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ASYMPTOTIC PROPERTIES OF RESIDUAL BASED TESTS
FOR COINTEGRATION

By P. C. B. PHILLIPS AND S. OULIARIS!

This paper develops an asymptotic theory for residual based tests for cointegration
These tests mvolve procedures that are designed to detect the presence of a unit root in the
residuals of (cointegrating) regressions among the levels of economic time seties. Attention
is given to the augmented Dickey-Fuller (ADF) test that 1s recommended by Engle-Granger
(1987) and the Z, and Z, umt root tests recently proposed by Phllips (1987). Two new
tests are also introduced, one of which is invariant to the normalization of the cointegrating
regression. All of these tests are shown to be asymptotically similar and simple representa-
tions of their limiting distributions are given 1n terms of standard Brownian motion The
ADF and Z, tests are asymptotically equivalent. Power properties of the tests are also
studied. The analysis shows that all the tests are consistent if swmitably constructed but that
the ADF and Z, tests have slower rates of divergence under cointegration than the other
tests. This indicates that, at least in large samples, the Z, test should have superior power
properties

The paper concludes by addressing the larger issue of test formulation Some major
pitfalls are discovered in procedures that are designed to test a null of cointegration (rather
than no cointegration) These defects provide strong arguments agamst the indiscniminate
use of such test formulations and support the continuing use of residual based umt root
tests.

A full set of critical values for residual based tests 1s included. These allow for demeaned
and detrended data and cointegrating regressions with up to five variables.

KEYwWORDSs: Asymptotically similar tests, Browman motion, cointegration, conceptual
pitfalls, power properties, residual based procedures, Reyni-mixing

1 INTRODUCTION

THE PURPOSE OF THIS PAPER is to provide an asymptotic analysis of residual
based tests for the presence of cointegration in multiple time series. Residual
based tests rely on the residuals calculated from regressions among the levels (or
log levels) of economic time series. They are designed to test the null hypothesis
of no cointegration by testing the null that there is a unit root in the residuals
against the alternative that the root is less than unity. If the null of a unit root is
rejected, then the null of no cointegration is also rejected. The tests might
therefore be more aptly named residual based unit root tests. Some of the tests
we shall study involve standard procedures applied to the residuals of the
cointegrating regression to detect the presence of a unit root. Two of the
procedures we shall examine are new to this paper. They all fall within
the framework of residual based unit root tests.

Approaches other than residual based tests for cointegration are also available.
Some of these have the advantage that they may be employed to test for the
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presence of r linearly independent cointegrating vectors against » — 1 cointegrat-
ing vectors for r > 1. For instance, a likelihood ratio test has been considered by
Johansen (1988) in the context of vector autoregressions (VAR’s); a common
stochastic trends test has been proposed by Stock and Watson (1986); and a
bounds test has been suggested by the authors in earlier work (1988). None of
these tests rely on the residuals of cointegrating regressions. However, it is the
residual based procedures which have attracted the attention of empirical re-
searchers. This is partly because of the recommendations of Engle and Granger
(1987), partly because the tests are so easy and convenient to apply, and partly
because what they set out to test is clear intuitively.

Unfortunately, little is known from existing work about the properties of
residual based unit root tests. Engle and Granger (1987) provide some experi-
mental evidence on the basis of which they recommend the use of the augmented
Dickey-Fuller (ADF) ¢ ratio test. They also show that this test and many others
are similar tests when the data follow a vector random walk driven by iid normal
innovations. They conjecture that the ADF procedure is asymptotically similar in
more general time series settings. The present paper confirms that conjecture. We
also study the asymptotic behavior of various other tests, including the Z, and Z,
tests recently suggested in Phillips (1987). Our asymptotic theory covers both the
null of no cointegration and the alternative of a cointegrated system. It is shown
that the power properties of many of the tests depend critically on their method
of construction. In particular, test consistency relies on whether residuals or first
differences are used in serial correlation corrections that are designed to eliminate
nuisance parameters under the null. Our analysis of power also indicates some
major differences between the tests. In particular, ¢ ratio procedures such as the
ADF and the Z, test diverge under the alternative at a slower rate than direct
coefficient tests such as the Z, test and the new variance ratio tests that are
developed in the paper. This indicates that coefficient and variance ratio tests
should have superior power properties over ¢ ratio tests at least in large samples.

One of the new tests developed in the paper is invariant to the normalization of
the cointegrating regression. This is in contrast to other residual based tests, such
as the ADF, which are numerically dependent on the precise formulation of the
cointegrating regression. Invariance is a useful property, since it removes conflicts
that can arise in empirical work where the test outcome depends on the normal-
ization selected.

The general question of how to formulate tests for the presence of cointegra-
tion is also addressed. In particular, we examine the potential of certain proce-
dures which seek to test a null of cointegration against an alternative of no
cointegration, rather than vice versa. This question of formulation is important.
It arises frequently in seminar and conference discussions (for example Engle
(1987)) where it is often argued that a null of cointegration is the more appealing.
But the question has not to our knowledge been formally addressed in the
literature until now. Our analysis points to some major pitfalls in the alternate
approach. The source of the difficulties lies in the failure of conventional
asymptotic theory under a null of cointegration. This is not just a matter of
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nonstandard limit theory. In fact, no general limit theory applies in this case to
certain statistics (like long run variance estimates) that are most relevant to the
null. Moreover, if tests based on a specific distribution theory are used, they turn
out to be inconsistent. These difficulties provide good arguments for the continu-
ing use of tests that are based on the composite null of no cointegration.

The plan of the paper is as follows. Section 2 provides some preliminary
theory, including a theorem that is likely to be very useful on invariance
principles for processes which are linear filters of other time series. This theory is
needed for an asymptotic analysis of the ADF. In Section 3 we review a class of
residual based tests for cointegration and develop two new procedures: a vari-
ance ratio test and a multivariate trace test. Both tests have interesting interpreta-
tions and the second has the invariance property mentioned earlier. An asymp-
totic theory for the tests is developed in Section 4 and it is shown that the Z,, Z,,
and ADF tests all have limiting distributions which can be simply expressed as
stochastic integrals. The ADF and Z, tests are asymptotically equivalent. Section
5 studies test consistency and the asymptotic behavior of the tests under the
alternative of cointegration. Issues of test formulation are considered in Section 6
and some conclusions are drawn in Section 7. Proofs are given in the Appendix
A. Critical values for the residual based tests are given in Appendix B. These
allow for up to five variables in the cointegrating regression and detrended data.

In matters of notation we use the symbol “ = to signify weak convergence,
the symbol “ =" to signify equality in distribution, and the inequality “ > 0” to
signify positive definite when applied to matrices. Continuous stochastic pro-
cesses such as the Brownian motion B(r) on [0,1] are written as B to achieve
notational economy. Similarly, we write integrals with respect to Lebesgue
measure such as [!B(s) ds more simply as [}B.

2 PRELIMINARY THEORY

Let {z,}§ be an m-vector integrated process whose generating mechanism is
(1) z,=z,_;+¢, (r=1,2...).
Our results do not depend on the initialization of (1) and we therefore allow z, to
be any random variable including, of course, a constant. The random sequence
{£,)7 is defined on a probability space (X, F, P) and is assumed to be strictly
statonary and ergodic with zero mean, finite variance, and spectral density
matrix f(A). We also require the partial sum process constructed from {,} to
satisfy a multivariate invariance principle. More specifically, for » € [0,1] and as
T — oo we require

[Tr]
(C1) X (r)=T"'2) ¢=B(r) (R-mixing)
1

where B(r) is m-vector Brownian motion with covariance matrix

(2) Q=limT_,wT‘1E{(ZT:§,) (ig;)} =2af,(0).
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Writing
90 = E(§0§(’)), 91 = Z E(gogi'c),
k=1
we have
Q=80,+8 + 8.

