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CHAPTER 16

Spectral regression for cointegrated
time series

P. C. B. Phillips

1 Introduction

Efficient techniques for estimating the coefficients in a multiple system of
linear equations by spectral methods were introduced by Hannan (1963).
These techniques, which are related to work by Whittle (1951) on Gauss-
ian likelihood estimation, provide the basis for a regression analysis in
the frequency domain. Their principal advantage is that they permit a
nonparametric treatment of regression errors so that it is not necessary
for an investigator to be explicit about the generating mechanism for the
errors other than to assume stationarity. In addition, the techniques make
it possible to focus attention in a regression on the most relevant fre-
quency, thereby offering a selective approach that has become known as
band spectrum regression - see Hannan and Robinson (1973) and Engle
(1974). They have also been extended to nonlinear models under condi-
tions that parallel those of nonlinear regression theory - see Hannan (1971)
and Robinson (1972). Most recently the methods have been refined to ac-
commodate automatic, data-driven bandwidth selectors - see Robinson
(1988). All of the theory has been developed for models where the time
series are stationary or where the regressors are amenable to a generalized
harmonic analysis.

The objective of the present chapter is to show how spectral methods
may also be usefully employed in regressions for certain nonstationary
time series such as integrated processes. Indeed, there are good reasons
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why their use may even be more appealing in this context than in regres-
sions for stationary series. The model I have in mind is a multivariate
system of cointegrated time series. Such systems have been the object of
study in many recent papers - see Engle and Granger (1987), Phillips and
Durlauf (1986), Stock (1987), Park and Phillips (1988, 1989), and the spe-
cial issues of the Oxford Bulletin of Economics and Statistics (1986) and
the Journal of Economic Dynamics and Control (1988).

The approach in this chapter follows that of some of my other on-
going work - see Phillips (1988). This research focuses attention on full
information estimation of cointegrated systems and gives strong argu-
ments for the use of full maximum likelihood estimation of the system in
error correction model (ECM) format. It is shown that such estimation
brings the problem of inference within the locally asymptotically mixed
normal (LAMN) family of Jeganathan (1980, 1982). This means that the
cointegrating coefficient estimates are asymptotically median unbiased
and symmetrically distributed, that an optimal theory of inference ap-
plies, and that hypothesis tests may be conducted using standard asymp-
totic chi-squared tests.

This chapter shows that similar advantages are enjoyed by system spec-
tral methods. Moreover, these methods have the additional advantage over
classical maximum likelihood that they permit a nonparametric treatment
of the regression errors. In other words, full system specification and esti-
mation (as in maximum likelihood) is not required. Indeed, the system
spectral methods given here involve linear estimating equations and result
in simply computed explicit formulas. These features mean that the meth-
ods avoid what can be awkward methodological problems of dynamic
specification and that they focus entirely on what is the central problem
of cointegrating regression theory - the estimation of long-run equilib-
rium relationships.

The analysis in this chapter employs the block triangular ECM rep-
resentation of a cointegrated system that was given in my earlier work
(1988). The triangular structure is especially appealing in the context of
spectral regression. The reason is simple: In a simultaneous equations
model with serially independent errors and a triangular structural coeffi-
cient matrix, it is well known that maximum likelihood is equivalent to
generalized least squares (GLS) - see Lahiri and Schmidt (1978). When
the errors are serially dependent, the ECM model can be transformed into
the frequency domain, retaining the triangular structure but inducing er-
rors that are asymptotically independent across frequency. Then efficient
estimation of the ECM requires GLS in the frequency domain, which is
popularly known as “Hannan efficient” spectral regression. Interestingly,
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my results show that in cointegrated systems full frequency band regres-
sion is unnecessary for efficient estimation in large samples, although it
may well be helpful in finite samples. The explanation is that the time-
domain regressors in the ECM are integrated processes and in the fre-
quency domain their spectra have dominant behavior at the origin. This
means that in constructing efficient estimates by GLS methods the asymp-
totic theory calls only for GLS weights that take account of the covari-
ance structure at the zero frequency or what we call the long-run error
covariance matrix. This simplification is of great significance. In effect,
efficient estimation of a cointegrating regression and hence the parame-
ters of a long-run equilibrium relationship do not require full maximum
likelihood estimation as in Phillips (1988) or Johansen (1988). Individual
parameters that govern the short-run dynamics of the model are in large
part irrelevant to the optimal estimation of the iong-run coefficients. All
that is needed for the latter is the composite effects that are embodied in
the long-run error covariance matrix, which is simply the arithmetic sum
of the serial covariances for all lags.

