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ESTIMATION AND INFERENCE IN
MODELS OF COINTEGRATION:

A SIMULATION STUDY

Bruce E. Hansen and Peter C. B. Phillips

ABSTRACT

This paper studies the finite sample distributions of estimators of the
cointegrating vector of linear regression models with /(1) variables.
Attention is concentrated on the least squares (OLS) and instrumental
variables (IV) methods analyzed in other recent work (Phillips and
Hansen, 1990). The general preference of OLS to IV techniques sug-
gested by asymptotic theory is reinforced by our simulations. An
exception arises for cases of low signal to noise, where spunous IV
techniques (so named for their use of instruments that are structurally
unrelated to the model) outperform uncorrected least squares. We
verify the presence of a small sample estimation bias and show that
the Park-Phillips bias correction does reduce the magnitude of this
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problem. We also find that there is substantial distributional divergence
of r-statistics from the normal, unless the Phillips—Hansen endogeneity
correction is used. Finally, we apply these methods to aggregate con-
sumption and income data. Qur empirical results indicate that the
endogeneity and serial dependence corrections are important and lead
to intuitively plausible changes in the estimated coefficients.

I.  INTRODUCTION

In our recent paper (Phillips and Hansen, 1990) we studied the asymp-
totic distributions of a large class of estimators of the “‘cointegrating
vector” of linear regression models with I(1) variables. These esti-
mators included ordinary least squares (OLS), standard instrumental
variables (IV), and “*spurious” instrumental variables. All were found
to be “superconsistent” under quite general assumptions, including
endogeneity in the regressors and serial correlation in the innovations.
It was shown that neither bias corrections [see Phillips (1987) and Park
and Phillips (1988, 1989)] nor IV techniques could overcome sub-
stantial problems of nuisance parameter dependencies and nonnor-
malities in the asymptotic distributions of the standardized statistics,
except in special leading cases. Instead, a semiparametric endogeneity
correction that is asymptotically equivalent to maximum likelihood
(see Phillips, 1989b) was derived, which solves these problems. These
“fully modified” estimators have asymptotic mixed normal distri-
butions. This permits quite general hypothesis tests using conventional
techniques. ]

This paper attempts a systematic investigation of the small-sample
properties of these methods through Monte Carlo simulations. Of
course, due to the wealth of possible data-generating processes it
might be unwise to make strong general claims from these results.
Nevertheless, we feel that several conclusions can be drawn from this
study. First, if uncorrected estimates are compared, IV estimation
may beat OLS under strong endogeneity or high noise. Second, if the
true residuals are known (for instance, if the true regression coef-
ficients are known from the null hypothesis) then the fully modified
OLS estimates perform extremely well, and are the preferred estimation
method. Third, feasible modified estimates (based on estimated
residuals) unfortunately work much less well, although better than the
uncorrected estimates. Fourth, conventional t-statistics are quite
misleading in the sense that their distributions are far from the standard
normal while fully modified ¢-statistics are well approximated by a
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normal distribution, although with a variance slightly greater than
unity.

We also report the results of a simple application of these methods
to the aggregate “consumption function.” We find that fully modified
statistics cannot reject a unit coefficient on income.

Our notation follows that of Phillips and Hansen (1990). We use the
symbol = to signify weak convergence, and the symbol = to signify
equality in distribution. Stochastic processes such as the Brownian
motion B(r) on [0, 1] are frequently written as B to achieve notational
economy. Similarly, we write integrals with respect to Lebesgue
measure such as L‘, B(s)ds more simply as L') B. Vector Brownian
motion with covariance matrix Q is written BM(Q). We use /(1) and
I{0) to signify time series of order one and zero, respectively

II. PRELIMINARY THEORY

The results presented here are substantially simplified from the theory
in Phillips and Hansen (1990) in order to ease presentation and focus
on the particular model used in the simulation. Consider the process

yl = al + aZ’ + a;xl + u,,.
X, = X,_{ + Uy, mx 1,
Z, = I, + Uy, mx 1.

