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In [4] Chan and Tran give the limit theory for the least-squares coefficient in
a random walk with i.i.d. (identically and independently distributed) errors that
are in the domain of attraction of a stable law. This paper discusses their re-
sults and provides generalizations to the case of I(1) processes with weakly de-
pendent errors whose distributions are in the domain of attraction of a stable
law. General unit root tests are also studied. It is shown that the semiparametric
corrections suggested by the author in other work [22] for the finite-variance
case continue to work when the errors have infinite variance. Surprisingly, no
modifications to the formulas given in [22] are required. The limit laws are ex-
pressed in terms of ratios of quadratic functionals of a stable process rather
than Brownian motion. The correction terms that eliminate nuisance param-
eter dependencies are random in the limit and involve multiple stochastic in-
tegrals that may be written in terms of the quadratic variation of the limiting
stable process. Some extensions of these results to models with drifts and time
trends are also indicated.

1. INTRODUCTION

Suppose {y,]} is generated by

Vi = PBYeg + Uy t=1,...,n @
with
B=1

from an initialization at = 0 in which y, is any random variable. Interest
centers on the least-squares estimate
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of 8 in (1). Chan and Tran [4] investigate the asymptotic behavior of B as
n — o and show that for a certain family of i.i.d. errors u, with infinite
variance the limit distribution of n(3 — 1) can be characterized in terms of
a functional of a Lévy process. They assume that y, = 0, that u; € D(«), ¥,
is in the domain of attraction of a stable law with index o (0 < a < 2), and
that the limit law satisfies the scaling condition

nVe g 4 uy) = uy, (2)

where “=" signifies equality in distribution (both here and elsewhere in the
paper). Chan and Tran show that under these conditions

1 1
n(3-1)=>f U“dU/f U?, 3
0 0

where U~ denotes the left limit of U, U(r) is a Lévy process on the space of
CADLAG functions D[0,1] and “=” signifies weak convergence of mea-
sures. Their proof uses the weak convergence (from Resnick [27]) of the com-
ponent processes

[nr] [nr]
(an“ 2 u,,a;> ; uf) = (U(r), V(r), @)

where (U(r), V(r)) is a Lévy process in D[0,1]? and the normalization is
a, = n"*f(n) )]

for some slowly varying function £(#). They also show that
1 1
(5>[U2(1)_V(1)] Ef U-dUu 6)
0

and then (4) and (5) together with the continuous mapping theorem give the
final result (3).

We shall start with some remarks on these results.

() Suppose u; belongs to what is known as the normal domain of attrac-
tion of a stable law with index « (see [12] Chapter 2 for a discussion of nor-
mal domains of attraction). We shall denote this by writing

U € ND(a). ¥)]
The tail behavior of u; when 0 < o < 2 is then of the Pareto-Lévy form

ca®

P(u1<u)= |u|°‘ [1+0(1)]’ u<o (8)
P(u; > u) = cz‘ia [1+o(D)], u>0 ©)

as |u| — o ([12], p. 92). Here ¢, and c, are constants with ¢;,c, = 0 and
¢; + ¢, = 1 (by suitable selection of a). We shall call @ the scale parameter.
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Ve g0

In this case the norming sequence in (5) is of the simple form a, = an
that ¢(n) = ain (5).

(ii) Second, when (7) applies we have u? € D (a/2). Moreover, (4) can
be replaced with an explicit limit law given as follows in terms of a stable pro-

cess U,:
[nr] [nr] r
|:an—1 Z u.l’a;z Z u.12:| = [Ua(r),f (dUa)z], (10)
1 i 0

where a, = an'*. Here U, (r) is a standard stable process with index « and
unit scale coefficient. When u, = —u, (so that the distribution of u, is sym-
metric), U, (r) is a symmetric stable process and the characteristic function
of U, (1) has the form e~¢!*/* where