The convergence condition (C1) is Reyni-mixing (R-mixing). This requires the
random element X, (r) to be asymptotically independent of each event E € F,
ie.,

P({X;€-}NE)—»P(Be - )P(E), T- .

In this sense, the random element X, may be thought of as escaping from its
own probability space when R-mixing applies. The reader is referred to Hall and
Heyde (1980, p. 57) for further discussion. Functional limit theorems under
R-mixing such as (Cl) are known to apply in very general situations. For
example, the theorems of McLeish (1975) that were used in the paper by Phillips
(1987) are all R-mixing limit theorems. Extensions to multiple time series follow
as in Phillips and Durlauf (1986).

It will be convenient for much of this paper to take £, to be the linear process
generated by

[>+] [>+] [>+]
(3 &= X Ge, X ICI<eo, C)= ¥ C,
J=—w == ==

where the sequence of random vectors {¢,} is iid (0, 2) with > 0 and ICI=
max, {¥,|c,,|} where C,=(c,,). This includes all stationary ARMA processes
and is therefore of wide applicability. The process £, has a continuous spectral
density matrix given by

fe(A) = (1/2w)(2c,e'f*)z(zc,ew)*.

In addition to the absolute summability of {C,} in (3) we will use the following
condition (based on (5.37) of Hall and Heyde (1980)):

[>+] [>2] [>2]
(C2) Z[ Y C Zc_j]<oo,
k=1]|ls=k J=k
which is again satisfied by all stationary ARMA models. Note that (C2) holds for
all sequences {C,} that are 1-summable in the sense of Brillinger (1981, equation
2.7.14). These assumptions are not the weakest possible but are general enough
for our purposes here.

Let {a,} be a scalar sequence that is absolutely summable and define the new
process

+

[o2]

[>2]
(4) g'* = Z ajgt_j’ Z |j|S|aj| < 00, s> 1a
— o0

J=—c0
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and the associated random element

(77}
(5) Xp(r)=T' 2L &
1

Let a(1) = £ ,a,. We shall make use of the following important lemma describ-
ing the asymptotic behavior of X(r).

LemMa 2.1: If (C2) holds, then as T — oo
6)  swp 1X2(r) —a() Xy (r) =0

and
(7) X(r)=B*(r)=a(1)B(r)

or vector Brownian motion with covariance matrix £2* = a(1)*Q.

We now partition z,=(y, x,;) into the scalar variate y, and the n-vector
x,(m=n+ 1) with the following conformable partitions of £ and B(r):

1 n
W Wy _ By(r) 1
oo ol w00

Wy 82y |n

We shall assume £2,,> 0 and use the block triangular decomposition of {2:

8 Q=LL, L= ,
® [121 Ly

with
(9) Iy = (0 — 02500 ) " Iy =950y, Ly=92%’
11 = Wy — Widyy Wy ’ 21 22" Wars 2T 8y

Let W(r) be m-vector standard Brownian motion and define:

1, |9 ay
A_-/(.)BB_[azl Azz]’

_ , fu fA
F_-/(.)WW [le Fzz]’

B = (1’_051/12—21), K=(1,—f2’1F2_21)’

o(r) = Wi(r) - (folwm)(fo‘%%')ﬁwz(r).
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LEMMA 2.2:
(a) B(r)=L'W(r);
(b) Ly =1k, 702N = wyp.,K'K;

(c) n’B(r) = luQ(r);
@ wf 'BdB'n =, [ '04dg;

1
’ _ = 2.
() n'An=ay, 2—“’11«2'/(;Q ;
where
— —_ 4 -1 - 72
Wy 2= Wy — Wiy wy =1
and

—_— —_ ’
ay ,=ay —ajAnay.

REMARKS: (a) This lemma shows how to reformulate some simple linear and
quadratic functionals of the Brownian motion B(r) into distributionally equiva-
lent functionals of standard Brownian motion. These representations turn out to
be very helpful in identifying key parameter dependencies in the original expres-
sions. As is clear from (b)-(e) the conditional variance w,;., is the sole carrier of
these dependencies in (b)—(e).

(b) Note that det @ = w,,., det2,, and is zero iff w;;.,=0 (given £,,> 0).
Note also that we may write

Wy 2= “’11(1 - pz)’ p* = wpd5lwn /ey,
where p? is a squared correlation coefficient. When w;;., =0 (p?>=1) then £ is
singular and y, and x, are cointegrated, as pointed out in Phillips (1986). At the
other extreme when there is no correlation between the innovations of y, and x,
we have p? =0, 2 nonsingular, and a regression of y, on x, is spurious in the
sense of Granger and Newbold (1974).

(c) Consider the Hilbert space L,[0,1] of square integrable functions on the
interval [0,1] with inner product (jfg for f, g€ L,[0,1]. In this space, Q is the
projection of W, on the orthogonal complement of the space spanned by
the elements of W,.

3 RESIDUAL BASED TESTS OF COINTEGRATION

We consider the linear cointegrating regressions
(10) W= :élxt +4,.
Residual based tests seek to test a null hypothesis of no cointegration using scalar
unit root tests applied to the residuals of (10).

This null may be formulated in terms of the conditional variance parameter
wy; , as the composite hypothesis

Hy: wyy,%#0.
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The alternative is simply
Hy: wy;.,=0

leading to p?> =1 and cointegration, as pointed out above. Engle and Granger
(1987) discuss the procedure and suggest various tests. Their main recommenda-
tion is to use the augmented Dickey-Fuller (ADF) test and they provide some
critical values obtained by Monte Carlo methods for the case m = 2.

We shall consider the asymptotic properties of the following residual based
tests:

@) Augmented Dickey Fuller: ADF =t, in the regression A#l,=a,dl, |+
Z, lq)xAut t + Utp

(i) Phillips’ (1987) Z, test: Regress @i, = &ti,_, + k and compute

Z,=T(a-1) - (1/2)(sh~s )(T_zzut 1)

where

T
2 -1 72
sk=T Zkr’

(11) s2,= T‘12k2+2T‘12ws, Z kk

s=1 t=s+1
for some choice of lag window such as w,=1—s/(/ +1).
(i) Phillips® (1987) Z, test: Regress i, = ai,_; + k, and compute

wfrge]]

r 1/2
Az(gﬁf_l) (&=1)/sp~ (1/2)(s3~ 57)

with s and s% as in (ii).
(iv) Variance ratio test.

T
o horenrSe]
where &, , =& — &519{21&321 and

1) Q- T"12££,+T"Zws, Z (E€_,+£_8)

=1 t=s5+1
for some choice of lag window such as w;=1-s/(/+1) (see Phillips and
Durlauf (1986), Newey and West (1987)) and where {f } are the residuals from
the least squares regression:

(14) zt=ﬁzt—l+§t'

(V) A multwariate trace statistic:
T
B=Tu(M;'), M,=T1'Yzz
1

where £ is as in (13).
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REMARKS: (a) Note that Z and Z, are constructed usmg an estimate s, that
is based on the residuals k from the autoregression of @, on #,_,. When the
estimate sZ, is based on ﬁrst differences A#, in place of k (as suggested by
the null of no cointegration) we shall denote the resulting tests by Z,and Z, The
distinction is important since these tests have very different properties under the
alternative hypothesis of cointegration, as we see below.

(b) In a similar way, P and P are constructed using the covariance matrix
estimate £ that is based on the res1duals §, from the first order vector autoregres-
sion (14). When the estimate £ is based on first differences £,=4z, we denote
the resulting tests by P, and P,. Again the distinction is important since P and
P have different properties under the alternative from those of P, and P,.