The innovation vector u, = (u,,,u;,,u;) is assumed to be strictly
stationary and ergodic with zero mean, finite covariance matrix £ > 0
and continuous spectral density matrix f,,(4) with Q = 2zf,,(0). We
also assume that the partial sum process constructed from u, satisfies
the multivariate invariance principle

T~ ZMy = B(r) = BM(Q). D<r<l. )
We decompose the “long-run’ covariance matrix as follows:
Q=Z+A+N

where
I = Eww). A=Y Euu.
k=1

and we define

A=Z+A
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See Phillips (1988b) for a review of the conditions under which (1)
holds. We partition B, Q, X, A, and A conformably with u,. For
example, in the case of Q we write

@y oy W5
Q=|wy Q» Q] @)
oy Qyp Qy

We also make the strong assumption that z, and x, are cointegrated.
Then the Brownian motions B, and B, are related linearly by

B, = 0,,Q3' By,
and the time series can be written in a reduced form as
X, = Quiiz, +v, v, =10). &)
This condition may be equivalently expressed as a restriction upon (2):
Qp = 005'Qy,.

Relationship (3) suggests that we can use z, as an instrument for x,,
analogous to classic 2SLS. See Phillips and Hansen (1990) for a
further discussion.

We are interested in estimates of a = (a,,4,,a}) . A linear combi-
nation of y, and x, is trend stationary, yet each is I(1). Thus y, and x,
are cointegrated in the terminology of Engle and Granger (1987).
Following Phillips and Hansen (1990) there are four natural esti-
mators to consider:

(1) OLS:
a=XXx)y(xv),
X =[Ltx)e 1
Y=1{[yl-.
(2) “Standard” 1V:
a=(ZXx)y'(zv),
Z=[4z] r
(3) “Spurious” IV with stochastic instruments:
d= (X,PSX)_I(X’PSY)a
Py = S(5'S)7'S,
S =[Les)a
so= S+ & {E)TIdNQ, L),

I



Estimation and Inference in Models of Cointegration. A Stmulation Study 229

(4) “Spurious” IV with deterministic instruments:
a=(XPX)(X'PY),
P = K(K'K)™'K',
K =[Ltkp)or 1

where k;, is a deterministic n,-dimensional function of time (¢) and
possibly sample size (T'). We consider both polynomials in time:

tPI th

’ L ]

and sinusoids
sin(2n, ¢/ T), cos 2nA /T),

etc. For further discussion, see our earlier paper. The relevant con-
dition these variables must satisfy is absence of asymptotic collinearity.

Estimators (3) and (4) defined above are “spurious” since there is
no structural relationship between the regressors and the instruments.
A surprising result of Phillips and Hansen (1990) is that these esti-
mators are consistent. A brief digression on this point seems warranted.
Consider the standard just-identified IV estimator under conditions of
stationarity, orthogonality, and identification:

. Tizu _ 0,(T)
o — 0o = 7 = 4
Lizx, O[T

= 0,(T'?).

Under stationafity, both orthogonality between z, and u, and identi-
fication (relevance of z, to x,) are required for the denominator and
numerator to have the stochastic order indicated above. If either
orthogonality or identification fails, the numerator and denominator
are of the same stochastic order and the estimate converges to the
“wrong’” value in the first case, or a Cauchy-type distribution in the
second (see Phillips, 1989a). If both conditions fail simultaneously,
then the estimates diverge at rate 7'

In our model, however, the story is quite different. As long as x, and
s, are I(1), and u, = [(0), then

Y su, = O(T), YMsx = 0,(T%),

regardless of any other assumption, yielding consistent estimation.
The reason why spurious deterministic instruments work is quite
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analogous. In fact, one may regard these results as beneficial artifacts
of the problem of “spurious regressions” (see Phillips, 1986). The
generalizations to multivariate regression with deterministic com-
ponents is straightforward and is presented in our earlier paper.

