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The Durbin—-Watson ratio under
infinite-variance errors
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This paper studies the properties of the von Neumann ratio for time series with infinite variance.
Our asymptotics cover the null of nd vanates and general moving-average (MA) alternatives
Regression residuals are also considered In the static regression model the Durbin-Watson
statistic has the same limit distribution as the von Neumann ratio In dynamic models the results
are more complex. In finite-variance models our results specialize to those of the Durbin
h-statistic and equivalent LM test asymptotics Some Monte Carlo results are reported, illustrat-
ing the effects of infinite-vanance errors and regressors n finite samples.

1. Introduction

In recent years there has been a revival of interest in the properties of the
Durbin-Watson (DW) statistic for testing for serial correlation in regression
residuals. The statistic was originally designed to detect the presence of
first-order autoregressive [AR(1)] errors in the linear regression model and it
is known to deliver good power and to have certain optimal properties in this
case. For example, the DW statistic is approximately the locally-best-
invariant (LBI) test against AR(1) errors, as shown in Durbin and Watson
(1971). Recent work by Kariya (1988) and King and Evans (1988) shows that
the test continues to have good power and retains the LBI behavior against
other forms of error behavior whenever the first-order serial correlation
coefficient is nonzero. The reader is referred to King (1987) for an historical
review and for further references on the subject.

Although the properties of the DW statistic have been intensively studied
by econometricians, there seems to have been little work on the behavior of
this test in regression models where the errors have infinite variance. The
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case of regression errors in the spherically symmetric class, which admits
some infinite-variance distributions, has been studied analytically; and the
robustness properties of the Durbin-Watson test in this case are quite well
known — see Kariya (1977, 1980) and King (1980). But the null distribution of
the DW statistic is the same for spherically symmetric errors as it is for
Gaussian errors, so the assumption of spherical symmetry has no distribu-
tional effects. Similar distributional invariance under spherical symmetry
applies to other scale-invariant statistics like the #-ratio, as has been known
since Fisher (1925). In contrast, the effects of statistically independent
infinite-variance errors can be substantial. Indeed, for the conventional
t-ratio it is known that infinite-variance independent draws induce a bimodal-
ity in the density — see Logan et al. (1973) and Phillips and Hajivassiliou
(1987). These major differences in the distribution of the i-ratio between
spherically symmetric and statistically independent variates with infinite
variance indicate that it is of real interest to explore the effects of the latter
in the case of other test statistics and regression diagnostics. This is a topic
on which there has been virtually no work to date, with the exception of some
simulation evidence such as that of Bartels and Goodhew (1981).

The aim of the present paper is to show that an asymptotic analysis at least
is well within reach. We start by developing a limit theory for the von
Neumann ratio in a nonregression context. Our asymptotics cover the null of
iid variates and a general time-series alternative that allows for infinite-order
MA representations. Next we provide an asymptotic distribution theory for
the DW test in static models where the regressors and the errors have
distributions within the normal domain of attraction of a stable law with
characteristic exponent a < 2. Our results are extended to dynamic regres-
sion models where they are related to known asymptotic theory for Durbin’s
h-statistic and associated Lagrange multiplier (M) tests, which are now in
popular use for models with lagged dependent variables. A Monte Carlo
study is reported, illustrating the behavior of the tests in finite samples under
infinite-variance errors.

Our theoretical development is made possible by some recent results in the
probability literature on weak convergence for time series with infinite
variance. In particular, Resnick (1986) provides many fundamental results of
this type for sequences of partial sums and Davis and Resnick (1985a, 1985b,
1986) develop a general theory for sample covariances. Our theory is in large
part an application of their results to the regression diagnostic context.

2. The von Neumann ratio

Let {u,} be iid and suppose u, lies in the normal domain of attraction of a
stable law of index «. We shall write this for convenience in the form

u, € ¥ 9(a). (1)
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Note that a necessary and sufficient condition for u, € /' 2(a)when 0 <a <
2 is that the tail behavior of u; be of the Pareto—Lévy form, i.e.,

P(u, <u) =cia®lul *(1+0(1)), u<o,
P(u, >u) =cya*u"*(1+o(1)), u>0,

as |u| = o, where a is a scale parameter and c¢,, ¢, >0 with ¢, + ¢, = 1. [See
Ibragimov and Linnik (1971, ch. 2) for this and for further information about
domains of attraction, normal domains of attraction, and stable variates.]

We shall also assume that u; = —u, where = signifies equality in distribu-
tion. This condition ensures that the distribution of u, is symmetric. It is
convenient but not essential to our development (especially when 0 < a < 1).
If u, were strictly stable rather than simply in ./ 2(a), its characteristic
function would be cf (1) = e~ *""".

Our first concern will be with the von Neumann ratio

V]V:i(ut“ut—l)z/zn:utz' (2)
2 1

Under (1) u? € #P(a/2), whereas u,u,_,; € 9(a), the domain of attraction
of a stable law with index «. Note that u,u,_, does not lie in a normal
domain of attraction and this affects its norming sequence in partial sums
such as those that occur in (2). Indeed, as shown in Phillips (1990), the tails
of the variate X = u,u, when 0 < a < 2 are characterized by

pdf( X) = Ja%a**(In| X ) X =7 (1 + o(1)) (3)

as | X| — o. These tails are not of the Pareto—Lévy form, so that X does not
lie in .#"2(a). However, the function In( ) is slowly varying and the form of
(3) does not ensure that X € Z2(a) [Ibragimov and Linnik (1971, theorem
2.6.1, p. 76)].