'l — «) cos(ra/2), a¥l
Cc =
x/2, a=1

[12, pp. 44-45]. Moreover, U, (r) = r2U,(1). These and other properties
of stable processes are derived in Ito [13, pp. 157-162]. Figures 1-4 in the
Appendix display typical trajectories of stable processes for various values
of «. These may be contrasted with that of a typical Wiener process (Figure
5). We shall henceforth write

Uy (r) = SP(a)

to signify that U, is a standard stable process (SP) with index «. Note that
the class {SP(«): 0 < o < 2} is a subclass of the Lévy processes and that each
member of SP(«) has no Wiener component in its Ito representation [27, p.
72] when o < 2. (Thus, S = 0 and @ = 0 in equation (10) of [4].)

r
In the representation (10) above, f (dU,)? is a multiple stochastic inte-
0

gral which represents the usual quadratic variation (or square bracketed) pro-
cess. This is sometimes represented in the notation [U], (e.g. [19, p. 175]).
But we prefer the integral notation in the present context because it helps to
make the weak convergence that is given in (10) more intuitive and easily un-
derstood. In fact, Resnick proves (10) in [27, p. 94] but uses a notation for
the limit in terms of point processes rather than stochastic integrals.

(iii) In place of the distributional equivalence of (6) [Theorem 2(ii) of [4]]
we have indeed the direct equation

1 1
V(1) =f (dU,)?> = UZ(1) — Zf U, du,. 1)
0 0

This follows from the Ito calculus for semimar.ingales (see, ¢.g8., Kopp’s sec-
ond formula on page 160 of [15]).



REGRESSION WITH INFINITE-VARIANCE ERRORS 47

It is most easily understood by noting that the stochastic differential dU?
can be broken down as follows:

dui = (Ug +dU,)* - (Uy)?
=2U; dU, + (dU,)

Integration then yields formula (11) directly.
(iv) Finally, we note that when o = 2,

U(r) = W(r) =BM(1)
or standard Brownian motion (BM). In this case
(dUL)? = (dW)? =dr (12)

and (11) reduces to the usual formula

1
f WdW = <1> [(w2(1) — 1]
o 2

for the Brownian motion stochastic integral. This is, in fact, the only case for
which (dU,)? is nonrandom. Note also that since #; € N D(a) we necessar-
ily have a finite variance o2 = E(u) < o when a = 2 (see [12], p. 92) and
the scale factor is a, = on'/2. The limit distribution given in (3) is then the

1 1
ratio of Brownian functionals f wd W/ f w2,
0 0

2. GENERAL I{1) MODELS WITH INFINITE VARIANCE ERRORS

In econometrics there has recently been a good deal of interest in models such
as (1) where allowance is made for some weak dependence in the errors u;.
The resulting time series are known as I(1) or integrated processes. My re-
view paper [23] and Park and Phillips [20,21] provide a general discussion of
models where these processes occur. In an earlier paper on scalar time series
[22] T showed how to deal with such general error processes in constructing
tests for the presence of a unit root. This involved a semiparametric correc-
tion to eliminate the bias in estimation of the regression coefficient that is due
to the serial correlation in ;. It is interesting to explore how this procedure
needs to be modified when u, has infinite variance.

2.1. Models with MA(1) Errors

Let us start by considering the simple case of MA(1) errors

ut=€t+0€t...1, |0| < 1 (13)
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where ¢, € ND(a), 0 < o < 2, and ¢, is i.i.d. with ¢, = —¢, (i.€., € is sym-

metrically distributed). When 0 < o < 2 the tails of ¢, are of the Pareto-
Lévy form with scale parameter @ and ¢; = ¢, = i. When o = 2, @ =
t