The following notation is used throughout the chapter. The symboi
“=" signifies weak convergence, the symbol “=" signifies equality in dis-
tribution, and the inequality “> 0” signifies positive definite when applied
to matrices. Stochastic processes such as the Brownian motion W(r) on
{0, 1] are frequently written as W to achieve notational economy. Simi-
larly, I write integrals with respect to Lebesgue measure such as S}, W(s)ds
more simply as S}, W. Vector Brownian motion with covariance matrix §
is written BM(). 1 use |4 | to represent the Euclidean norm tr(4'4)"/? of
the matrix 4, 4* to signify its complex conjugate transpose, [x] to denote
the smallest integer < x, and I(1) and I(0) to signify time series that are
integrated of order 1 and 0, respectively. All limits given in the chapter are
taken as the sample size T — oo unless otherwise stated. Proofs of theo-
rems are given in the chapter appendix.

2 Model and estimators

The model is the cointegrated system

Yu=B'yy+uy, 1))
Ay =uy, 2
where
1
Yu
n= =I(1)
! [yZI ]m

is an integrated n-vector process (n=m+1) and
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1
u = [u,,] = J(0)
U Im

is stationary with continuous spectral density matrix f,,,(A\) > 0 over -7 <
A < 7. As formulated, (1) is a single equation cointegrating regression with
cointegrating vector «’= (1, —8’). This approach may be extended to mul-
tiple equation cointegrating regressions, in which case g is a matrix of co-
efficients. The required extensions are straightforward and involve noth-
ing that is fundamentally new, so they will not be given here.

We shall assume that the partial sum process P, = Z{u, satisfies the
multivariate invariance principle

T~V2P(z, = B(r)= BM(®), 0<rsl, e

where @ = 2xf,,(0). We decompose the “long-run” covariance matrix
as follows:

Q=L+A+A,
where

L =E(uoup), A =k§lE (uouy).
Also, we define

A=%+A.

In addition to (3) we assume weak convergence of the stochastic process
constructed from the sample covariance between P, and u,, namely,

_l[Tr] , r ,
T El; E,u,=’§0§d3 +ri. )

Explicit conditions under which (3) and (4) hold are discussed in earlier
work, and the reader is referred to Phillips (1987) for references and for
a review. Suffice it to say here that they are general enough to include a
wide class of weakly dependent processes {#,} under mild moment con-
ditions.

It is convenient to partition the Brownian motion B and the matrices
0, L, A, A conformably with the vector y,. For example, we shall write

81] [@n Qﬁl] [Qn a3 ]
B= , @= , E= ,
[Bz wn O gn I
and so on. We also define @;;.2 = wy; — w5 955'w2.

The cointegrated system (1) and (2) has the following ECM represen-
tation:

Ay, =vya'y,_ +v, %)
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where
v'=(-1,0), a'=(1,~-8'),

| O
v’=[0 I ]u,=Du,.

This is the triangular system ECM representation derived in Phillips (1988).
It is this system that we now propose to estimate using spectral methods.
Note that the error process v, in (5) is stationary with spectral matrix
Jow(N) = Dfuu()‘)Dl > 0. We write @ = 27£,,(0), B(r) = DB(r) = BM(Q),
P,= DP, and similarly define £=DED’, A=DAD’, A=DAD’. These ma-
trices and vectors are partitioned conformably with y, just as their coun-
terparts without the sub bar. Corresponding to (3) and (4) we have

T-V2Pir, = B(r), (6)
{7r] r
T-'S P = §03d8+m. Q)
1

We make use of the efficient method of estimation introduced by Han-
nan (1963) for linear systems and later extended by Hannan (1971) and
Robinson (1972) to nonlinear regression equations. To this end we intro-
duce the finite Fourier transforms

T
wa(\)=(2xT)" 2 T Ay,
t=1

T
we(\)=Q2xT) 2 3 y, e

=1

T
wy(\)=(2xT) 2y y,_ e
t=1

T
w,(N) =Q2xT)" 2y ye

t=]
for Ne[—m, 7], yer = (1, Ay3,) and we transform (5) accordingly as
wa\) = ya'w,(\) +w,(A). 8)
We partition wy(\) conformably with y, using the notation
wy(N)'= (Wi (N), wa(N)').

Following Hannan (1971) and Robinson (1972), a class of nonlinear
weighted least squares estimates of a may be obtained by minimization
of the Hermitian form

% tr{ [WA()\S)— 'Ya,wy(ks)][wA(ks) _'Ya,wy()‘s)]‘q’(ks)} (9)
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with respect to a, where ® is a given positive definite Hermitian matrix,
As = 27ws/T and s is integral with values in the interval —[7/2]1 <5 <[7/2].
The summation in (9) is over \; € ®, which is a subset of (—, 7) such
that if A € ® then —\ e ® also. The use of ® permits the restriction of the
regression to a set of frequency bands in (—=, ) and is inspired by the
idea that the model, when formulated in the frequency domain as in (8),
may be more appropriate for A in certain bands than in others. In prac-
tice, therefore, the regression may be confined to what seem to be the rel-
evant frequency bands and as such is known as band spectrum regression.
The reader is referred to Hannan (1963, 1970), Hannan and Robinson
(1973), and Robinson (1972) for further details and discussion, and to
Engle (1974) for an econometric application of these ideas.