Under these conditions suitably normed sample moments and sample
serial covariances of u, converge weakly to limiting stable variates. In
particular, it is known [see Davis and Resnick (1985b, p. 278)] that

n n
0522“3,5;12“1“1—1 =>(SO’Sl)’ (4)
1 1

where S, is stable (and positive) with index a /2, S, is stable (and symmetric)
with index «, and the limit variates (S,, S,) are independent. These limit
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variates have characteristic functions

of (1) = E(e"S) = exp{ —I'(1—a/2)cos(ma/4)|t|*/?
X (1 —isgn(t)tan(ma/4))},

exp{ —T'(1 —a)cos(ma/2)t|°} fora#l1,

cfg(1) =E(e"™) = exp{ — (7/2)I1]} for a =1,

[cf. Brockwell and Davis (1987, pp. 482-483); set C =1 in their formulae
(12.5.14) and (12.5.15)]. Note that in (4) and throughout this paper the
symbol ‘= signifies weak convergence of the associated probability mea-
sures.

Note that the norming sequences in (4) are given by

a,=an'’*,  a,=b(nln(n))"", (5)

where b = a’.
Next we write

n n
aza; (VN -2) = (—ZdJ‘Zu,u,_l)/(a;ZZu?)
2 1

n
—a,:l(umz)/ Bl ®)

1
Then, noting that a2d,, ' = (n/In(n))'/*, we deduce from (2), (4), and (6) that
(n/In(n))"*(VN =2) = =25,/ (7
by direct use of the continuous mapping theorem. This gives us the asymp-
totic distribution of the von Neumann ratio under the null that {«,} is iid and

in 4/ 9(a).

We can proceed in a similar way under the alternative hypothesis. Let us
suppose that u, has a general moving-average representation of the form

u,= Zdjst_], dy=1, (8)

where ¢, is iid, symmetric, and in .#2(a). It will be convenient, but is not
essential, to assume that the coefficients d, in (8) are majorized by geometri-
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cally declining weights, i.e., |d | <K@’ for some K> 0 and some 0<6 <1
Then the series (8) converges a.s. [see, e.g., Brockwell and Davis (1987, p.
480)]. Under the usual AR(1) alternative of

u=oeu,_,+e, lol<1, (9)

we have d, = ¢’ directly.
The tail behavior of the density of u,, f(u), under the alternative (8) is also
of the Pareto form. Specifically,

® 1/
f(u) ~%aa“( P Id,I“) ™7, Jul > o, (10)
1=0

[see, e.g., Brockwell and Davis (1987, p. 481)]. In (10) the symbol ‘ ~ * is used
in the usual sense that the difference between the expressions is o(1). When
¢, is symmetric stable, we have the distributional equivalence

® 1/«
u,= ( Zld,!“) (11)
1=0

as may be verified by looking at the respective characteristic functions.
Although second moments of u, in (8) are not finite when 0 <a <2, we
may, as in Davis and Resnick (1986), define a pseudo-correlogram for u, by

p(h)= Zd]d]+h Zd}z, h=172"--- (12)
1=0

=0
When o = 2 and Eu? < , this is equivalent to the usual correlogram given by
p(h) = E(uu,y,) /E(u7). (13)

In studying the asymptotic behavior of the von Neumann ratio under the
general alternative (8), it follows from (6) that the dominant term is given by
the sample first correlation

n-1 n
ﬁ(l) = Z utuH—l/Zutz'
1 1
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Indeed, we may rewrite (6) as
a2y (VN = 2(1-p(1))) = —2a2a; 1{p(1) — p(1)} + 0,(1),

where a2d; ! =(n/In(n))'/* as before.
From the limit theory in Davis and Resnick (1986, pp. 555-556) we have

. /e
(n/In(n))*{p(1) —p(1)} = ( x If,l“) S1/S0-
=1

J

where
fi=p(i+1) +p(j—1) =2p(j)p(1), (14)
and the limit variates (S, S,) are independent and stable with indexes a /2

and a, respectively, just as the case of (4) under the null hypothesis. We
deduce that

® 1/a
(n/1n(n) /(N =2(1 =p(1)} = —2( > !f,l“) 1/50

Collecting these results together we have:

Theorem 1. Under the null hypothesis that u, is iid symmetric and in N Z(a)
with 0 < a < 2, the limit of the von Neumann statistic is given by

H(n/In(n))*(VN =2) = 8,/5,. (15)

Under the alternative that u, is generated by (8), we have
® 1/
(n/In(n)) (YN =2(1-p(1))} = ( )y lf,t“) 51/8-  (16)
J=1

In both (15) and (16) the limit variates (S, S) are as in (4) and the constants
f, in (16) are gwen in (14).

Remark (a). When « = 2, the variance of u, is finite since u, € #2(2). In

this case the limit distributions (15) and (16) are both normal but the norming

factor is n'/? rather than (n/In(n))'/2. In fact, $; = N(0,1) and S;=1 as.