(c) The variance ratio test P is new, Its construction is mtumvely appea]mg
P measures the size of the re51dua1 variance from the cointegrating regression of
Y, on x,, viz. T7'E]42, against that of a direct estimate of the population
conditional variance of y, given x,, viz. t$;;.,. If the model (1) is correct and has
no degeneracies (i.e. { nonsingular), then the variance ratio should stabilize
asymptotically. If there is a degeneracy in the model, then this will be picked up
by the cointegrating regression and the variance ratio should diverge.

(d) The multivariate trace statistic P is also new. Its appeal is similar to that of
P Thus, £ is a direct estimate of the covariance matrix of z,, while M,,
s1mply the observed sample moment matrix. Any degeneracles in the model such
as cointegration ultimately manifest themselves in the behavior of M,, and,
hence, that of the statistic P This behavior will be examined in detail below
Note that P, is constructed in the form of Hotelling’s 7}) statistic, which is a
common statistic (see, e.g., Mu1rhead (1982, Chapter 10)) in multivariate analysis
for tests of multivariate dispersion.

(¢) Note that none of the tests (i)—(iv) ate invariant to the formulation of the
regression equation (10). Thus, for these tests, different outcomes will occur
depending on the normalization of the equation. One way around this problem is
to employ regression methods in fitting (10) which are invariant to normalization.
The obvious candidate is orthogonal regression, leading to

(15) bz,=1,
where
b=argminb'M, b, bb=1.

Here b is the direction of smallest variation in the observed moment matrix M,
and corresponds to the smallest principal component with

T
T—l Zatz = E,Mzzg = }‘min( Mzz)
1

where A (M,,) is the smallest latent root of M,,. Smallest latent root tests
based on A,,,(M,,) may be constructed. For example, an orthogonal regression
version of the variance ratio statistic P would be:

}\ = TAmm(Q)/}‘mm( zz)'
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Unfortunately, P,\ has a limiting distribution which depends on the nuisance
parameter 2. The multivariate trace statistic P offers a very convenient alterna-
tive. P is a normalization invariance analogue of P and has the same general
appeal as statistics such as P,\, yet, as we see below, its asymptotic distribution is
free of nuisance parameters.

(f) Each of the test statistics (i)—(iv) has been constructed using the residuals 4,
of the least squares regression (10). These statistics may also be constructed using
the residuals #, of the least squares regression

(16) y=a+pBx,+14,

with a fitted intercept. In a similar way, for test (v) the statistic ﬁz may be
constructed using M,, = T~ 'L](z,—zXz,— z) and residuals £, from a VAR
such as (14) with a fitted intercept. These modifications do not affect the
interpretation of the tests but the alternate construction does have implications
for the asymptotic critical values. These will be considered below.

4 ASYMPTOTIC THEORY

Our first concern is to develop a limiting distribution theory for the tests
(i)—(v) under the null of no cointegration. In this case, the covariance matrix 2 is
positive definite. The statistic that presents the main difficulty in this analysis is
the ADF. We shall give the asymptotic theory for this test separately in the
second result below.

THEOREM 4.1: If {z,}¥ is generated by (1), if 2> 0, and if (C1) holds, then as
T — o0:

(a) Z,= /1RdR;
0

b) Z= foles;
(c) B,= (fole)—l;
@ Ao tr{(j(;lWW’)—l}

where notations are the same as in Lemma 2.2 and

R(r) =Q(r)/(f01Q2)m,

S(r)=0(r)/ (k).

We require the lag truncation parameter [ — oo as T — oo and [ = o(T).
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REeMARKS: (a) Recall from Lemma 2.2 that

o(r) = Wi(r) - folwl%'(fol%%')_l%(r)

whose distribution depends on a single parameter n, the dimension of W,. Recall

too that
-1
1 1
p =(1,—f0W1u/2(f0W2v1/2) )

whose distribution is also independent of nuisance parameters.

(b) We deduce from the preceding remark that the limiting distributions of Z,,
Z , and P are free of nuisance parameters and are dependent only on the
known d1men51on number n (or m=n+1 in the case of P) These statistics
therefore lead to (asymptotically) similar tests. Critical values for these statistics
have been computed by simulation and are reported in Appendix B. For the case
of the Z, statistic demeaned (i.e. computed from the regression (16) with a fitted
intercept) the values in Table IIb in Appendix B correspond closely with those
reported by Engle and Yoo (1987, Table 2, p. 157) for the Dickey Fuller ¢
statistic. Differences occur only at the second decimal place and are likely to be
the result of: (i) differences in the actual sample sizes used in the simulations
(T =200 in Engle and Yoo (1987); and T = 500 in ours); and (ii) sampling error.

(c) The Z, and Z, tests have the same limiting distribution in the general case
as the chkey Fuller residual based a and ¢ tests do in the highly restrictive case
of 1id (0, Q) errors. This point is discussed further in the original version of the
paper which is available as a technical report on request (Phllhps and Ouliaris
(1987)). Thus, the Z and Z tests have the same property in this context of
cointegrating regressions for which they were originally designed in Phillips
(1987) as scalar unit root tests, viz. that they eliminate nuisance parameters and
lead 1o limit distributions which are the same as those possessed by the Dickey-
Fuller tests in the iid error environment. However, the limiting distributions here,

3ARdR and [{RdS, are different from the simple unit root case, and they are
dependent on the dimension number .

(d) We remark that the limiting distributions of Z,, Z,, P,, P, (the statistics
mentioned earlier which are based on first dlﬁ”erences k,=A#, and §,=Az,
rather than regression residuals k and ﬁ ) are the same as those of Z,, Z f’ P
glven in Theorem 4.1. This follows in a straightforward way from the proof given
in the Appendix.

(¢) Note, finally, that if the statistics are based on the regression (16) with a
fitted intercept then the limiting distributions of Z, Z and P have the same
form as in (a)-(c) but now R, S, and Q are functlonals of the demeaned standard
Brownian motion W(r)= W(r)— [iW. Observe that W is the projection in
L,[0,1] of W onto the orthogonal complement of the constant function, thereby
justifying this terminology. In a similar way, if the cointegrating regression
involves fitted time trends the limiting distributions in (a)-(c) continue to retain
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their stated form but involve functionals of correspondingly detrended standard
Brownian motion.

THEOREM 4.2: Let {z,} be generated by (1) and suppose {&,} follows a
stationary vector ARMA process. If >0 and (C1) holds, then as T — o0

ADF = f 'RdS,
1]

provided the order of the autoregression in the ADF is such that p — o0 as T — «©
and p = o(T'/?).

REMARKS: (a) Theorem 4.2 shows that ADF and Z, have the same limiting
distribution. This distribution is conveniently represented as a stochastic integral
in terms of the continuous stochastic processes (R(r), S(r)). These processes are,
in turn, continuous functionals of the m-vector standard Brownian motion W(r).
In accord with our earlier remarks concerning Z,, the limiting distribution of the
ADF depends only on the dimension number » (the number of regressors in (10)
or, equivalently, the system dimension m(=n+1)). Given m, the ADF is an
asymptotically similar test.

(b) The proof of Theorem 4.2 depends critically on the fact that the order of
the autoregression p — co. While this behavior is also required for a general unit
root test in the scalar case (see Said and Dickey (1984)) it is not required when
the scalar process is driven by a finite order AR model with a unit root. It is
important to emphasize that this is not the case when the ADF is used as a
residual based test for cointegration. Thus, we still need p — o0 even when the
vector process £, is driven by a finite order VAR. This is because the residuals on
which the ADF is based are (random) linear combinations of £,. These linear
combinations no longer follow simple AR processes. In general, they satisfy
(conditional) ARMA models and we need p— oo in order to mimic their
behavior.

