 the restricted case for o' where vec B =Ja and the theorem is thereby proved.
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