In the present context, because the cointegrating vector « defines a
long-run relationship between the components of the time series, one pos-
sibility would be to confine the regression to a band around the origin so
that low-frequency elements in the series are emphasized. In this applica-
tion to a U.S. aggregate expenditure relationship, Engle (1974) in one case
eliminated high-frequency elements from the regression, using the argu-
ment that these are associated with transitory components of the two vari-
ables - expenditure and income - in the regression.

In conventional spectral regression, choice of the weight function &(-)
that appears in (9) involves only efficiency considerations. Indeed, the cri-
terion (9) would be proportional to the exponent in the Gaussian like-
lihood of (8) if the w,(\;) were independent (complex) normal random
vectors with covariance matrix ®(\,)~". In the Hannan efficient proce-
dure &(-) is selected in such a way that this is achieved asymptotically.
This approach, which originates in the work of Whittle (1951), relies on
the fact that under rather general conditions on {v,} and for A, in a band
around « (so that A\, - w as T — ), we find

Wy(As) = N0, fop(@)), w#0,x (10)

(for example, Brillinger 1974, theorem 4.4.1), where N° signifies the com-
plex normal distribution. In designing an efficient procedure we may then
select ®(\,) =f,,(w)~! for A in a band centered on w and for some suit-
able choice of consistent spectral estimate £,,. Details of the construction
are given by Hannan (1963).

I envisage a straightforward application of these ideas in the present
context. However, unlike the conventional spectral regression model, the
regressors y,; in (5) (and hence w,(\) in (8)) are in general coherent with
the errors v, (w,(\)). The regressors are also (1), not 7(0), processes. These
features of the present model make the choice of weight function ® criti-
cal. As I will show, a nonefficient choice of ® induces a (second-order)
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bias effect in estimation as well as a loss of efficiency. As a result, fully
efficient procedures have much more to recommend them in the present
application.

A simple way to estimate f,,(\) is to use the residuals from an initial
least squares regression on (1). Writing &, = Ay, —y&’y,.;, We may now
compute the smoothed periodogram estimate

fw«»,)- zlwm) va'wy(A)1[wa(hs) —y@'w, (A)1% (1)

where the summatxon is over

)\,G(B,=<wj m—<k wj+ 2M>

that is, a frequency band of width =/M centered on

w, = fM’- j=-M+1,..,M

for M integer. Setting m = [T/2M ], we are now in effect averaging m
neighboring periodogram ordinates around the frequency w; to obtain
fu,,(w,). As usual, we require M — o in such a way that M/T — 0 (so
that m — ). In fact, it is convenient for the proofs to require that M =
o(T"?), as in Hannan (1970, p. 489). Because & is consistent (Phillips and
Durlauf 1986; Stock 1987), we find that when w, — w we have

fvv(wj) L’fuu(w) as T — o,

A further consideration is that, since vy’ = (—1, 0) is known by virtue of
the construction of (5), nonlinear methods are not required. Indeed, min-
imization of (9) with the following choice of weight function

®(\) =f,0(w,)™" forall \;e,
leads directly to the estimator

M -1
B= —[mj_ > 'qu?(w,)'yfz'z(w,)]

-M+

1 -1
X [ZM _/=—EM+1 fZ'(wj).va (“{/)7]

| M
=[_..._ 3 e’f,;'(w,)efz'z(w/)]

-1

2Mj=—M+l
x[-L 3 Autanfile)e 12)
2M/=—M+l 26\ ) Jyy W, ’

where
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Foate) =L wahIwa (M) 13)
m (3]

fz.(w,>=%§: Wa (A Wa(As)", 14
@]

and e’'=—-y'=(1,0,...,0) is the first unit n-vector.

Since our focus of interest is the (long-run) cointegrating vector a’=
(1, —8’), alternative estimators might be considered that are based on low-
frequency averages. One such possibility is

g = L2 O f2e 05Oy _ [0 f5 (0 (Oe
© Y72 0)y efi0e
which relies only on spectral estimates at the origin. The information that
is neglected in the formation of 5(0, (in relation to 8) turns out to be un-
important at least asymptotically, as we shall show in Section 3.