The latter follows from the fact that when « = 2, the norming sequence is

a,=an'"? and n~ 'Y u? - a* = var(u,). Relating this to the above we may
as
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write
n
a2 Lul= 8= [(@n)’ = [(@w)’ = [dr=1 as,  (17)
1 0 0 0

where W(r) is standard Brownian motion and U/(r) is a standard stable
process with index « [see Phillips (1990) for further discussion of the multiple
stochastic integral representation that appears in (17)]. Also, when u, is iid
and in A4 Z(2), we have u,u,_, € 4/ 2(2) and

d;lzutut—l:SIEN(()’l)’ (18)
1

where the norming sequence for the sample covariance is @, =a’n'/? rather
than @, =a*(nIn(n))'/? as in (4). Thus, when =2 and u, € #2(2), we
find in place of (15) the result

1n/2(VN = 2) = N(0,1) (15

under the null. Similarly, under the alternative we find that ¢, € .4/ 2(2)
implies that

(VN - 2(1 - p(1))) =N(o, iff), (16)
1

[cf. Anderson (1971, theorem 8.4.6, p. 489) and Davis and Resnick (1986,
p. 555) on the limit distribution of sample serial correlations in the finite-
variance casel.

Remark (b). Fig. 1 shows the empirical density of the ratio S,/S, for
various values of « including the case a=2 when S,/S,=N(0,1), as
remarked above. These densities and the quantiles given in tables la and 1b
show that tests that are based on the centered and scaled statistic

v=14(n/In(n))"*(VN -2) (19)
and that employ critical values for the a =2 case (delivered from the
standard normal distribution) are conservative for « close to 2 but liberal as

a 0.

Remark (¢). When p(1) # 0, (16) shows that tests based on v are consistent.
In particular when p(1) >0, we see that v diverges to —oo at the rate
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Large—sample distribution of v
v = 3(n/1n(n))/2(VN-2), a2

v
o~
[ a =05
— — —a=1.0
| e a =15
N — — a=20
N(0,1)
L
O..
ol
O.
ot
o

Table 1

Large-sample distribution of .

o

0.5 10 15 20 N, 1)
(a) Quantiles
1% —-503.8 109 -2.23 —-2.35 -2.326
5% —-35.8 -323 -1.18 —-1.69 —-1.645
10% -804 —-166 —-0.836 -1.33 —1.282
40% —-00024 —-0.039 -0.062 -0.27 —-0.253
60% 00009 0.019 0.041 0.25 0253
90% 709 1.50 0792 1.24 1.282
95% 2.90 2.82 114 161 1645
99% 3418 8.69 1.99 2.33 2326
(b) Central probabilities. P(Jv| < x)

0.25 0.448 0390 0.382 0195 0.197
0.5 0.553 0.542 0.626 0.387 0.383
10 0.599 0703 0.863 0.684 0.683
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(n/In(n))"/* Thus, a one-sided test of the hypothesis
H,: p(1) =0 against H;: p(1)>0

that was based on v would reject H, when v < —v,(0.05) where —v,(0.05) is
the 5% nominal asymptotic critical value in the left tail of the asymptotic
distribution under the null. Such a test is consistent. Its sampling properties
are investigated in the Monte Carlo study reported in section 4.
Remark (d). The representations (15) and (16) in the theorem use the fact
that S, = — S, so that both S, and the ratio S,/S, have symmetric distribu-

tions.

Remark (e). When the alternative hypothesis is the usual AR(1) representa-
tion (9), we find that f, = o’ "1 —¢?) and

( i’:l'ma)‘/“: (1-¢?)[1-lel"] ™,

=

leading to the explicit form
(1-¢*)[1- |‘P|a] —1/aS1/S0

of the limit distribution under this alternative. Again, when a =2, we have
(1-¢2)""8,=N(0,1 - ¢?),

which is the well-known asymptotic distribution of the first-order serial-corre-
lation coefficient in the finite-variance case.

Remark (f). The density of the ratio §;/S; has an infinite mode at the

origin when « <2. To see this, write Z =S8,/S, and note that in view of
independence the joint density of (S,, S,) factors as follows:

pdf(S;, So) =£1(S1) fo(So)-

Then,

pdf(Z) = Sof1(S0Z) fo(So) dSo,
So>0
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and the density at Z =0 is infinite since the integral that defines E(S,) is
divergent when « <2. The sharp peak in the density is reflected in the
graphs of fig. 1, especially for the case where a = 0.5. Cases such as this
where there is a discontinuity in the density pose interesting problems for
kernel density estimation. In particular, to avoid kernel smoothing over of the
discontinuity it is necessary to use one-sided kernel estimation on either side
of the discontinuity. This seems to be a problem that is not discussed in the
nonparametric estimation literature.

3. Asymptotics for the Durbin-Watson statistic based
on regression residuals

3.1. Regressions with independent regressors

We shall work with the linear regression model
y,=c+bx,+u,, t=1,2,..., (20)

where under the null hypothesis u, is iid symmetric with u, € .#2(a) when
0 <a < 2. We shall also assume that the sequence x, is completely exogenous
in the sense either that it is fixed or completely independent of the error
sequence {u,}.