(c) We mention one special case where the requirement p — oo is not needed.
This occurs when the elements of £, are driven by a diagonal AR process of finite
order, viz.

14
b(L)¢=¢, b(L)= Y bL, b=1; ¢, iid (0, Z).
=0

In this case
2=(1/b6(1)’,
2,= (f” lb(e”‘)l'zd}\)Z,
and we observe that £ is a scalar multiple of §£,. The examples chosen by Engle

and Granger (1987) for their simulation experiments (Tables II and III in their
paper) both fall within this special case.
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(d) Note that the ADF test is basically a ¢ test in a long autoregression
involving the residuals #,. In this sense, the ADF is a simple extension of the
Dickey-Fuller ¢ test. Note that no such extension of the Dickey-Fuller o test is
recommended by Said and Dickey (1984) since even as p — co the coefficient
estimate T&, has a limiting distribution that is dependent on nuisance parameters
(cf. Said and Dickey (1984, p. 605)) in the scalar unit root case. In contrast, the
Z statistic is an asymptotically similar test. Thus, the nonparametric correction
of the Z, test successfully eliminates nuisance parameters asymptotically even in
the case of cointegrating regressions. This point will be of some importance later
when we consider the power of these various tests.

5 TEST CONSISTENCY

Our next concern is to consider the behavior of the tests based on Z,, Z,,
ADF, P, and P, under the alternative of cointegration. To be specific we define
z, to be cointegrated if there exists a vector 4 on the unit sphere (2’2 =1) for
which g, = h'z, is stationary with continuous spectral density f,,(A). This ensures
that the action of the cointegrating vector 4 reduces the integrated process z, to a
stationary time series with properties broadly in agreement with those of the
innovations £, in (1). The spectral density of 4'(z,— z,_;) satisfies

W fee(M h=f (M1 — e
from which we deduce that
Rfe(Mh=f, 00X +0(N), A-0.
This implies that 4’2k = 0 so that £ is singular.

THEOREM 5.1: If {z,}¥ is generated by (1) and is a cointegrated system with
cointegrating vector h and $,,> 0, if g,=h'z, and f,,(0) > 0, then

(2) Z,=0,(T),
(b) Z,=0,(1'?),
(c) ADF = OP(TVZ),

50 that each of these tests is consistent.

REMARKS: (a) We see from Theorem 5.1 that Z diverges faster as T — co
under the alternative of cointegration than do either of the statistics Z and ADF.
This suggests that Z is likely to have higher power than Z and ADF in samples
of moderate size. It also suggests that the null distribution of Z, in finite samples
is likely to be more sensitive than Z and ADF to changes i m parameters which
move the null closer to the alternatlve (i.e. as wyy., = 0 or p?> - 1).

(b) As is clear from the proof of Theorem 5.1 the requirement that f,,(0) >0 is
needed for results (b) and (c). It is not needed for result (a). Moreover, when
f,4(0) =0 we show in the proof that Z 0,(T). In this case the cointegrating
vector does more than reduce z, to the stat1onary process q,= h'z,. It actually
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annihilates all spectral power at the origin. When this happens, there should be
more evidence in the data for cointegration and, correspondingly, the Z statistic
diverges at the faster rate O (T)

(¢) Note further that the Z statistic, which is based directly on the coefficient
estimate & in the residual based regression, does not involve an estimate of the
standard error of regression like Z,. Its rate of convergence is O,(T') under the
alternative irrespective of the value of £ ,(0).

(d) The requirement that §2,, > 0 in Theorem 5.1 is not essential to the validity
of results (a)—(c) provided y, and x, are still cointegrated. However, when it is
relaxed and we allow 25, to be singular, then we need to allow for cointegrated
regressors x, in (10). In such cases we have b=b+ 0,(T"'/?) in place of
b=b+0 ,(T™1) (see Park and Phillips (1989, Seciion 5.2) for details) and the
proofs become more complicated.

In order to develop our next theorem let us continue to assume that £2,,> 0.
Define an orthogonal matrix H = [H;, h] and the process:

Hllét Wy |0
(17) w,= [ e, ] = [Wz, 2
This is zero mean, stationary with spectrum f, (A), say, under the alternative of
cointegration.

THEOREM 5.2: If {z,}¥ is generated by (1) and is a cointegrated system with
cointegrating vector h and §,,>0 and if {,,,(0) > 0, then as T - oo:

(a) P,=0,(T),
()  E=0,T),

S0 that each of these tests is consistent.

We observed earlier that the Z and P tests may be constructed using first
differences rather than residuals. Thus, we denoted by Z, and Z, the statxstlcs
which utilize the first differences A#, rather than k in the estimators s? and s2,.
Similarly, we denoted by P, and P, the statistics Wthh utilize the first differences
Az, = ¢, in place of the residuals é, from the VAR (14). These modified tests have
very different properties under the alternative as the following result shows.

THEOREM 5.3: If (1) is a cointegrated system with cointegrating vector h and
25,>0, thenas T — o0
Z,Z,P,P.=0,(1)
and each of these tests is inconsistent.
The use of residuals rather than first differences in the construction of these

tests has a big impact on their asymptotic behavior under the alternative of
cointegration. Clearly, the formulation in terms of residuals leading to
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Z,.. Z, B, P, is preferable. Phillips and Durlauf (1986) reached a similar conclu-
sion in a related context, dealing with multivariate unit root tests.

6 COMMON CONCEPTUAL PITFALLS

Since it is the hypothesis of cointegration that is of primary interest rather than
the hypothesis of no cointegration it is often argued that cointegration would be
the better choice of the null hypothesis. For example, in a recent survey Engle
(1987) concludes that a “null hypothesis of cointegration would be far more
useful in empirical research than the natural null of non-cointegration.” In spite
of such commonly expressed views, no residual based stastistical test of cointe-
gration proceeds along these lines.

A major source of difficulty lies in the estimation of £ under (the null of)
cointegration. In order to assess whether a multiple time series is cointegrated,
residual based tests seek, in effect, to determine whether there exists a linear
combination of the series whose variance is an order of magnitude (in 7") smaller
than that of the individual series. Equivalently, one can work directly with the
covariance matrix  and seek to determine whether its smallest latent root is zero
and {2 is singular. Let us assume that the supposed cointegrating linear combina-
tion & were known. In such a case, we would seek to test

H{: W'Qh=0.

In order to test H{ it would seem appropriate to estimate 2 by £ using the first
dlﬂ'erences £,=A4z, of the data and base some test statistic on A’ ©n. Since
W 2h - 0 under the null Hg, but not under the alternative (A'2h > 0), we might
expect a suitably rescaled version of #'Qh to provide good discriminatory power.
Of course, this approach relies on critical values for the statistic that is based on
h'h being worked out. Likewise, if 4 were not known, we would seek to test

H{’: 2 singular.

If £2,,> 0 then the obvious approach would be to base some test statistic on the
estimated conditional variance
~Ar H-1~
Bpp o= By — 6505 Gy

Since @4 5 = 0 under the null Hy’, similar considerations apply.
The following lemma indicates the pitfalls inherent in this approach. It will be
convenient for the proof to employ the smoothed periodogram estimate of £:

(18) &= E I, (27s/T)

where I . (A) = wx(k)wx(}\)* denotes the periodogram and w,(A) =
(27T)~12%Tx,e™™ the finite Fourier transform of a (multiple) time series {x,}.
In (18) the bandwidth parameter / plays a similar role to that of the lag
truncation parameter in the weighted covariance estimator (14). We shall assume
that / = o(T"?). We have the following lemma.
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LeEMMA 6.1:
(2) W@h=T(gr—qo)* +0,(T7");
(b) &11A2=h,9h+0p(T_1).