E(e?) < o. Define P, = )¢, and then
1
n n n n n
Zyt—lut = ZPt—let + ozzpt—26t-1 + 0 Zpt—lft—l + 0 ZPt——Zet
1 1 1 1 1
=P &+ 022 Prgey + 00,62 + 0P y(e+ € y)
1 1 1 1

n n n n
=P+ 02D P g6 + 0<2Pt—-let + ZPt—25t—1>
T i i i

n

n
+0D,€2 1 — 0D 616 14
1

1
n n n n

YR = PR+ 0P PR+ 203, Py P,y as)
T 1 T 1

In the above we use the initialization y, = 0 to simplify formulae but this in-
volves no loss of generality for the subsequent argument. Next observe that

n 1
e Ye1 3 P2 f vz, (16)
1 0

n 1 1 1
an VS P e - (5) [Ua(l)z -[ (dUa>2] = [(vzav..  an
1 0 0
and
n 1
a2n VY€l = f (dU,)?, (18)
1 0
where U, (r) = SP(a), whereas
n
a in VY g6 > 0. 19)
1
The latter follows because although the product e € D (a/2) the cross
product ¢,¢,_; does not lie in D (a/2). In fact, €€, € () as shown by
Cline [5] and Breiman [2] and (19) then follows directly. Note that the norm-
ing sequence for sums of these cross products is b, = b(nin n)*’* with b =

a? as shown in Appendix A.
Standardizing (14) by a~2n=%* and using (17)-(19) we have

n 1 1
a*n ¥ yqu= (1 + 0)2f U;dU, + of (dU,)>. 20)
1 0 0
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Similarly, using (16), (18) and (19) in (15) we get
n 1

a3 )2 o (1 4 6)2 f Uz, @1y
i . Jo

In view of (10), joint weak convergence of (20) and (21) also appliAes and we
deduce the following limit result for the least squares estimator (5

1 1
(1 +0)2f Ua_dUa+0f (dU,)?
0 0

n(3—1)=> -
(1+0)2f U2
0

1 1
fU;dUa+0(1+0)‘2f (dU,)?
0 0

1
J, v
0

This formula generalizes (3) to the case of models with a unit root and
MA(1) errors. Note that the second term in the numerator of (22) is random
when o < 2. When o = 2 it is simply the constant 6/(1 + 6)?. In that case
(i.e. a = 2) the expression was given in my earlier paper [22, p. 283]. The ef-
fect of serially correlated errors in the unit root model (1) is therefore to in-
duce a second order random bias term in the limit distribution of the least
squares estimator. When the errors in (1) have finite variance this bias term
is nonrandom and, as shown in [22], it depends on the serial correlation
properties of the errors. The latter is still true in the infinite variance case but
the bias term also has a random factor which depends on the quadratic vari-

1
ation f (dU,)>.

0
The simplest way of dealing with the bias that is induced by MA(1) errors
is to use instrumental variables (IV) estimation with y,_z acting as an instru-

(22)

ment for y,_, in (1). Call the resulting estimator B= Z YiVioa Z Vi1 V2.

It is easy to see that

1 1
n(5—1)=>f U;dUa/f Uz
0 0

as in (3). IV estimators of this type have been suggested in the finite variance
case by Hall [11] and Phillips and Hansen [26]. It is interesting to see that
they continue to work as a direct method of eliminating the second order bias
in the infinite variance case also.
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2.2. Models with Weakly Dependent Errors

Let u, be generated by the linear process
u,=d(L)e, = D dye,;  do=1, d(1)#0, 23)
J=0

where ¢, has the same properties as in (13). As shown in Brockwell and
Davis [3, p. 480] (see also [14]) the series defining u, converges almost surely
if the coefficients d, satisfy the condition

d|® < o, with0<d<anl 4
5 J

If u, is generated by a stable ARMA process then its moving average repre-
sentation (23) has coefficients which decline geometrically, so that (24) is cer-
tainly satisfied in this case. It will be convenient for the limit theory below
if we strengthen (24) to the following condition:

SjldlP<ow, with0<é<anal (25)
0

Again, this is satisfied by the coefficients of the moving average representa-
tion of a stable ARMA process.