We shall further assume that the parameters ¢ and b in (20) are consis-
tently estimated by ¢ and b. When « > 1, this may be achieved by least-
squares methods under rather weak conditions on x,. Indeed, Kanter and
Steiger (1974), Chen, Lai, and Wei (1981), Cline (1983), and Andrews (1986)
all demonstrate the consistency of the least-squares slope coefficient estima-
tor b under a variety of conditions which ensure sufficient regressor variabil-
ity. For example, when x, is scalar, iid, and lies in .#2(r) with r < «, then a
minor variation of Kanter and Steiger’s Lemma 4.3 ensures that b - b; and if
a >r>1, then ¢ > ¢ also, by the weak law of large numbers. Andrews (1986)
extends this result for the slope coefficient to the multiple-regressor case
where each regressor may be distributed with separate characteristic expo-
nents r, (i=1,...,k). He shows inter alia that consistency continues to
hold even when independence between x, and u, is relaxed, provided r=
max (r,) <2 when a > 1. However, stochastic dependence between x, and u,
does affect the limit distribution theory (and, hence, that of residual diagnos-
tic tests) even though consistency is unaffected. When « <1, consistent
estimates of the coefficients in (20) may be obtained by various robust
methods such as bounded influence estimators or the classical Huber M-
estimator [Huber (1964)]. The latter has been shown to perform well in
simulations in the present context [Andrews (1986)].
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The residuals from a fitted regression are written as
f,=y,—¢—b'x,=u,~ (¢ —c)—(b-b)x,

and the DW statistic then has the form
n 2 n
DW= (4, - ,.,) /zas. (21)
2 1

Since (¢, b) — (c,b) and since x, and u, are independent, we find that the
sample variance and covariance of i, behave asymptotically like the corre-
sponding quantities for u, upon appropriate standardization. In fact, as
n — o, we have

n n n n
a;22ﬁ3’5;1 Zatﬁt—l) ~ (a;ZZu;?,d;l Zutut~1 = (SO’SI)'
1 2 1 2

This leads us directly to the conclusion that the DW statistic (21) based on
regression residuals is asymptotically equivalent to the von Neumann ratio
based on the regression errors from (20). In particular, under the null for «,
we have

L(n/In(n))"/*(DW —2) = S,/S,.

In a similar way under the general time-series alternative (8), we obtain

- 1/a
H(n/in(m))" /(DW= 2(1 - p(1))} = ( g!f,l“) S1/S

Thus, the conclusions of Theorem 1 apply equally well to the standardized
DW statistic

d=i(n/In(n))"*(DW - 2).

In addition, when « = 2, we find as usual that d = N(0, 1).

3.2, Regressions with lagged dependent variables

In models with a finite error variance the asymptotic theory for the DW
statistic changes when lagged dependent variables enter the regressor set.
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Use of the correct asymptotics leads, of course, to the LM and 4 statistics.
The purpose of this section is to examine how the asymptotics are affected in
the infinite-variance case by the presence of lagged dependent variables. We
note that recent arguments in terms of power properties and small-sigma
asymptotic behavior by Inder (1986) and King and Wu (1991) have been
advanced to justify the use of the DW statistic in dynamic regressions. It
seems likely that these arguments could be extended (but with uncertain
outcome) to accommodate infinite-variance errors. This would be of interest,
but it is not our intention here.
Let us suppose that our model has the form

V=YY +Bx tu, lyl<l, (22)

where u, and x, are as in the previous section. We shall estimate (22) by least
squares giving 9,8 and suppose these estimates are consistent. This is a
relatively innocuous requirement since least squares is known to deliver
strongly consistent estimates in autoregressions with infinite-variance errors
[see Hannan and Kanter (1978)]. If there is a constant term in (22), then we
shall assume, as in section 3.1, that consistent estimators of the coefficients
are obtained and this may involve the use of robust methods of estimation
when a < 1.

To fix ideas we shall again assume that under the null hypothesis u, is iid
symmetric and in .#2(a) when 0 < a < 2. The regressor x, in (22) will be
taken to be scalar for convenience in the following exposition. Extensions to
multiple regressors, possibly with different tail exponents (r,, i=1,...,k),
may be undertaken along the lines of the following analysis by setting
r=min,(r,). Cases 1 and 3 below then go through in much the same way with
r>a and r <a, respectively. Some differences in the limit theory do arise
when r=a, but these will not be explored here because the results are
qualitatively the same as they are with one independent regressor. In view of
the complications that arise from the theory of operator stable laws in the
multivariate case [e.g., Sharpe (1969)] we shall not go further into this matter
here. In what follows, therefore, we shall confine ourselves to the case of
scalar x, and take the generating mechanism initially to be an MA process of
the form

X = Zgjet—p g0=1' (23)
=0

Here the e, are iid symmetric with e, € .#2(r) when 0 <r <2. The coeffi-
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cients g, in (23) are assumed to be majorized by geometrically declining
weights. As discussed in section 2, this implies the distributional equivalence

- 1/r
x, = ( Ylgl'| e
=0

so that the tails of the distribution of x, are asymptotically Pareto with index
r like those of the innovations e, when 0 < r < 2. We also assume that {e}
and {u,} are completely independent, and thus x, is strictly exogenous.
Distributional results may be obtained without imposing this exogeneity
condition, but they will, in general, be different from those given below. We
shall write the densities of x, and u, as A(x) and f(u), respectively, and their
tails as

h(x) =3 IxI77", x>,
f(u) =%aaa|u|~a—l, lu| — oo,

when 0 <r,a <2.