In formulas (12) and (15) above, § and o, have been constructed from
the smoothed periodogram spectral estimates (11), (13), and (14). We ob-
serve that other conventional choices of spectral estimates may be em-
ployed in these formulas without affecting the asymptotic theory obtained
below. Note also that the periodogram at frequency zero is itself zero if
data have been derived from their sample means. This does not cause any
difficulty in the computation of 5(0, because smoothed periodogram esti-
mates involve ordinates at points other than zero. As in the work of Park
and Phillips (1988, 1989), however, the usc of demeaned or detrended data
does affect the limit distribution theory, typically by the replacement of
Brownian motion in the limit functionals by respective demeaned or de-
trended processes.

15

3 Asymptotic theory

The main result is the following:

Theorem 3.1.

(@) T(B—-B)=(f} B,B3)"'(|; B,dB,.2),
(b) T(Bioy—B)=(§}B,B;)~'(§} B,dB,.,),

where
Bx-z]l ([wu.z 0 ])
= BM
[82 m 0 n22

-1
w2 = @y — w33 Wy

and
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The common limit distribution in (a) and (b) is given explicitly in mixed
normal form by the integral

[ N, g0n..05)dPG@), 16)
£2>0
where
l _l
s=ci([,W:5) e, a7
e, is the first unit m-vector, and W, = BM(1,,,).

Remark (a): We see from the result stated that § and o, are asymp-
totically equivalent. Information in the component spectral estimates at
the origin is all that is relevant in the limit distribution, and this is all that
is used in the construction of 5(0,. In empirical work, of course, 8 and
B0y will differ. However, since much of the spectral power is concentrated
in an immediate neighborhood of the origin for most aggregate economic
time series it seems likely that this difference between the estimates will
not be great, at least in those practical applications where the sample size
is large.

The asymptotic equivalence of § and B0y shows that full frequency
band regression is unnecessary for efficient estimation in large samples.
As pointed out in the introduction, the reason for this is that the regres-
sors in (§) are integrated processes, whose spectral power is concentrated
at the origin. This means that in constructing GLS estimates in the fre-
quency domain, the contribution of the zero frequency ordinate domi-
nates and all that is required for the optimal GLS weighting asymptotic-
ally is the error covariance structure at the zero frequency.

Remark (b): The representation (16) shows that the limit distribution is
a continuous mixture of normals. The mixing variate is the scalar (17). If
we partition the m-vector standard Brownian motion W, as

1 m-1
Wi=[Wy Wil
then we can also write (17) in the form

g= {Ll) w3 -Ll) Wi Wz’z(ﬁ W Wz'2>”l

. -1
go W, Wzn} .

Remark (c): The limit distribution (16) is the same as that of the fuil
maximum likelihood estimator of 8 in (5) when an explicit parametric
model is assumed for the data-generating mechanism of the innovation
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vector v,. When v, is generated by an ARMA process this estimator is ob-
tained by constructing the full (Gaussian) likelihood by a method such as
the innovations algorithm (see, for example, Brockwell and Davis 1987).
The properties of this maximum likelihood estimator of 8 are explored in
Phillips (1988). The result shows that spectral regression offers a simple
alternative to maximum likelihood that has several advantages:

(i) The method leads to explicit easily calculated formulas;
(ii) it offers the additional generality of stationary (rather than
ARMA) errors in (5);
(iii) it avoids the methodological problems that are involved in the
specification of short-run dynamics through what is, in effect, a
nonparametric treatment of the errors.

Remark (d): Asremarked in Section 2, the choice of an efficient estima-
tor is critical to the above result. Suppose, for example, a general weight
function ®(-) were employed in (9). This would lead to the following esti-
mator in place of §:

1 M -1 M
5¢= —[m J'=‘M*17'Q(wj)7f2,2(wj)] [mj=.§[+1 fz.(wj)i(w‘,)y].

The asymptotics for this estimator are given by

Theorem 3.2.

T(Bs—B)

1 -1 ©

= (L BzBi> <S; B,dB'®¥(0)e+ Y A (g+ l)Fge> /e’<1>(0)e, (18)
&= -
where ®(\) has the following Fourier series representation:
- _1__ < igh

®(\)= o gEQFge (19)

and where

A,(8)= EOE(“zovf+g).
J=

The limit distribution (18) is no longer mixed normal. The distribution is,
in fact, miscentered by a second-order bias that arises from two sources:
the term X, A;(g +1)F,e and the fact that the Brownian motion B,(r)
is in general correlated with the Brownian motion B’(r)®(0)e. Second
and perhaps more important, the limit distribution (18) involves nuisance
parameters that inhibit statistical inference. These nuisance parameters



Spectral regression for cointegrated time series 423

involve both the bias effects and the covariance matrix of the Brownian
motion B(r). They cannot be easily eliminated and their presence in the
limit distribution renders (18) effectively impotent for inferential purposes.