REMARKs: (a) We see from Lemma 6.1 that both Th’Qh and Td,, , are 0,(1).

Indeed, both of these statistics are weakly convergent in a trivial way, viz.

(19)  TW@h, Téy ,= (4 — o)’

where ¢, is a random variable signifying the (weak) limit of the stationary
sequence { g, } as T — co. Tests that are based on these statistics therefore result
in inconsistent tests. Note also that the limiting distribution given by (19) is
dependent on that of the (stationary) sequence ¢,, which in turn depends on that
of the data z,. Thus, no central limit theory is applicable in this context. And any
statistical tests that are based on 4'2h or &,;., under the null of cointegration
would need critical values tailored to the distribution of the data. Such specificity
is highly undesirable.

(b) The above results suggest that classical procedures designed to test a null of
cointegration can have serious defects. Statistics that are based on {2 or &, , are
not to be recommended. An alternative approach that is inspired by principal
components theory is not to test Hy’ directly but to examine whether any of the
latent roots of §2 are small enough to be deemed negligible. This approach
proceeds under the hypothesis that £2> 0 (no cointegration) and is well estab-
lished in multivariate analysis (e.g., Anderson (1984)). It has been explored in the
present context by Phillips and Ouliaris (1988).

7 ADDITIONAL ISSUES

The results of this paper are all asymptotic. They are broadly consistent with
simulation findings reported in Engle and Granger (1987) for the ADF and in
Phillips and Ouliaris (1988) for the Z,, Z,, and ADF tests. However, it is certain
that there are parameter sensitivities that are likely to affect the finite sample
properties of these tests in important ways. This is because as we approach the
alternative hypothesis of cointegration, the model undergoes a fundamental
degeneracy. This seems destined to manifest itself in the finite sample behavior of
the tests in differing degrees, depending on their construction.

Some guidance on this issue is given by the performance of the Z,, Z,, and
ADF tests in simple tests for the presence of a unit root in raw time series (rather
than regression residuals). Simulation findings in this context have been reported
by Schwert (1986) and Phillips and Perron (1988). These studies indicate the
power advantages of the Z, test that we have established by asymptotic argu-
ments in this paper. But they also show that size distortions can be substantial
for all of the tests in models with parameters approaching the stability region. It
seems likely that similar conclusions will hold for residual based unit root tests.
However, the issues deserve to be explored systematically in simulation experi-
ments,
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APPENDIX A

PROOF OF LEMMA 2 1* The first part of the argument relies on the construction of a sequence {7, }
of stationary and ergodic martingale differences which are representative of the sequence {£,}. Under
(C2) this construction may be performed as 1n the proof of Theorem 5 5 of Hall and Heyde (1980, pp
141-142). We then have
(A1) §=Y+2"-7%,

where {¥,=C(1)¢,} is the required martingale difference sequence and Z;' is strictly stationary.
Note that with this construction E(Y,Yy) = and Z* is square integrable. Now

o0 o0
£* = E aY,_ + EaI(Zf_I—-Zf_IH)
— o0 — o0

and
[Tr] o o0
Xp(ry=1"2 E E a%_,+ T2 a/(thj - Z[+Tr]—1+1)'
=1~ — o0

As in Hall and Heyde (1980. p 143) 1t follows that
[7r]
(A2) sup |XF(r) =T 2 ¥ >0
P

0<gr<1 1

where Y,*=X® a7,

2wt Y,
The new sequence {Y,*} is strictly stationary, ergodic, and square integrable with spectral density
matrix

*

frr(A) = (1/271)( _i aje")‘)ﬂ( _i aje”)‘) =(1/27)

It follows that

T"E{(th*)(YT.K*)’} —’2'”fY*Y*(0) =a(1)29
1 1

(see Ibragimov and Linnik (1971, Theorem 18.2.1)). Under (4) we may now obtain a martingale
representation of ¥;* analogous to (Al) for §,, viz

(A3) YVr=0,+7Z*-Z%,
where Q, =a(1)Y, 1s a stationary ergodic sequence of martingale differences with covariance matrix
a(1)22. We deduce from (A3) that
{7] [7r]
TV Y V=T 'Y 0+ T 2( 2 ~ Zy.1)
1 1

2
Q.

]
Y a,e
-

and as before
[77]

T12Y (Y*- Q)

1

(Ad) sup
Ogrl

-0
»
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Similarly,
[7r]

(A5) sup |T7172 Z (- Y)

O<r<l

Noting that X,-(r)= T~ /2L[T"l¢,, we now obtain from (A2), (A4), and (A5),

Lo X )=a@)Xr(rl >0

as requured for (6); (7) follows directly.

PROOF OF LEMMA 2 2: Part (a) is immediate from (8). To prove (b) note that

l
I 1

L'ﬂ= - = 1 -t 1 =11K7
[121 - LzzAzzlazl] —111(_/0 Wsz') fowz“’l !

giving the results required Next
(A6) WB(r)y=wL'W(r)=x'W(r)=0L0(r)
and (c)—(¢) follow directly

PROOF OF THEOREM 4.1: We first observe that
(A7) b=, where & =(1,-§)
(Phillips (1986)) and then

T

T
(A8) T422ﬁ3—1=1;'( T‘zzzt-lz{_1)13=n%n=au 2
1

1

To prove (a) we write

Za =T(a-1)- (1/2)(sTl_sk)/ T”ZEu, 1

={r12a,-laa,-(1/z>(s%,—sz)} / (r—zzu, )
1
Now

~

1/2)(s3-s2) = T“IZWS, E kK,

s=1 1=s+1

and k, =@, — &,_, = A&, —(&—1)&,_1=13'{g,-(a—1)z,_1} so that

T
@9) b{ g >: Y (6t (-8)zr]

l=.\'+1
X[§,+ (1"&)21—1]’}13/(7”22‘# 1)

Since §, is strictly stationary with continuous spectral density matrix f;z(A) we have

T‘IZ Wt Z g: sst

s=1 1=s+1
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provided / — oo as T — oo with /= o(T) Moreover, as 1n the proof of Theorem 2.6 of Phillips (1988),
we find

T i T
T‘lzzt-lgr' -7 Z Wy E & ¢ =’/(;le3’
1

s=1 t=s+1

Finally, since 1 — & = 0,(T~') we deduce from (A8) and (A9) that

n (1 , _!

z,,=>nf0 BdB'y/ay, z_fo RdR
with the final equivalence following from parts (d) and (e) of Lemma 2.2.