We shall start our development of the theory with a preliminary but useful
result on the tail behavior of the product X = xu. It is helpful to employ the
following index condition on r and a:

r<2a when a<l1,
(C1)

r<2 when a>1.
Under (C1) it can be shown, as in Andrews (1986), that the least-squares
estimates 9, B are consistent. Moreover, from the appendix of Phillips (1990),
we have

XeAVD(q), (24)

where ¢ =a Ar=min(a,r) when a#r and X € Z(a) when a =r. Both
cases are therefore included by the general statement that X € 2(q).
We write the residuals from a least-squares regression on (22) as

L’Z[=M[—('§/-‘"y)y[_1 - (é_B)xt,
where

A

B-B= {x’x—x’y_1(y’_1y_1)_ly’.lx}_l{x’u —xy_(yiiy_) vl

~ 7 b ! _1 7 - !
F=y={y y_1 =y x(xx) Xy} {yl - yix(x'x) " xu},
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in usual regression notation. Also
Ah_=uu_—(y—vy)y_u_,— (B _B)x,u—l
N 4 A 2
~(F=7)yu—(B—B)x_u+(§-7)y 1y,
A 2, A n , ,
+(B—B)xx_ 1+ (B=B)F—v)(xy_,+xl,y ). (25)
The remainder of the discussion will be carried out in three distinct cases.
Case 1: r<a. Here the tail behavior of x, dominates that of u, and we

have x,y,_, y2 1, x> € /' Dr/2), and x,u,, x,u,_,,y,_u, € 2(r). This leads
to

(n/In(n))"" (B - B),(n/(n))""($—v) =0,(1)

and
(nln(n)) /(B - B)x'u_,
= [(n/ln(n))l/r(BA - B)] [(n In(n)) _Wx’u_l]
x [(In(n))*"(nIn(n)) %] = 0,(1).
In a similar way we see that, upon standardization by (n/In(n))~!/%, the
fourth to the eighth terms on the right of (25) are all 0,(1) as n — «. Turning
to the second term we note that y, u, €4 Wa/2) if a/2<r and
€ 2(r)if r<a/2. Writing p =r A a/2, we then have
(nln(n)) ™ (5~ y)y_u_,
=[(n/in(m))"" (5 =] [(nln(n)) ™7y u_)]
x [(In(n))"/"* /20t P=V/"(nIn(n)) "]
=0,(1),
since r <« by hypothesis in this case. It now follows that
a *(nn(n)) " V*204_; =a > (nln(n)) " “wu_, +o0,(1) = S,.
Similarly,

a”’n~¥ Wl =a"?n" ¥ wu+o0,(1) = S,.
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Thus,
(n/In(n))"/*(DW —2) = —28,/8,, (26)

as in the case of regression with no lagged regressors.

The heuristic explanation behind (26) is straightforward. When r <a, the
independent regressors x, dominate in determining the tail behavior of the
lagged regressor y,_, in (22). Residuals from this regression then behave like
the residuals from a conventional static linear regression, leading to (26).

Case 2: r=a. In this case we proceed under the simplifying assumption
that x, is iid, although this can be relaxed at the cost of extra notational
complexity. Note that y,=pgZ,+U, where Z =X’ ,y’x,_, and U,=
X7_ov'u,_, Then,

R S T
_ 2
22n ley, = T2 pine ZI:Zt + 22n/® ZI:Ut +0,(1)

=>

B2b2 o
So1 +

2
a? %y

272’)302
0

2/a

= (1-7%) " {IBb/al + 1S,
where S, and S, are independent copies of S,. In a similar way we find

a (nln(n)) "y’ u

(Bba) “ 1 n
) L S
baCta(m) " 52 gy 5
~ (gb/)| Zs, )+ Sv)s,
0 0

3 © 1/a
(I(Bb/a)lazlvl’a+ ZM’“) S
0 0

= (1= 1y1*)"*{1Bb/al* + 1}/, (27)

where {S,,,5,,: j=0,1,...} are independent copies of S;.
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Next we observe that, since x, is serially independent, x,y,_; € Z(a),
while x? € .#2(a/2), and thus

(n/In(n))"*($—7y)
~ (aﬁzn"z/"‘y’ﬁly_l)ﬁl(a"z(n ln(n))ﬁl/ay’_lu)
= (1= y2)(1~Iy1*)"*{1Bb/al* + 1}/

a/2

x{(B22/a2)* 1) (8,/50)

= (1= y>)(1 = ly*) " /*{1Bb/al* + 1}/(S,/5,)

=G, say. (28)
Further,

n
—2,-2/a
a” Yy, _u, =Py
1

Here P, is a copy of S, and is not independent of S, at least as it occurs in
the limit (28).
Thus,
a™>(nln(n)) (3 =)yl Uy
= [(n/m(n)) (5= )] (a=2n7 2yt 1u )
= (L=92)(1=1y1*) " {1Bb/al" + 1) 7V/°(S,/8)) Po.
Also,
a=*(nln(n))"*(B - B)x'u_,
=a2[(n/In(n))""(B - p)]
X[(nln(n))—l/“x’u_ll[(ln(n))z/an‘l/“]
=0,(1),

and the remaining terms of (25) are similarly seen to be o,(1) when standard-
ized by (nln(n))~ 1/,
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Finally we observe that

a~*(nln(n)) " uu_, =P,
and

a~in"¥*uu=P,.
We deduce that
(n/In(n))"*(DW ~2) = —2[P,/P,— G]=H, say. (29)

Thus when r = a we see that the effect of the lagged regressor in (22) is to
alter the limiting distribution of the DW statistic. This corresponds with
known theory in the finite-variance case [see Durbin (1970) and Phillips and
Wickens (1978, solution 7.5, pp. 423-429)] where the limit distribution of the
DW statistic is normal but has a variance that depends on the variance of the
limit distribution of 9, in contrast to the static regression model. We shall
now see that this finite-variance case is a specialization of the general limit
theory when r = a.