Remark (e): Thelimit results givenin Theorem 3.1 belong to the LAMN
theory of Jeganathan (1980, 1982), LeCam (1986), and Davies (1986). As
pointed out earlier, the criterion function (9) is asymptotically propor-
tional to the exponent of the Gaussian likelihood of the model (5). This
Gaussian likelihood belongs to the LAMN family of Jeganathan (1980)
(see Phillips 1988 for details). The estimators § and 5(0) may therefore be
regarded as spectral versions of maximum likelihood. As such they have
all of the advantages of the latter, namely,

(i) they are asymptotically median unbiased and symmetrically dis-
tributed;

(ii) the nuisance parameters that appear in the limit distribution (16)
involve only scale effects and are readily eliminated to facilitate
inference;

(iii) an optimal theory of inference applies (from LeCam 1986);

(iv) hypothesis testing may be conducted using conventional asymp-
totic chi-squared criteria.

Remark (f): To pursue points (ii) and (iv), suppose we wish to test the
following hypotheses about the cointegration space
H,:h(8)=0, H:h(8)#0,

where A( ) is a twice continuously differentiable g-vector function of re-
strictions on 8. We assume that H =0dh(8)/98’ has rank g <m.

To test Hy against H, we may employ the Wald statistic in its usual
form. Thus for the estimator § we set up

M, =h(BYIAV-H'1"'h(B),
where H=H(f) and

1 1 M r£-1 ! -
=5 5 e endie)]

Here Vr is the conventional estimate of the asymptotic variance matrix
of B from spectral regression theory (see Hannan 1970, p. 442).
Similarly for 8o, we construct

M, =h(Bo) [HoVroHpl'h(By),
where
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5 MK _ .
Ao=HpBo),  Vro=—r[vf0(07'¥/2(0)]7', and
1
K= Ll k(s)ds.

In this variance formula k(-) is the lag window used in the construction
of the spectral estimates that appear in (15). Thus, for the smoothed pe-
riodogram estimates given in (11), (13), and (14) we have k(s) =sin( ;-ws)/
(3xs) and K =2 (e.g., Hannan 1970, pp. 275-6).

The asymptotic theory for the test statistics M, and M, is as follows:

Theorem 3.3.
M], Mz = Xg.

Thus, statistical tests of H,, may be conducted in the usual fashion of as-
ymptotic chi-squared tests. Interestingly, no modification to the conven-
tional formulas from spectral regression theory are required in the case
of the test M. The test based on M, involves a scale factor of 1/MK rela-
tive to the conventional test based on a band spectral regression for sta-
tionary time series. This is because the asymptotic behavior of the spectral
estimate f5,(0) in Vry is as follows:

1 1 1 ,
-M7fzz(0) = E;KSOBsz

(see (A.11) in the appendix). This limit involves the scale factor K =
5'_, k(s)ds that measures the weight contributed by the lag window k(-)
to the spectral estimate.

Remark (g): Single equation spectral regression methods do not have
the same advantages as the systems estimators § and 50. To see this it is
helpful to consider the following estimate, which is the analogue of 8 for
the first equation of (5):

. 1 1
8= [277 ,=_2 fow @ far ) ] [z—ﬁ . _2 > | Fale)fouw) ]
where f5(\) is an estimate of the cross spectrum between y,,_; and yy,.
The estimator 8* is the Hannan (1963) efficient estimator of 8 in the equa-
tion

Yu=8yy+uvy. (20)

After minor modifications to adjust for the lag in (20), this is just the
standard spectral regression estimator of 8 in the cointegrating regression
equation (1). The asymptotic theory for 8* is given by
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Theorem 3.4.

T(B*-8)= (§; 192195>_l <§; B,dB, +a>, o)

(5 o) 5.9

g=—® §=—x

where

and

Ay(e)= .EOE(uZOUU+g)-
J=

The limit distribution (21) involves second-order bias effects and nuisance
parameters arising from the presence of  in the second factor of (21) and
the correlation between the Brownian motions B, and B,. As in the case
of (18), these problems severely inhibit the usefulness of the estimator 8*
for inferential purposes.

Note that by decomposing B, as follows:

By(r) = w053 By(r) + w3 Wi(r),

where W(r) is standard Brownian motion, that is, BM(1), and W, is in-
dependent of B,, we deduce an alternative representation of (21) in the
form

! AL 0=l 172 { (! o
<§OBZBZ> (§032de92,_w2,+5>+w“,2<§08232> SoBde,. 22)

The first term of (22) involves the “unit root” distribution

<§; 192195>_l <§; B, de>

and the “bias effects” from the factor ©5;'w,, and 8. The second term of
(22) is mixed normal with the same distribution as (16).