THEOREM 2.1. If y, is generated by (1) with 8 =1, if u, is the linear
process (23) and if the summability condition (25) holds then

(a,,‘lzrll:u,,a,,‘zi::utz) = (an(l),azj: (dUa)z), (26)
n 1 1 1

a;? zlzy,_lu, = wzj; U;du, + <5> (w? — az)j; (dU, ), Q7

n~*a;" ; Y= @ fo A (28)

where a, = an'’® and

w=d(1)=§]d,, 02=i::d12. 29)

Joint weak convergence of (27) and (28) also applies. [ |

The proof of Theorem 2.1 is given in Appendix B. The limit theory for the
least squares estimator (3 follows directly. We have:

1 —-1¢ prt 1
nB-1)= {f U(f] {f U;du, + <l> (1 - az/wz)f (dUa)zl 30
0 0 2 0



REGRESSION WITH INFINITE-VARIANCE ERRORS 51

generalizing both (3) and (22). Note that when « = 2, (30) reduces to the ex-
pression derived earlier in [22, Theorem 3.1]. In that case the second term in
the numerator of (30) is simply the constant (})(w? — 0?).

Similar results apply for other functionals like the #ratio

. n . n —1
tg=(6—1)/ss, Sg =n"! 21; (¥ — B)’t—1)2<2)’t2—1> . 31
1

Here we have

1 1 —-1/72
ts = (w/o) { f (aU,)? f U§]
0 0

1 i
X {f Uu;du, + (—1-> - o‘z/wz)f (dUa)Z] . (32)
0 2 0

Again this reduces to the formula given in [22, p. 282] for the finite variance
case.

2.3. The Effect of Semiparametric Corrections

When {¢,} is1.1.d.(0,1) (i.e. « = 2 and var(e¢;) = 1) and u, is defined by (23)
we see that

o*=var(u), o =2xf,(0),

where £, () is the spectral density of »,. When « < 2, the variance and the
spectrum of u, are not finite because E(e?) = o. The quantities o2 and w?
do exist in this case at least as they are defined by (29). We shall call them
pseudo-variances because they represent what would be the contribution to
these variances in the usual formulae after the variance of ¢, is scaled out.
These contributions remain finite even in the infinite variance case.

Similar remarks apply to the spectrum. When o = 2 the autocorrelogram
sequence for u, in (23) is given by

p(h) = E(uu,yn)/E(u?) = 3 d,dyynf 2,47, h=12,.... 33)
T I

Again the effects of E(e?) are scaled out and p (h) is well defined as the fi-
nal member of (33) when o < 2 (see also [4] and [5] on this point). The p-
spectrum of u, may then be defined as the Fourier transform of (33) i.e.

PO = 5 p(he.
h=—00
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Davis and Resnick [7, 8] show that the sample autocorrelations are consis-
tent for p(h) when o < 2 i.e,

n—h n
r(h) = Z Uiy n ZutZ?P(h)
1 1

and that when ¢, has Pareto-Lévy tails
r(h) — p(h) = O,((In n/n)"*). G4

In consequence, it is simple to construct consistent estimators of f$?(N)
using conventional spectral estimates based on the sample correlogram
{r(h):h=1,2,...}.

In [22] I suggested some semiparametric corrections to 7( B — 1) that
asymptotically eliminate the nuisance parameter dependencies in the finite
variance case. The statistic based on the coefficient estimate 3 has the form

n —1
ZB =nB-1)— (%) {n—z Z:yf_ll (&% — 6%, (35)

1

where &2 and 62 are consistent estimators of w? = 27f,(0) and o = E(u?),
respectively. Noting that in this case

w? = ¢? + 2\ with A\ = >} E(uouy)
k=1

we may write Z(8) in the alternate form
n -1 n

Z(p) = (n“zZ y3_1> (n" 2 Vo1l — >\>, (36)
1 1

where X is consistent for \. As shown in [22] in the finite variance model

1 —~1 1
Z(B) = (f W2> f wdw (k7))
0 0

whose distribution is free of nuisance parameters. Thus, Z () forms the basis
of a test for the presence of a unit root which is asymptotically similar for
a wide class of weakly dependent errors with finite variance.