Subcase: r=a=2. When r=a =2, both u, when x, have finite variance
[since u,,x, € #2(2)]. The scale factor is then n'/? in (28) rather than
(n/In(n))'/*. Next we observe that Py=1 and

—2P,/P,=N(0,4).

G is also normal in (29) when « = 2, but it is dependent on P,. To see this
we note from (28) that G has the following more explicit representation in
the general case:

G=(1- 72){(31)/61) ( iv’Sl, +
0

£

x{|Bb/al* + 1} "¥°/S,, (30)

where S,,=P,. When u,, x, € #2(2), we may write the limit variate H of
(29) as

H= 2P +2(1-v%)

X {(Bb/a) ( iv’Sl, + iwsz,)}/(ﬁzbz/az +1)
0 0

= —2[P,—P,], say.
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Now both P, and P, are normal and since S,, = P, we have
cov( Py, Py) = OOV(PI’ P(1- 72)/(1 +sz2/02))
- @ (1= y)/(a? + ).
Noting that
var(Py) = (1-y?)a’/(a* + Bb?),
we deduce that
P, — P,=N(0,1-2cov( Py, P,) +var(P,))
=N(0,1-a?(1-7v2)/(a®+B%b?)).
Since the variances of x, and u, are finite, we may write

a*=var(u,) =02, b?=var(x,) =02,

and since x, is iid, we find from the usual formula [cf. Phillips and Wickens
(1978, p. 427)] that the variance of the limiting distribution of Vn($ —y) is

V,=oX1-7%)/(a}+B%).
Thus the limit value H in the finite-variance (« = 2) case is simply
H=N(0,4(1-7,)),
i.e., we have
Vn (DW~2) = N(0,4(1 - V,)),

leading as usual to the Durbin /4 statistic

AnN1/2 A A A
h=\/l7r(1)/(1—-Vy) ’ r(1)=zutut—1/zutz’
and the conventional asymptotics
h=N(0,1),

which are the same as that of the LM version of this test.
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Case 3: r>a. This case may be handled in just the same way, so we
present only a sketch of the results here. Since the tails of «, rather than x,
dominate the behavior of y,, we find

(n/In(n))"“(3 -v)
~ (a7 7yt 1y_1) " (a X (nin(n)) "y u)

= (1—y2)(1 - Iy) "*(IBb/al* + 1} /*(S,/S,)
and

a"znﬁz/ay’ﬁluﬁl =’P0,

-2 /o _,

a " *(nln(n)) wu_, =P,
a *n"¥*uu=P,,

as before. This leads to

(n/In(n))/*(DW-2) = =2[P,/P,~ G'] = H, (33)

where
G’=(1_72){(Bb/a)27151,+ ZYIS2J}/SO’ (34)
0 0

and, as before, S,y =P, and §;= P,.

Observe that the limit distribution (33) is different from that of (29). This is
because the tails of u, dominate the behavior of sample moments of y, when
r > a, whereas the tails of both x, and u, are influential when r = &. Thus we
have

(1——'}/2)—1.5’0, r>a,

35
(1-y2)"'(IBb/al* + 1)7° 9

a_znﬁz/"y’_ly_l =
Sp, r=ua.

This implies that the limit variates G and G’ in (29) and (33) are different.
However, (35) suggests the distributional equivalence

-2/a

G =kG', k={IBb/al" + 1}

Since 0 < k < 1, we anticipate the distribution of G [and hence H in (29)] to
be more concentrated than that of G’ [and hence H’ in (33)]. The Monte
Carlo results of the following section corroborate this feature of the asymp-
totic distribution.
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The results of these three cases may now be summarized as follows.

Theorem 2. The Durbin—Watson statisttic DW computed from the residuals of a
least-squares regression on the dynamic model (22) with iid regressors x, €
N G(r) has the limit distribution

NVAN r<a,
Hn/In(n))/*(DW-2) ={ P,/P,—G, r=a,
P/P,— G, r>a,

for 0 <a <2 and r < 2a. The limit variates (S, S,) are as in (4), (Py, P,) are
independent copies of (S,,S,), and G and G’ are as in (30) and (34),
respectively.

When a =r =2, the limit theory 1s

1n'/2(DW ~2) = P,/P,— G=N(0,1-V,),

where V,, is the variance of the limit distribution of Vn($ —y) and is given in
3D.

4. Some simulation evidence

In sections 2 and 3, we gave the limiting distributions of the v and d
statistics in nonregression, regression, and dynamic regression models. We
now complement these results by investigating the distributional shapes that
the statistics possess in large and small samples.