The decomposition (22) highlights the differences between single-equa-
tion and systems spectral regressions in the model (5). Single-equation
methods neglect the prior information of the m unit roots in (5) and ig-
nore the joint dependence of y;, and y,,. As a result, these methods im-
plicitly involve the estimation of unit roots and this is responsible for the
presence of the unit root distribution in the first term of (22). In addition,
we see that the neglect of the rest of the system in (5) imports a second-
order bias effect through the term 8. The magnitude of this term depends
on the extent of the contemporaneous and serial correlation between u,,
and v,,.

Finally, we observe that Theorem 3.4 gives the asymptotic theory for
the (full band) spectral estimator used by Engle (1974) in his application
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of spectral regression to the aggregate consumption function with quar-
terly U.S. data on money income and consumption. Our results suggest
that the estimates of the propensity to consume obtained by Engle in this
study are likely to be biased and that conventional tests are not validated,
at least by the asymptotic theory given here. It would seem worthwhile to
reanalyze this data set using the systems estimator 8 (and B(0)) and asso-
ciated test statistics such as M, (and M,). It is also of some interest to de-
termine the extent of the bias effects in finite samples through simulation
experiments.

Remark (h): The estimators 8 and 5(0) both rely on first-stage estimates
of the residual spectrum. This in turn depends on a first-stage estimate of
the cointegrating vector, which can be delivered by least squares. How-
ever, since the latter estimate has a second-order bias - manifested in a
miscentered limit distribution (see Stock 1987 and Phillips and Durlauf
1986) - it would appear that some improvement may be expected by the
use of iteration. This would entail the reestimation of the residual spec-
trum using residuals calculated from the regression coefficients 8 or £,
and then reestimation of 8 by (12) or (15). Again, simulations would be
useful in advising about the merits of such iteration in finite samples.

4 Conclusion

This chapter provides a frequency domain extension of the results in Phil-
lips (1988) on the maximum likelihood estimation of cointegrated sys-
tems. Indeed, full system spectral regression in an ECM is asymptotically
equivalent to maximum likelihood and shares with it the advantages of
belonging to the LAMN family. But spectral regression techniques seem
to have more appeal in the context of cointegrated time series. This is true
for several reasons.

1. They involve only linear estimating equations and thereby avoid
the nonlinear optimization methods that are typically called for
in the application of maximum likelihood (for instance, when
there are ARMA error processes).

2. The nonparametric treatment of regression errors that is inher-
ently involved in spectral methods avoids the methodological dif-
ficulties that are encountered with the need to completely specify
the data generating mechanism of the errors before maximum
likelihood is applied.

3. The nonparametric approach brings with it additional generality
concerning the error processes at what seems to be little or no
extra cost.
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4. Even simpler methods are available - for example, the systems
band spectral regression estimator given by (15) - and such esti-
mators continue to enjoy the same asymptotic properties as the
full system estimator (12).

5. Standard systems spectral regressions may be used with no mod-
ifications being necessary to deal with the regressor endogeneity
that is characteristic of cointegrated systems.

It is important to emphasize that it is the systems spectral estimators
given by (12) and (15) that have these advantages. Single-equation or sub-
system spectral regressions have quite different asymptotic properties as
shown in Theorem 3.4. In particular, they suffer from bias and nuisance
parameter dependencies that inhibit their use for inference. Thus systems
estimation brings with it considerably more than the usual efficiency gains
we have come to expect from traditional asymptotic theory. In view of
these apparent advantages of systems spectral estimators over direct max-
imum likelihood and single equation spectral methods, it would seem
worthwhile 1o investigate their performance in sampling experiments and
in empirical work.

In developing his alternative strategy for empirical macroeconomics
via unrestricted vector autoregressions, Sims (1980) set out to emulate the
spectral regression approach. He argued as follows:

The style I am suggesting we emulate is that of frequency-domain time series the-
ory (although it will be clear I am not suggesting we use frequency-domain meth-
ods themselves), in which what is being estimated (e.g. the spectral density) is im-
plicitly part of an infinite dimensional parameter space, and the finite parameter
models we actually use are justified as part of a procedure in which the number of
parameters is explicitly a function of sample size or the dara.