In the infinite variance (o < 2) case we have already seen that

n 1 -3
a7’ duf=d* f (dU,)?, where 0% = Y,d?.
i 0 0

Since B is consistent the same result holds if we replace u, by the residuals
@, =y, — By;_i. Thus we may write

i
na; %= azf (dU,)% 38)
0
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Turning to w?, we note that this parameter is usually estimated by a kernel
procedure that leads to an expression of the general form

M
@ =2xf,(0) = Y, k(j/M)c(j), (39)
=M
where
c(j) =n"' Y uuyy,, l<t+j=<n 40)
1

and the lag window k(-) is a bounded even function defined on the interval
[—1,1] with £(0) = 1. M is a bandwidth parameter in (39) and it satisfies
M — o and M/n— 0 as n — o. For example, when k(j/M) =1 — |j|/M,
&? is the Bartlett estimator of what would be the long run variance of u, if
o = 2 (see [22] for further discussion).

Observe that for fixed j

=3 1
na;%c(j) = (Zd,d,+,>f (dU,).
0 0

The same result also applies when u;, is replaced by the residual &, in (40). I
shall not give a complete derivation here but using the same approach as that
in the proof of Theorem 3.1 of my paper [24] it can be shown that, if M =
o(n'?) as n - o, then

1
na20 = o f (dUL)>. @1)
0

Now note that we may write

n -1
ZB) =nB-1) - (%) {n—‘a,:2 ny_ll {na;2(&% — 6%)).
1

From (31), (38) and (41) we deduce that

1 -1 1
Z(B)=<f Uj) (f U;dUa>. (42)
0 0

This result generalizes (37) to the infinite variance case and of course also in-
cludes (37) since U,(r) = W(r) when o = 2.

The r-ratio statistic may be analyzed in the same way. The statistic I sug-
gested in [22] is based on #; and has the form

1 n 17231
Z(t) = (6/d)t5 — <5> (@2 — &2){6> (n—221;y3_1> ] .
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As n — o we find that

1 1 —1/2 1
Z(1) = {f (dUa)Zf Uj} f U;du,. 43)
0 0 0

When o = 2 the limit distribution becomes

1 -172 p1
( f W2> f waw
0 0

as given in [22].

These results show that the semiparametric corrections suggested in [22]
continue to work when the errors have infinite variance even though they
were designed specifically to eliminate nuisance parameters in the finite vari-
ance case. The reason for this is that in the infinite variance case there are
still parametric dependencies in the limit distributions of the coefficient es-
timator and its 7-statistic (as shown in (30) and (32)). These dependencies in-
volve the parameters (02, w?) that we have described as pseudo-variances.
They represent what would be the variance and the long-run variance of u;,
if o were equal to 2 and E(e?) < oo. The semiparametric corrections elimi-
nate these pseudo-variances from the limit distributions in the infinite vari-
ance case just as they do when the actual variances are finite.

3. ADDITIONAL REMARKS

(i) The final results (42) and (43) apply under somewhat weaker assump-
tions than those given here. We may, for example, replace the requirement
that ¢, € ND(«) with ¢, € D(a). This affects the norming sequence a, but
we still find for a suitable choice of a, that

[nr] [nr] r
(an—l PINTN PRI ez2> = (Ua(r),f' (dUa)2> 44)
1 1 0
and
;2 Dee, 0, 1<t+j=<n, j#0.
1

These limits ensure that (38)and (41) hold, giving the final results (42) and
(43) as stated.