The proof of part (b) follows in the same manner. To prove (¢) and (d) we observe that

§,=4§+ 0,(T™") from (14) and hence

-0

V4

as T — oo provided [ — oo and /= o(T). We deduce that

A=y,
P
and using (A8) and Lemma 2.2 (€) we obtain
o 1.,
B=1 / fo 0

as required for (¢) Part (d) follows by noting that

P= tr{sz(folBB')_l} Etr{gL—l(fOlWW,)—lL,_l}
=tr(f01WW’)

as required.
PROOF OF THEOREM 4.2: The ADF test statistic is the usual 7 ratio for &, in the regression

P
(A10) Ally= Gl + Y, § A, + 6,

=1

In conventional regression notation this statistic takes the form
172,
ADF = (u’_,pru_l) Gy /5,

where X, is the matrix of observations on the p regressors (A#,..y,..., A@l,_,), u_, is the vector of
observations of #,_;, Qx =1— X,(X;X,)"'X, and 57 = T™'L5},. Now

A1) (ul1Qxuo1)Pae= (T 2ul10u ) (T 02105, A0)
and

(A12) T2l Qxpthoy =T 2ulyu_y + 0,(1)

-1/2

’ 1 tor e 1 2
=nf0 BB = wy; zfoQ .
Moreover under (C1) we have

b = 4 (R-mixing)
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so that the limit variate y is asymptotically independent of each event E€ F= U2 _ F, where
F =0(£,, y<1). This independence makes it possible to condition on n without affecting the

probability of events E € F. Note that
(A13) AR, =bt =0k =¢, say.
Since £, is a stationary (vector) ARMA process by assumption, 1t is clear that the new scalar process

§, =n¢,, given 1, is also a stationary ARMA process (see, for mstance, Lutkepohl (1984)). We write
its AR representation as

o0
(A14) =Y dt_ =d(L)
=0
where L is the backshift operator. Note that the sequence {d,} is majorized by geometrically

declining weights and is therefore absolutely summable. Moreover, given 7, v, is an orthogonal
(0, 6%(1)) sequence with

(A15)  o*(n)=d(1)’nay

We now note that the ADF procedure requires the lag order p in the autoregression (A10) to be large
enough to capture the correlation structure of the errors. Even if £, is itself driven by a finite order
vector AR model, the scalar process {, will follow an ARMA model with a nonzero MA component.
1t is therefore always necessary to let p — oo in (A10) in order to capwre the time series behavior of
{,. The only exception occurs when ¢, is itself an orthogonal sequence. Formaily, in the context of
unit root tests, Said and Dickey (1984) require p to increase with T in such a way that p = o(T%/3).
When this happens, noting that &, = OP(T‘I), we see that (A10) converges to (Al4), conditional on
1. In particular, we have

(Al6)  T~'ul,0y Aii=T 'l v+ 0,(1)
T
=HT7'Y 7,0+ o, (1)
1

T
= n’T—l ZZ,-;U, + op (1)
1

Now write
y=d(L)S, =d(L){n
and note that by Lemma 2.1

{7r] (7]
(A17) T‘l/zzv,=d(1)( T'I/ZZE{)n+op(1)
1 1

uniformly in r (from (6)). Also

{rr]
(A18) T-Y2Y ¢,=B(r)
1

and we obtain from (A16)-(Al8)

T
(A19) T Yz =d(D)y [ BB,
1 0
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We deduce from (All), (A12), (Al5), and (A19) that

d(l)n'ledB'n n’ledB'n
0 _ 0
ADF= ) 172 = . 1/2 )
/ BBI 2 BB/ Ig /2
(nj(; n) o(n) (nfo n) (7%n)
1
[ede
-
1.2 2 /2
fQ (x'x)
0
=f1RdS
(4]

as required.

PROOF OF THEOREM 5.1. First observe that since the system 1s cointegrated, we have:
a 1 1
=1 -
_ ﬁ s L- B

b=ch, c=(b’b)1/2

so that # and b are collinear. We have
b=b+0,(T7Y)

from Phillips and Durlauf (1986, Theorem 4.1) and thus
f=bz=bz+ 0,(T"?)=cq,+ 0,(T™1?).

where

In the residual based regression

»

f,=a&n,_, +k,
we now obtain

d=a=1,(1)/%©),  %()=E(44-,)
with ja| <1, and

I;r=c(qr_aqt—l)+0p(T_1/2)=k1+0p(T_1/2)’ say,
where k, is stationary with continuous spectral density

2

fee (V) =1 = ae™[ £, (X).
It follows that
(A20) 5% = 2mfir (0) =2me? (1~ a)zqu 0)>0

»

and

s? —p» var (k,) =02{(1 +a7)v,(0) "2"74(1)}

= (1,0 -+, 1)*)1,(0).

Now

T T
(a21) T'Ya, > (0, T am = 2y, (1)
1 1



RESIDUAL BASED TESTS 185

and then
T
T Z 1~ 7 12“: 1 (1/2)(STI_SI<)
1

(A2) - A1 (1) = (1/2)7,(0) - 7 (1 — @) £,,(0) = (1/2) 7, (1)*/7,(0) } .

It follows that

2, = r{r é _ —T-IZu, 1 (1/2)(s%,—s3)}/(T“Zu, 1)

as required for part (a) Similarly, we find that

T 1/2
=T{T-12a,a —T-lz:u,1 (1/2)(sT,—sk)}{T1/2sT,( 1Zu, 1) }

= op(Tl/Z)

-1

in view of (A20)—(A22) Note, however, that if £ (0) = 0 (so that g, has an MA umt root) we have, as
in Lemma 6 1,

TS%/ = op (1)
and in this case
2! = op(T)

as for Z,. This proves part (b). To prove (c) we observe that when £,4©® >0, g, has an AR
representation,

o0
(A23) Zalq,_,=e,, ay=1,
-0

where {e,} 1s an orthogonal (0, 6?). We take {a ,} to be absolutely summable and then, following
Fuller (1976, p. 374) we write (A23) in alternate form as:

o0
(A24)  Ag,=(0,-1)g_,+ X O 4q,_,+e
k=1

where §, =Y%°_ 4, (1=2,3,...) and 8, = —X7.,a,. Since g, 1s stationary we know that 6; # 1. In the
ADF regression (Al0) (as p — o) we find that

2 2
sg—6r,

r

& - (0,-1)=0,
p

w \2
T“uLlQXPu_l - (1 + (Z”,) )a},
»

and hence
ADF = 0,(T"?)

as requured for (c)
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PROOF OF THEOREM 5.2: Note that both B, and P, rely on the covariance matrix estimate £ given
by (13). This estimate relies on the residuals £, from the VAR (14), i.e.

z=Mz,_, +£.
As T ~ oo we have (Park and Phillips (1988))

lAI—>H[I"(;1 :g]H’=ﬁ, say,
K :

where

g= E(Wrwz:—l)/E(wzzz)‘
We may write
£r=£r + (I'—ﬁ)zr—l + Op(T_l/Z)

= H'gl.;.H{[g (1)]—[02g]}H’z,_1+0p(T‘1/2)

=H{[:’¥,] + [WZ?-I] “ng,_l} +0,(T-172)
B H{[:‘v’;:] _ng,_l} + op(T—l/z)

=H{I-[0: g]}w+0,(T7*?)
=£{+0,(T7V?),  say.
Now ¢, is zero mean, stationary with spectral density matrix
fe(A) = H{1-[0,8]e™ } £, (W) {1~ [0, g]e™ }*H".
Observe that
(A25)  R=f(0) = H(I-[0,g)) fun (O)(1 - [0, g]Y'H'
is positive definite, since f,,,,(0) > 0 and 1 — g, # 0 where
8, = E(wywy )/E( “’22:)
We now obtain
(A26) [0 ’ 2>0
as T — co. It follows that
(A27) By 2= By — G350y > By 2 =8y ~ 508
where we partition @ conformably with 2. Hence, using (A21) and (A27) we find that
B = 0,(T)

as required for part (a).
To prove part (b) we first note that by Proposition 5.4 of Park and Phillips (1989)

(A28)  Mz'=h(W'M_.h)" "W +0,(T™")
=hh'/m,,+ 0,(T" 1)

where

T T
myq= T“ZWzZF T_IZ%Z-
1 1
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It follows that
(A29) B =1{hQh/m,+0,(T"")}
=0,(T)
as required for (b).
PRrROOF OF THEOREM 5.3' The Z, and Z, tests use
ky=8,—i,_,= I;lgt =+ Op(T—l)
= c(qt - ql—l) + Op(T—l)'
We therefore have
s%, -0
r
and, as 1n Lemma 6.1,
Ts} = 0,(1).