Since closed-form expressions for the distributions are not available, we
resorted to simulation. We used the Kanter-Steiger (1974) algorithm to
generate symmetric standard stable random numbers of index a, for @ <2,
a # 1. For @ = 2, we drew standard normal random numbers. For a = 1, we
generated Cauchy random numbers by the inverse distribution function
method; i.e., if x is uniform on (—w/2,7/2), then tan(x) is standard
Cauchy. We then calculated the v and d statistics and used a nonparametric
density estimate with a standard normal kernel [cf. Silverman (1986)] to
deliver the pdf’s. In all simulations reported below, the number of iterations
was 20,000 for the v statistics and 10,000 for the d statistics. We selected

= 1000 as the ‘large’-sample size, and n = 20, 50, and 100 as the ‘small’-
sample sizes. Values of a chosen were a=0.5, 1.0, 1.5, and 2.0. All
regressions were run without a fitted intercept. As discussed earlier this
could be modified in the static case by using robust regression methods and
fitting an intercept to obtain consistent estimates of the residuals (especially
when a < 1).
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Large—sample distribution of d
= ¥(n/In(n))"/2(DW~2), a<2

L2
o a = 0.5
I — — —a=1.0
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4.1. Large-sample distribution of v and d

We first investigate the distribution of the standardized von Neumann ratio

[y N =), a<2,
%\/;(V]V—z)7 a=2.

Fig. 1 graphs the density of v for the four values of «, as well as the pdf of
the standard normal distribution for reference. We notice that the distribu-
tions are leptokurtic for @ < 2, and that the kurtosis increases as « | 0. On
the other hand, the pdf of v in the a = 2 case is very close to the pdf of the
N(0, 1) distribution. To complement the visual information of fig. 1, we give
the quantiles of the distributions in table 1a and the probabilities of v being
close to zero in table 1b. E.g., for a=0.5, table la tells us that the
distribution of v is both leptokurtic and has very heavy tails. As « increases
towards 2, the kurtosis decreases and the tails of the distributions become
thinner. In fact, as we see from table 1b, the probability that |vl < 1 is greater
when a = 1.5 than when « = 2. [This is due to the fact that the scale factor
(n/In(n))/* < yn as a12.] We also notice from table la that the distribu-
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Table 2

Large-sample distribution of 4.

o
0.5 1.0 1.5 20 N(0, 1)
(a) Quantiles
1% —438 4 -10.95 —-2.20 -232 —2.326
5% —-340 -3.24 -1.17 -1.70 —1.645
10% —-7.74 —-1.70 -084 —-1.34 —-1282
40% -00183 —00899 -0131 —-0.29 —0.253
60% 0.0103 00658 0.102 0.21 0.253
90% 730 1.50 079 1.25 1.282
95% 27.7 279 1.12 1.61 1.645
9% 3140 8.15 2.00 229 2326
(b) Central probabilities P(|d| < x)

0.25 0441 0.385 0376 0.199 0.197
0.5 0519 0.534 0622 0391 0.383
1.0 0.594 0.700 0867 0.685 0683

tions are asymmetric: the left tail is heavier than the right tail. This contrasts
with our result in section 2 that v has a symmetric distribution asymptoti-
cally.

We turn to the large-sample distribution of d, where d is based on the
residuals from the regression model

y,=x,tu,.

We are interested in how closely the distributions of d coincide with the
corresponding distributions of v. Recall our result from section 3.1: d and v
have the same limit distribution. The pdf’s of d for a = 0.5, 1.0, 1.5, and 2.0
are graphed in fig. 2, quantiles of the distribution are given in table 2a, and
the central probabilities are supplied in table 2b. Overall, we see that the
distributional properties of d are very close to those of v: the distributions
are leptokurtic, slightly asymmetric (the left tail being heavier than the right
tail), and heavy-tailed (especially for @ < 1).

4.2. Small-sample distributions of d

In studying the small-sample behavior of the d statistic, we seek to
determine in what respects these distributions differ from the corresponding
large-sample distributions presented above. We also test how well the DW
bounds test of the null hypothesis of iid errors vs. the alternative of first-order
serially correlated errors performs when the errors are symmetric stable. We
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Small—sample distribution of d
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continue to work with the regression model

y,=x,+u,,

where {x,} and {u,} are independent iid series with the same characteristic
exponent a. Since we do not include a constant term in the regression, we
use the d; and d, values given in table 1b of Kramer (1971). The d, values
can also be obtained from Farebrother’s (1980) tables, while the d,, values
are identical to those for regressions with an intercept.

The distributions of d for a = 0.5 are graphed in fig. 3 The main difference
to the large-sample behavior of d is that the distributions are less leptokurtic
and become more asymmetric as n decreases. These differences apply to the
cases of a = 1.0 (fig. 4) and a = 1.5 (fig. 5) as well; in particular, the left tails
become fatter, whereas the right tails do not change much compared with the
corresponding large-sample distributions.

In table 3a, we tabulate the relative frequencies of the DW statistic (not d)
being less than d; and d,, for @ = 0.5. In general, and allowing for Monte
Carlo simulation error, the performance of the bounds tests is poor, and we
get size distortions in almost all cases. Actually, for n =20 and a test size of
1%, the probabilities of DW being less than d; and d,, do ‘bracket’ the 1%
level, but with a very large difference in size (0.4% vs. 4.9%). For sample
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Small-sample distribution of d
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Small-sample distribution of d
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Table 3
Frequencies of DW <d; and DW <d,.