(ii) We may also relax the symmetry condition ¢, = —e¢,, although many of
the arguments given in Section 2 will then need modification. When o < 1
no further requirement beyond ¢, € () seems to be needed. When « > 1
we require E(¢,) = 0, as in [4], so that sums involving ¢, do not need to be
centered. When o = 1 an additional condition such as

b,=Ele1(le;| = a,)} =0, forall n 45)
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ensures that centering of the sums involving ¢, is unnecessary, although this
is hardly weaker than the symmetry condition ¢, = —¢,. An alternative proof
of Theorem 2.1 under such congditions will be reported elsewhere.

(iii) Our analysis and results extend easily to models with drifts and time
trends (or other deterministic functions) in place of (1). In such cases the time
series may be regarded as filtered prior to their use in regressions such as (1).
The effects can then be determined by treating the filtered series as regres-
sion residuals. For instance, when there is polynomial detrending we con-
struct the residual process y, from the least squares regression

Ye=jio+ it +...+ j,t7 + y,.
Then in place of (27) and (28) we have

n 1 1
an_2 th—lul = wzf _Ut;dUa + <}2—> (wZ - Jz)f (dUa)z (27),
1 0 0
and
n 1
a3yt - [ U2 a8y
1 0

where U, = QU,, is simply the projection of U, in L,[0,1] on the orthogo-
nal complement of the space spanned by theA polynomial functions {0(r),
1(r),...,p(r); j(r) = r’}. We deduce that if 3 is the least squares estimator
of Bin

yt=”0+.u'lt+"'+”'ptp+3yt—]+ut ay

under 8 =1 and p, = 0 then

1 -1 i 1
== [ ([ v o (§)a-u [ ).
0 0 2 0

30y

Semiparametric corrections to eliminate the nuisance parameters in (30)’ may
be made as in Section 2.3. The situation here is entirely analogous to that ex-
plored in the finite variance case by Park and Phillips [20, 21].

(iv) The limit theory given here also has applications in the context of limit
theorems for self normalized sums. These have been considered elsewhere re-
cently by several authors [1, 17, 25, 27]. In [25] the bimodality of z-ratio
statistics of the form

n n 172
le= Z ¢ (Z EJZ>
1 1

was explored when ¢, € 1D (a) and 0 < o < 2. The reason for the bimodal-
ity in the distribution of ¢, which occurs in both finite and asymptotic sam-
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ples, is the statistical dependence between the numerator and denominator
random variables in Z. When ¢, = —¢,, ¢, € D(a) and ¢, is i.i.d. it follows
immediately from (44) that

1 172
fe= Ua(l)/(f (dUo()2> (46)
0

as n — oo. Using (11) we may now write the limit law in the form

1 172
U‘,l(l)/[U,,l(l)2 - 2[ U,;dUa} . 47)
0

The bimodality (with modes at +1) then arises because of the occurrence of
U, (1) in the numerator and denominator elements of (47) when 0 < o < 2.
When « = 2 the denominator is nonrandom, of course, and (46) corresponds
to the conventional limit theory for the f-ratio in the finite variance case, i.e.
t.= Uy(1) = N(0,1).