Now
T 1Y 8, (8, = u,_y) + (1/2) 52
T
=c2T_lZ‘lz-1(‘lx“ 4-1)+ (1/2)CZT_IZ(‘7:_‘7!-1)2 + OP(T_I)
1
=0,(T™")
so that

T T
Z,= T{T*Za,-l(ﬁ,— f,.1) - (1/2)(s%,—s,3)}/(7“‘§a%_1)
2

=0,(1)

as T — co. The result for Z, follows in the same way.
In the case of P, it is easy to see from (A27) and (A28) that

P.=T{(K@h/m,,) +0,(T™")}

where  is constructed using the first differences Az, = §,. However, since the system is cointegrated
the limit matrix @ of & is singular. Indeed 4'@% = 0 and, further, since #’¢, = ¢, — ¢,_, we find

(A30) Th'h = 0,(1).
We deduce that
P.=0,(1)
and the test is inconsistent, as stated. In the case of P, we observe that
(A31) &y 5 = det $/det @y,
= det (H'QH) /det &5,
~ { win - wQm( 1y QH,) 7 H O} det( H{QH,) fdet O,
=0,(T")
in view of (A30) and the fact that
WQH, = 0,(T"?)
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(see Lemma 6 1). We deduce that
E,=0,(1)
as stated

PROOF OF LEMMa 6.1: £ 15 a consistent esimator of £ based on £,. A’k is a consistent estimator
of #’Qh =0 based on r,=h'§, = q,— g,_.,. Consider the following smoothed periodogram estimates

!
Z Iff (2915/T),
!

T
T 20+1
$

20

Q=
2+1,

!
Y I,Q@2ns/T).
/

Note that for s= —1I, —{+1,. .,/ we have

T
w, (2')1‘3‘/T) = (2.”7‘)'1/22(‘]’ _ qt~1)812mt/T
1

T T
= (2,”7‘)‘1/22‘]181277“/7'_ (2,”T)—1/qu’_1e12m((l—l)+1)/T
1 1

it 127 s
=(2nT) 1/2( gre®™ = qo) + 0,;(7)

=77 ?)(gr—90) + Op(iT)
and, thus, for | = o(T~'/?) we deduce that
(A32) w,(2ms/T) = (27T~ 2)(gr—g0) + ,(T"'/?)
umformly 1in s Hence,
W@ =T (g7~ 90)" + 0,(T"")
It follows that
Th'Qh = 0,(1)

as required for part (a) The result continues to hold for other choices of spectral estimator. To prove
(b) note from (A31) that

Ouy o widn — W (@) T HY O } det (08, ) /(det ,).
Now 2y, — £,,> 0, H/QH, - H/QH, >0, and
P 1 1p

WQH, =

/
2m5/T).
20+1 SSZ_,I’W‘( /)

Now w,(27s/T) = 0,(T"'/?) uniformly mn s and
!

@+1)"" Y w, @2ms/T)=0,(1)

s=—/

so that

WQH = 0,(T7/?).
We deduce that

Gy 2 =h'Qh+0,(T1)

as required for part (b).
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APPENDIX B

Tables I-IV present estimates of the critical values for the Z,, Z,, B, and P, statistics. The tables
allow for cointegrating regressions with up to five explanatory vanables (ng 5) Critical values are
provided for Models (10) and (16) and for cointegrating regressions with a constant term and trend.

The critical values were generated using the Monte Carlo method with 10000 iterations and 500
observations. All the computatlons were performed on an IBM/AT using the GAUSS programming
language The random 1nnovations were drawn from the standard normal random number generator
in GAUSS (ic., “RNDNS”). Thus 2 =TI and p* =0 for the generated data, thereby simplifying the
computation of the statistics

Approximate 95% confidence intervals for the critical values were computed using the method
described 1n Rohatg1 (1984, pp 496-500). In order to provide some indication of the degree of
precision 1n the estimates, we present the approximate 95% confidence intervals for n =1 (refer to the
rows labelled 4,) Confidence intervals for n > 2 are available from the authors on request.

Usage

For Tables I and II (Z, and 2,): Reject the null hypothesis of no cointegration if the computed
value of the statistic is smaller than the appropriate critical value. For example, for a regression with
a constant term and one explanatory variable (1e. n=1), we reject at the 5% level 1if the computed
value of Z, 1s less than — 20.4935 or the computed value of Z is less than —3.3654 ‘

For Tables III and IV (B, and P.): Reject the null hypothe51s of no cointegration 1f the computed
value of the statistic 15 greater than'the appropriate critical value. For example, for a regression with
two explanatory variables (i.e., n = 2) but no constant term, we reject at the 5% level 1f the computed
value of P, 1s greater than 32.9392 or the computed value of P, 1s greater than 71.2751.

TABLE Ia
CRITICAL VALUES FOR THE ZA¢x STATISTIC (STANDARD)

Size
n 01500 01250 01000 00750 00500 00250 00100
—10.7444 115653 —12.5438 —13.8123 -—156377 -18.8833 —228291
—16.0164 -—17.0148 —18.1785 —19.6142 —21.4833 —252101 —29.2688
—215353 —-226211 —23.9225 —255236 —27.8526 —31.5432 —36.1619
—26.1698 —27.3952 —28.8540 —30.9288 —33.4784 —374769 —42.8724
—30.9022 322654 —33.7984 —355142 —38.0934 —42.5473 —48.5240

4, (—02009) (—0.1866) (-02210) (-0.2863) (~0.5282) (—05053) (—0.8794)
(+0.2283) (+02338) (+0.2941) (+0.3163) (+03899) (+0.6036) (+06801)

Wb W N =

TABLE Ib
CRITICAL VALUES FOR THE Za StATISTIC (DEMEANED)

Size
n 01500 01250 01000 00750 00500 00250 00100
—149135 —-159292 -—17.0390 —184836 —20.4935 —23.8084 —28.3218

1

2 —-199461 -21.0371 —221948 —238739 -26.0943 —29.7354 —34.1686
3 —25.0537 -262262 —27.5846 —295083 320615 —35.7116 —41.1348
4
5

—298765 -—31.1512 327382 —34.7110 -—37.1508 ~—41.6431 —47.5118
—341972 -354801 -37.0074 —391100 —41.9388 —46.5344 —52.1723

4, (—02646) (—02664) (-03035) (—0.2660) (—04174) (-0.6163) (-0.9824)
(+0.1834) (+0.3011) (+0.3329) (+0.3348) (+0.4319) (+04834) (+1.1440)
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TABLE Ic
CRITICAL VALUES FOR THE Z"a STATISTIC (DEMEANED AND DETRENDED)

Size

n 01500 01250 01000 00750 00500 00250 00100

1 -20.7931 —21.8068 —23.1915 —24.7530 —27.0866 —30.8451 -—35.4185

2 —252884 264865 —27.7803 —29.7331 —322231 -36.1121 —40.3427

3 —-30.2547 -31.6712 —33.1637 —34.9951 —37.7304 —42.5998 —47.3590

4 —34.6336 -—360288 —37.7368 —39.7286 —424593 —47.1068 —53.6142

5 —38.9959 -40.5939 423231 445074 —47.3830 —524874 —58.1615
4; (—02514) (-03946) (—0.3466) (—0.3908) (—0.5445) (—06850) (—0.9235)

(+02771) (+03020) (+0.3044) (+04081) (+0.5049) (+06158) (+0.8219)

TABLE Ila
CRITICAL VALUES FOR THE Z, AND ADF STATISTICS (STANDARD)