The present chapter puts forward some new arguments for the explicit
use of frequency-domain methods in empirical macroeconomics. It is ar-
gued that if the parameters of a model can be separated sensibly into the
coefficients of long-run relationships on the one hand and short-run dy-
namics on the other, then frequency domain regression provides a nat-
ural method for the efficient estimation of the long-run coefficients. If the
short-run dynamic adjustment coefficients are best thought of in terms of
an infinite dimensional parameter space, then spectral regression offers
a convenient mechanism for dealing with this complexity. Interestingly,
efficient estimation in the frequency domain does not necessarily involve
the full spectral density. As we have seen, all that is important, at least in
the model studied here, is the composite effect of serial covariances at all
lags, that is, what is here termed the long-run covariance matrix and what
is measured by the value of the spectral matrix at the origin.
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Appendix
Proof of Theorem 3.1: (a) From (12) we find that

1 M SR
T(B-8)= [m— j=_M+l¢ﬂvl(°’j)efzz(‘*’j)]

1 M -
X [mjg_EMHfZU(w/)fvvl(wj)e]~ (A.D
Our approach follows Hannan (1963) in general outline, with the main
differences arising from the treatment of the nonstationary elements.
It is convenient to work with spectral estimates in (A.1) of the same
general form, say
fo= 3 k(2 )emme
ab 2 T n—_— M M ab ’
where

T
Com=T"'Y a,b,,,, 1st+n=<T
1

and where the lag window k( ) is a bounded even function defined on

[—1,1] with k(0) =1. For example, when k(n/M)=1-|n|/M, f,,(\) is

the Bartlett estimator (e.g., Hannan 1970, p. 278). We may also replace

k(n/M) by k(n/M)(1—|n|/T) in the formula without affecting the argu-

ments that follow. Other spectral estimates may also be employed, but

the formula above helps to simplify derivations and avoid repetition.
As in Hannan (1963) we have

mgx!fw(x)—fwmlbo

as T and then the limit behavior of (A.1) is equivalent to that of the
same expression but with f,,(w;) replacing f,,(w;) in both factors on the
right-hand side. We take each of these in turn.

Using the Fourier series

1 «©
[N = > _E Dye'®,

we have
LS efsieetal)
2MT .5, T "R

1 1 M ; 7J
- 'D. e — igej/Mg ( °J
27T g=2—eoe ge 2M j=—2M+le f22<M>

=<_L>zi 5 eDecnion(L) A2)
2r ) T, 2, 2 \M) :
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where
8+2IM=g, -M+l=sg=sM

for some integer / and where
T
M) =TT yuyssn, 1st+nsT.
1

The next step is to determine the asymptotic behavior of (A.2). We
start by defining the random elements

[7r]
XT(")=T_1/2P[Tr}y ZT:(")=T_1 ? Plvt’-H'

In view of (6) and (7) we have the weak convergence
Xr(r)=Xo(r)=B(r)

ZT,(r)=Z°°,(r)=§;Bd8+rA(i),

where

A()= S E(wov)..).
J=0

Using the Skorohod construction, we now employ a new probability space
with random elements {(X7, Z7,)}, (X%, Z2,) for which

Xr 2 X2, Zn ==z, (A.3)
and where
Xr=X7, Zn=Z;

(with “=" as usual representing equivalence in distribution). It will be
convenient to use a superscript “2” on these random elements to signify
subelements of matrices and vectors that correspond to the component
uy, of v,. Thus we write

XP=B,, Z§‘,2,’=§;Bzd8’+rA2(i),
Z°(°212) = §;Bz dBi +"A22(i),

and so on. With this notation we have, for 0 =n <M and up to a term of
O,(T™),

T
T 'ep(n)=T"2 21: Y2uYiien

1
= §0X7('2)X7(_2)'+ T_I{ZT('ZIZ)“)"' . +Z}-§2)(])}
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§x'<2>x*<2>'+r HZrPP W)+ +Z3700)) (=T 'c35(n), say)

a.s. §B; ;,
0

In view of (A.3) the final convergence takes place almost surely and uni-
formly in |n| <M as T - . The same result also applies when —M <
n=s0.

Because k(g/M)—1 for all fixed g as T (and hence M) — o, we de-
duce that

1V 1 , g \as (1Y , U e e,
(2#) g_}Z”eD ,€c3 (g)k<M> <Zw> (gzweD e>SOBsz.

This, of course, implies that

1\ 1 ) ok 1\/ & D IB.B.,'
(274 3 onomsan(§)-(2) 3 o)l

However,

c2(8)=c3y(g) forall g
and

By(r)=B3(r),

s0 that by a simple modification of the Skorohod-Dudley-Wichura theo-
rem (e.g., Shorack and Wellner 1986, p. 47) we deduce that

2
(}%) T 2 e'D eczz(g)k< >
g=-wo
1Y , .
(21>< > eD e>§08,_82. (A4)

= a0

Next observe that

3 2 e’Dye=e'f,;'(0)e

T g=-w

50 that the right-hand side of (A.4) is simply

1
e 'e\ B,Bj=——\| B,B;. (A.5)
§ 202 o1 § 252
It remains 1o consider the second factor in the right-hand element of
(A.1). Replacing f,,,, by f,, for the reason given earlier, we have
1

m/_ 2 fZU(“’/)fvv (“’/)e
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1 2 1 M 18w
( Y fulw)e J)Dge

—E;g=—eo m]=-—M+l
= -2-;- gEQCZv(g')Dgek ﬁ .