REFERENCES

. Billingsley, P. Convergence of probability measures. New York: Wiley, 1968.
. Bremman, L. On some limit theorems similar to the arc-sin law. Theory of Probability and
its Applications 10 (1965): 323-331.
. Brockwell, P.J. & R.A. Davis. Time series: theory and methods. New York: Springer, 1987.
4. Chan, N.H. & L.T. Tran. On the first order autoregressive process with infinite variance.
Econometric Theory 5 (1989): 354-362.
5. Cline, D.B.H. Estimation and linear prediction for regression, autoregression and ARMA
with infinite variance data. Ph.D dissertation, Colorado State Umversity, 1983,
6. Darling, D.A. A note on a limit theorem. Annals of Probability 3 (1975): 876-888.
7. Davis, R. & S. Resnick. Limit theory for moving averages of random variables with regu-
larly varying tail probabilities. Annals of Probability 13 (1985): 179-195.
8. ___ . Limit theory for the sample covariance and correlation functions of moving aver-
ages. Annals of Statistics 14 (1986): 533-558.
9. Feller, W. An introduction to probability theory and its applications, Vol. 2 (2nd Ed.). New
York: Wiley, 1971.
10. Gallant, A.R. & H. White. A unified theory of estimation and inference for nonhnear dy-
namic models. Oxford: Blackwell, 1988.
11. Hall, A. Testing for a unit root in the presence of moving average errors. Biometrika 76
(1989); 49-56.
12. Ibragimov, I.A. & Y.V. Linnik. Independent and stationary sequences of random variables.
Groninger: Wolters-Noordhoff, 1971.
13. Ito, K. Lectures on stochastic processes. Bombay: Tata Institute, 1961.
14. Kanter, M. Linear sample spaces and stable processes. Journal of Functional Analysis 9
(1972): 441-459,
15. Kopp, P.E. Martingales and stochastic integrals. Cambridge: Cambridge University Press,
1984,
16. LePage, R., M. Woodroofe, & I. Zinn. Convergence to a stable distribution via order statis-
tics. Annals of Probability 9 (1981): 624-632.
17. Logan, B., C. Mallows, S.O. Rice, & L. Shepp. Limit distributions of self normalized sums.
Annals of Probability 1 (1973): 788-809.

[

A\



REGRESSION WITH INFINITE-VARIANCE ERRORS 57

18. McLeish, D.L. A maximal inequality and dependent strong laws. Annals of Probability 3
(1975): 829-839.

19. Meétivier, M. Semimartingales. New York: Walter de Gruyter, 1982.

20. Park, J.Y. & P.C.B. Phillips. Statistical inference in regressions with integrated processes:
Part 1. Econometric Theory 4 (1988): 468-498.

. Statistical inference in regressions with integrated processes: Part 2. Econometric
Theory 5 (1989): 95-132.

22. Phillips, P.C.B. Time series regression with a unit root. Econometrica 55 (1987): 277-301.

23. _____ . Multiple regression with integrated processes. In N.U. Prabhu (ed.), Statistical In-
Serence from Stochastic Processes, Contemporary mathematics, Vol. 80. Providence: Ameri-
can Mathemartical Society, 1988.

. Spectral regression for cointegrated time series. In W, Barnett (ed.), Nonparamet-
ric and Semiparametric Methods in Econonucs and Statistics. New York: Cambridge Uni-
versity Press, 1990 (forthcoming).

25. Phillips, P.C.B. & V. Hajivassiliou. Bimodal t-ratios. Cowles Foundation Discussion Pa-
per No. 842, July 1987.

26. Phillips, P.C.B. & B. Hansen. Statistical inference in instrumental variables regression with
1(1) processes. Cowles Foundation Discussion Paper No. 869, July 1988.

27. Resnick, S.1. Point processes regular variation and weak convergence. Advances in Applied
Probability 18 (1986): 66-138.

21.

APPENDIX A: ON THE TAIL BEHAVIOR
OF THE PRODUCT X = x;x, OF
INDEPENDENT VARIATES x; € D ()

Suppose x, = —x, and then X = —X. Let f;(x) be the density of x;, which we take to
be continuous over (—o,). Setting ¢, = ¢, = % in (8) and (9), we have the follow-
ing tail behavior

1 o —a—1
filx) = 3 aal|x| (1+o0(1)), x| >k
for some (possibly large) constant k¥ > 0. The density of X is now

F(X) =2 fo (L), () fo (X/x)dx

bt X/k o
- ZU * f + f } (1/2)f1 () fo(X/x) dx.
0 k Xk

Suppose X > k2 and let ¢ be a generic constant in what follows. The first integral is
less than

k

k
2cf (l/x)fz(X/x)dx=2cX‘1_°‘{f aagx®dx + o(l)} =0(X17%).
0 0
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The third is less than