Size

n 01500 01250 01000 00750 0 0500 00250 00100

1 —22584 -23533 24505 —2.5822 —27619 —30547 —3.3865
2 -2.7936 28797 —29873 —3.1105 —32667 —3.5484 —3.8395
3 —32639 33529 -34446 —35716 —37371 —39895 —4.3038
4 -36108 -37063 —3.8068 —39482 -41261 —43798 —4.6720
5 ~39438 —40352 41416 —42521 —43999 —4.6676 —4.9897
4; (-0.0232) (~0.0247) (-0.0269) (—00328) (—0.0439) (-0.0382) (~0.0600)

(+00211) (+0.0228) (+0.0218) (+0.0347) (+0.0318) (+0.0601) (+0.0755)

TABLE Ilb
CRITICAL VALUES FOR THE Z, AND ADF STATISTICS (DEMEANED)

Size

n 01500 01250 01000 00750 00500 00250 00100

1 —28639 -29571 —-3.0657 -3.1982 —3.3654 —3.6420 —3.9618
2 —3.2646 —3.3513 —3.4494 —3.5846 -3.7675 —-4.0217 —4.3078
3 36464 —3.7306 -3.8329 —3.9560 -41121 —4.3747 —4.7325
4 —39593 —4.0528 —4,1565 —4.2883 —4.4542 -4.7075 —-5.0728
5 —42355 —43288 —-4.4309 —4 5553 -47101 -4 9809 -5.2812
4, (~00290) (—0.0261) (-00232) (—0.0296) (—0.0424) (—0.0389) (—0.0582)

(+0.0186) (+0.0263) (+0.0317) (+0.0380) (+0.0304) (+00415) (+0.0501)

TABLE IIc
CRITICAL VALUES FOR THE 2, AND ADF StaTisTICS (DEMEANED AND DETRENDED)

Size
01500 01250 01000 00750 00500 00250 00100

=

—3.3283 34207 35184 —3.6467 —3.8000 —4.0722 -43628
—3.6613 37400 —3.8429 39754 —4.1567 43854 —4.6451
—3.9976 —4.0808 —4.1950 —43198 —4.4895 —47699 —50433
—4.2751 —43587 —44625 —4.5837 —47423 50180 —5.3576
5 —45455 —46248 —4.7311 —48695 50282 53056 —5.5849

4, (-0.0259) (—0.0246) (—0.0244) (—0.0259) (—00350) (—00469) (-0.0629)
(+0.0246) (+0.0281) (+0.0205) (+0.0301) (+0.0288) (+0.0507) (+0.0722)

W=
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TABLE IIIa

CRITICAL VALUES FOR THE f’u STATISTIC (STANDARD)

Size
n 01500 01250 0 1000 00750 00500 00250 00100
1 172146  18.6785 20.3933 227588 25.9711 31.8337 38.3413
2 229102 24.6299 26.7022 29.4114 32.9392 39.2236 46 4097
3 289811  31.0664 33.5359 36.5407 40.1220 46.3395 55.7341
4 34.5226  36.4575 39.2826 41.8969 46.2691 53.3683 63.2149
5 39.7187  41.7669 44.3725 47.6970 51.8614 59.6040 69.4939
4, (—-04356) (—0.3845) (—0.3833) (—05797) (—0.6274) (—1.3218) (—1.4320)
(+0.3777) (+0.3842) (+0.4706) (+0.5793) (+0.6159) (+0.8630) (+1.4875)
TABLE IIIb
CRITICAL VALUES FOR THE ﬁ" STATISTIC (DEMEANED)
Size
n 01500 01250 01000 00750 00500 00250 00100
1 241833  25.8456 27.8536 30.3123 33.7130 39.9288 48.0021
2 293836  31.4238 33.6955 36.4757 40.5252 46.6707 53.8731
3 351077 374543 39.6949 42.8111 46.7281 53.9710 63.4128
4 405469  42.5683 45.3308 48 6675 53.2502 61.2555 71.5214
S 453177 476684 50.3537 53.5654 57.7855 65.8230 76.7705
4, (—03913) (—04662) (—05310) (—0.5323) (—0.5064) (—1.0507) (—16209)

(+0.4424) (+0.5441) (+0.4507) (+07081) (+0.8326) (+13312) (+21805)

TABLE Illc

CRITICAL VALUES FOR THE 13,, STATISTIC (DEMEANED AND DETRENDED)

Size

n 01500 01250 01000 00750 00500 00250 00100

1 36.9055 38.8150 41.2488  s44.2416 48.8439 56.0886 651714
2 41.2115 43.4320 46.1061 49.3671 53.8300 60.8745 69.2629
3 469643 49.2906 52.0015 55 4625 60.2384 68 4051 78.3470
4 519689 54.3205 57.3667 60.8175 65.8706 74.4712 84.5480
5 56.0522 58.6310 61.6155 65.3514 70.7416 79.0043 91.0392
4, (—05294) (—05724) (~06764) (—0.7143) (—10116) (—1.2024) (~2.1849)

(+0.5171) (+0.5187) (+0.6762) (+07989) (+0.8773) (+1.2936) (+2.2679)

TABLE IVa

CRITICAL VALUES FOR THE 132 STATISTIC (STANDARD)

Size

n 01500 01250 01000 00750 00500 00250 00100

1 300137 317517 33.9267 36.6646 40.8217 47.2452 55.1911

2 56.7679  59.1613 62.1436 65.6162 71.2751 795177 89.6679

3 927621 95.7974 99.2664 103.8454 109.7426  119.3793  131.5716

4 1352724 1389636 143.0775 1484109 1558019 166.3516  180.4845

5 186.4277 190.6337 1956202 201.9621 2102910 2240976  237.7723
4, (—0.4804) (—0.4493) (—0.5646) (—0.7120) (—0.8406) (—1.1662) (~1.2202)

(+0.4633) (+0.5042) (+0.6770)

(+09202) (+0.7319) (+1.5961) (+1.7356)

191
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TABLE IVb
CRITICAL VALUES FOR THE f’, StaTISTIC (DEMEANED)

Size
01500 01250 0 1000 00750 00500 00250 00100
425452  44.8266 47.5877 50.7511 55.2202 61.4556 71.9273
741493  76.8850 80.2034 84.4027 89.7619 97.8734  109.4525
113.5617 116.6933 1203035 125.4579 1322207 1425992  153.4504
160.8156 164.7394  168.8572 1742575 182.0749  194.7555  209.8054
5 2152089 219.5757 2252303  232.4652 241.3316 2555091 2705018

A, (—0.4629) (—07383) (—0.6744) (—06903) (—1.0214) (—0.7998) (—1.8177)
(+0.4873) (+07355) (+05972) (+0.6662) (+0.7440) (+2.0530) (+2.4081)

=

E S

TABLE IVc
CRITICAL VALUES FOR THE ﬁ, STATISTIC (DEMEANED AND DETRENDED)

Size
n 01500 01250 01000 00750 00500 00250 00100
66.2417 68.8271 71.9586 75.7349 81.3812 90.2944 1020167

1

2 106.6198 109.9751  113.4929 1183710 124.3933  133.6963  145.8644
3 154.8402 1586619  163.1050 168.7736 1759902  188.1265  201.0905
4
5

210.3150 214.3858  219.5098  225.6645  234.2865 247.3640  264.4988
273.3064 2779294 284.0100 291.2705 301.0949 3157299  335.9054

A, (—0.5433) (—0.7346) (—0.8305) (—0.6905) (—0.8651) (—1.6500) (—2.3915)
(+0.6819) (+0.5862) (+0.7373) (+1.1280) (+1.4149) (+1.8572) (+2.1024)
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