T
(M =T 'Y ¥y 1Vr4n, 1st+nsT
1

Now

=z@)

=Z; (1) (:=c3,(n), say)

25, 72 = §; B3dB*'+ A,(n+1).
We deduce that

1V & . as (LN pe purf o
(3) 2. @nen(if) == (5;) ,mas~( £ oe)
l>2 «©
+|=— A,(g+1)D,e.
(2'"' gzco 2 d

Using the Skorohod-Dudley-Wichura theorem as before, we obtain

l 2 «© . _g - l 2 l , o0
(3) 2 a@ne()=(55) f,8:am( 2 _pie)

2 »
+<l> S Ag+DDe. (A6

21 ) g2
Note that
2
¢ —1—> 3 D, \B(r)=e'2"'B(r) = B,(r) = BM -‘-) (A7)
27[’ g Wi1e2
Next we define
y,= E vé+j+nge’
E=—x
from wl}ich we deduce
-]
YA (g+1)Dse= EOE(uzoy,)zo (A.8)
4 J=

because

E(uzoy,)=Le'ﬂfzy(x)dho forall .

The latter follows in view of the fact that
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FuM=10 Ilfvv(x)( s Dgem>e

gE—-0

=27[0 110N ' (Ne
=0

for all Ae (—, x].
From (A.6)-(A.8) we obtain

1 2 o g 1
(—2;> s c2v(§)Dgek<—?M->='§oBdee. (A.9)

g=—®

Combining (A.9) with (A.4), (A.5), and (A.]), we deduce that

-lra
TG - p)=[ §3232] BoBdee]'
Because
w2 B, (r) = By.;(r) = BM(w).;),

the stated result (a) follows immediately.
The proof of part (b) follows similar lines. For the reasons advanced
earlier, f,,(0) may be replaced by f,,(0) in the formula for §g), giving

-1
TGo-6)~ {7 /®] {37/ @fi O] [efii0e @10

Using the Skorohod construction given in the proof of part (a), we have

ﬁfzz(o)ﬁ— 2 k( >—sz(’l)

n=—M
a.5 * %, __1_ !
__"’§08282v v= o le(s)ds

as T — o0, from which we deduce that

1 1
—M7fzz(0)=v§08285. (A1)
Similarly we find
- f0)= L3 k( )ci.,(n)
20M 2y

1

as, (Tpsspu 1
u§082d8 +5-0a, (A.12)

where
-]

Az = 2 E(uzov;).

J==w
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To see this, note that for fixed n we have
1
c;v(n)ﬂ'-»joazd 4 Ay (n+1),
where
Ax(n)= zoE(“ZO”fﬂ) =12 E(uv/).
J= ="

Because A,(n) =0 as n— o and A,(n) — A, as n —»—oo, we find that the
Cesaro sum

1 M
_— 2 Az(n)—'Az, M—-co,
M, "y

giving (A.12). Hence

S @ = BB+ 54, (A13)
"Next we observe that
[ (0)e=270""e (A.14)
and
A0 e=[0 I,,,]{ § E(vovj)}ﬂ“e
jm—e
=[0 I,]00 e
=[0 Ile=0. (A.15)

It then follows from (A.10), (A.11), and (A.13)-(A.15) that
-1
T(ﬁ(O)"ﬂ) = (l’ S;BzBi> (v S;Bz dB'ﬂ_le/e'ﬂ‘le>

= <§(‘) 3235)—' [, B2dB.,

as required. Q.E.D.

Proof of Theorem 3.2: This follows in the same way as the proof of
part (a) of Theorem 3.1. We simply use (19) in place of the Fourier series
for £,;1(\). Q.E.D.

Proof of Theorem 3.3: This is the same as the proof of Theorem 4.1 of
Phillips (1988). Q.E.D.

Proof of Theorem 3.4: This follows the same lines as the proof of part
(a) of Theorem 3.1 above. We use the Fourier series
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- ) S
f;"rl}r()‘)='2'; S de®,

2=~

and then

_1_ § f—l()\)f (w)=(L>2( § d)le B:_._}_SlB B
M}=—M+l ny 2\, 27 . 2] o 2 2"w" 0 2022
because

1NV, 1 g ]

(_2—;> %dg—_z_‘l—'f;’v’(())_ w"'
Next,

Lz
2Mj“—'—M+

L ’ lB dB d, L ’ A 1)d

=(2.]_.) SO 2 l(% g>+(2w>§ 21(g+ ) £
A

-_SOBZdBl+5].

wyy
The result stated now follows with = wy ;. Q.E.D.

1.’20,("’/ )fv;x}l(wj)
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