2Cf (/%) fi(x)dx = 2Caa{"f X" 2dx = O(X 7).
X7k x/k

The second integral dominates and has the form
1 X/k 1
<5> azaf’af‘X_'_"‘f (1/x)dx = <5>a2af‘af‘X"_°‘ln X(1 +o(1)
k

so that f(X) = O((ln X)X ~'~*) as | X| — co. Integrating again we get the tail behav-
ior of the cumulative distribution function

1
cdf (-X) = <5>fln(—X)(—X)‘°‘(1 +o(1)

1 —cdf(X) = (—21->f(ln X)X*(1 + o(1))

as X — o where f = aafas'. Since In( ) is slowly varying at infinity these tail prob-
abilities ensure that X € D («) [12, Theorem 2.6.1]. Setting b,, = b(n In n)"’* with
b = a,a, we have

nlcdf (b, X)] — (%) (=X)™%, X<0

n[l — cdf (b, X)] - (%)X“", X>0.

The norming sequence for sums of i.i.d. variates distributed as X is therefore b, =
a,a,(n In n)"* by the argument in [12, p. 76]. Explicitly we have b, = inf{x|P(] X[ >
x) < 1/n) = a;a,(n In n)/*. Note that X € D(«) and not ND(«) because of the
presence of the slowly varying function /n(-) in the tail formulae.

When the variates x, € ND(a,) oy # a, we obtain by a similar argument the re-
sult X € 91D (o A o). In this case the product variate X is in the normal domain of
attraction of the law of the component variate with the smallest exponent.

APPENDIX B: PROOF OF THEOREM 2.1

Result (26) follows from Theorems 4.1 and 4.2 of Davis and Resnick [7, pp. 189-
192]. Result (27) follows from (26) and summation by parts since

n 1 n 2 n
i 3= (3)] (S - o o]
1 1 1
1 1
= <_> l:sza(l)z - O'zf (dUa)2:|
2 0

1 1
=w2f U;du, + <l>(w2—02)f (dU,)?
o 2 0
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in view of (11). To prove (28) we use the decomposition

ye=d(L)e, =d(V)e+ & — €, (48)

where & = d(L)e, = 2, d¢,_, and d, = 2] d,. Observe that
0

J+1

Siap-5

[

8 oo oo
<2 2 ldf

=1 k=j+1

25 di

J+1

oo k~1
=2 de’ 21
k=j J=0

= Z kldklts < @
k=0
under (25). Hence, ¢ = 2, Jje,_ , converges almost surely and & € D(«). Thus, the
0
!
decomposition (48) is well defined. Set P, = D, ¢ , and then we have
1
n n n
nla;t 3yt =’ (n“a;2 ZP?_I) +2d(1) [n—‘a;2 2P (6 — é,)]
1 1 1
n
+nla? 3 (G — &) (49)
1
But
n 1
na 2y PE, > f U?
1 0

by (10) and the continuous mapping theorem. Thus, (28) follows if we can show that
the final two terms on the right side of (49) tend in probability to zero. Consider

n n n
n_lan_2 ZPt——l(ét—l — &)= n_'an_z[ZPz_lét_l - Z (P — Gt)ét]
1 1 1
n
= _n_lan—z{Pngn - Zetét]
1

n
= —n—l{(a;‘m(a;‘é,) —a;2 2 e,ét]
1

=0,(n7h)

since €&, € D (a/2). Thus, the second term on the right of (49) converges in prob-
ability to zero. Finally, since (¢, — §,_,)* € D(«/2) we have

n
n'a;2 Y (6o — &) =0p(n7)
1

and the third term on the right of (49) converges in probability to zero. ]
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FIGURE 1. Symmetric stable motion, a = 1.9.

FIGURE 2. Symmetric stable motion, o = 1.5.
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FIGURE 3. Symmetric stable motion, o = 1.0.
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FIGURE 4. Symmetric stable motion, o = 0.5,
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FIGURE 5. Brownian motion (o = 2.0).