1% 5%
n P(DW <d;) P(DW <dy) P(DW <d;) P(DW <dy)
(@) a=05
20 00044 0.043 0.0637 0.0949
50 0.0346 0.035 0.0442 0.0507
100 0.0238 0028 0.0296 0.0314
M a=10
20 0.0037 0.0245 0.0381 00802
50 00299 00314 0.0451 0.0590
100 00244 0.0251 0.0368 00466
Q@Qa=15
20 0.0039 00214 0.0323 0.0780
50 00137 0.0213 0.0381 0.0620
100 00135 0.0177 0.0376 0.0523
(d)a=20
20 00051 0.0197 0.0310 00801
50 0.0074 00147 00351 0.0658
100 0.0064 0.0122 0.0396 00585

sizes of 50 and 100, the bounds tests give too large a size (in all cases greater
than 2%, i.e., the 1% value is not bracketed). If we choose a size of 5%, we
see that the actual size of the test is too large for n = 20, about correct for
n =50, and too small for n = 100.

Similar results obtain when we look at the performance of the bounds tests
for the cases of @ = 1.0 (table 3b). For a size of the bounds test of 1%, the
actual size is too large for n = 50 and n = 100; for n =20, d, and d,, bracket
the correct size. For a size of 5%, we get a more favorable picture: d; and d;,
bracket the correct size for n =20 and 50, but the size is too small when
n = 100.

The bounds test perform quite well when a = 1.5 (table 3¢). For a test size
of 5%, d; and d, bracket the stated size for all three sample sizes. For a test
size of 1%, the bounds tests still yield too large a size for n = 50 and 100, but
less so than when @ = 0.5 and 1.0. For n = 20, the bounds tests bracket the
1% level.

For completeness, we report the results of our simulations when « = 2.0,
i.e., when the errors are standard normal (table 3d). As we would expect, d;
and d,, bracket the true size for all three values of n. But since DW is less
leptokurtic for a = 2 compared with a < 2, the bounds are quite wide. E.g.,
for n =20 and a test size of 5%, the bounds give probabilities of 3.1% and
8.0%, respectively. This illustrates that one should, whenever possible, com-
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pute exact DW critical values when the variances are finite, rather than
simply rely on the bounds test alone. Our results indicate that this conclusion
holds a fortiori when the error variance is infinite.

4.3. Large-sample distribution of d in dynamic regression models

Our final set of simulations investigates the large-sample properties of the
distribution of d in the dynamic regression model

V=YY tX, Uy,

where |y| <1, x, is iid symmetric stable with index r, and u, is iid symmetric
stable with index a. As shown in section 3.2, the limiting distributions of d
and v are the same when a>r, but are different when o <r. In our
simulations, we held r fixed at 1.5, while we set a equal to 1.1, 1.5, and 1.9.
We considered the following values of y = {0.9,0.5}. As seen from the results
of section 3.2 the asymptotic distributions are invariant to the sign of vy, so it
is unnecessary to consider negative values of y.

For v = 0.9, we have graphed the distributions of d for a = 1.5 and 1.9 (as
well as the corresponding v statistics) in fig. 6a. We notice that, for this
large-sample size, the distributions of d match the corresponding distribu-
tions of v closely. For a = 1.1 (fig. 6b), on the other hand, the distribution of
d is less leptokurtic and has more mass in the region 0.5 <|d| < 3.0 than the
corresponding distribution of v.

For a choice of y equal to 0.5 (figs. 7a and 7b), we see that the
distributions of d do not differ by much from those of v — even when
a = 1.1. We conclude that the presence of a lagged dependent variable does
not seem to affect the behavior of the regression diagnostics by much when
the autoregressive coefficient is small, say |y| < 0.5.

5. Conclusion

This paper studies the asymptotic and finite-sample distributions of the von
Neumann and Durbin—Watson statistics in regression and dynamic regres-
sion models with infinite-variance errors. Appropriately standardized, the von
Neumann ratio converges weakly to a simple limit given by a ratio of two
stable random variables. The DW statistic has the same limiting distribution
in regressions with strictly exogenous regressors. The results are more com-
plex when lagged dependent variables are present. The limiting distribution
then depends on the relative ‘importance’ (as measured by their tail behav-
ior) of the regressors and the error term.,

Our simulation experiments show that the standardized statistic d is
leptokurtic when « < 2, and slightly asymmetric even when » is large. In
smaller samples, the leptokurtosis is less pronounced, whereas the asymmetry
increases. In general, the conventional DW bounds tests perform poorly and
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suffer major size distortions when « < 1.0. Inclusion of a lagged dependent
variable alters the limiting distributions when the errors have thicker tails
than the regressors. However, our simulation evidence suggest that this effect
will be important only if the coefficient of the lagged dependent variable is
large, i.e., close to 1 in absolute value.

The analysis and simulation of this paper can be extended in many
different ways. We have looked at the local power properties of tests based
on the DW statistic in static regressions and this can be extended to dynamic
regressions. Throughout we have assumed that the characteristic exponent «
is known. If o has to be estimated consistently (together with the other
parameters of the model), we would expect this to have important finite-
sample and asymptotic effects. Further, our simulations might be broadened
to include asymmetric stable variates and general infinite-variance distribu-
tions that lie in the domain of attraction of a stable law, as well as regressions
with multiple explanatory variables. Finally, there are many other regression
diagnostics whose asymptotic behavior is known for the finite error variance
case but is unexplored when the error variance is infinite. Some of these
topics are now under investigation by the authors.
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