The consistency of spurious IV estimation may appear to conflict
with standard approaches to identification in simultaneous equation
systems. Under the 2SLS interpretation of IV estimation, we have the
reduced form, (in matrix notation):

(¥, X) = S(ny,my) + (vy,v,)

We are accustomed to think of n = (r,,n,) as parameterizing the
conditional mean of (y, X) given S. Then the coeflicient vector a is
identified by the relation

n,—na =0

when (and only when) =, has full rank.

This does not have a meaningful interpretation in our model since
S is independent of the data. We can instead interpret = in terms of
linear projections:

(y, X) = Ps(y.X)+ (- P5)(y,X) = Sk + 9,
where
P; = S(§S)°'S, ft = (f,.7%,), , = (5S)'Sy,
f S'SYy'sx.

o
I

Since

A=l = (}'; B,B,’)_IJ: BdBja, fy=1d= (J':B,B;)—|j; B.dB;,

we see that cointegration of y and X guarantees that the identifiability
relationship holds in the limit. That is,

(7 — ﬁ'za)';" 0,

and a is therefore asymptotically identified using the instrument set S
if n3 is of full rank (almost surely), which is shown by Phillips and
Hansen (1990, Lemma A3). In this framework, the limit representation
n® is not fixed but is a random matrix (see Phillips, 1986). Identifi-
cation is therefore a beneficial artifact of the spurious regression
phenomenon as indicated above.
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Although it is known that OLS and IV are consistent under sub-
stantial endogeneity, it is also known that correlation between u, and
lagged values of Ax, introduces a second-order bias effect. Specifically,
if x, = I(1) and u, = [(0), then

TS xu= [ BidB, + y. )

To derive (4) rigorously, see Phillips (1988a). More intuitively, the
presence of A, can be explained by noting the correlation

Ay = Y E(Ax_uy) = E(xoup).
k=0

For example, consider the simple process
x, = xf+u, x¥r=xr, +e,

where u, and ¢, are mutually independent white noise. Then
T~ Sxu = T I xtu+ T 51ui= [ B.dB, + o (5)

Conditional on &, = 6(B,(r),0 < r < 1), (5) is distributed as

N(aﬁ,af"‘; 322) = a,‘N(a,,,J‘ol B;)

Although the noncentrality is eliminated asymptotically since both
OLS and 1V are consistent, one would expect some evidence of bias
to appear in finite samples. This has, in fact, been shown to be the case
in the simulations of Banerjee e al. (1986).

To correct this bias and permit inference via asymptotic distribution
theory, Phillips (1987) and Park and Phillips (1988, 1989) have pro-
posed semiparametric estimation of A,,. This eliminates the bias effect
asymptotically. We observe that these corrections are not relevant for
spurious I'V methods, as the instruments are strictly exogenous for the
regression errors.

Specifically, using the residuals #, from a (consistent) first-stage
regression, we can estimate A,, and A;, by

I T T
A:I = T-I Z Z A.\'I.AIZ,. Au = T—I Z Z A::»Al}n*
K=0r=h+1 A=Or=h+i

where /- o as T— oc such that /= O(T'"). We then define the
*“*bias-corrected’ estimators

@ = (X'X)'[X'Y—e,TA,), a*=(ZX)'Z'Y—e,TA,]
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where

One can show that 4* and a* are consistent and asymptotically
unbiased up to O,(T ") (see Phillips and Hansen, 1990). The asymp-
totic distributions, however, are generally nonnormal and dependent
upon nuisance parameters. Both arise from the long-run endogeneity
of the regressors. We may write

[ BiaB, = [ B,dB,OZ @ + [ B.aWo? ©)
o 2 1= 0 2 29422 t o 2 11-2s
where W = BM(1) and is independent of B,, and

O, = 0 — 0,0 0y

is the conditional long-run variance of u, given Ax. In (6), the first
stochastic integral on the right-hand-side is of the “unit-root” form,
while the second stochastic integral has a mixture normal distribution.
Consider a “bias-corrected” u,:

-1
U = u — wIZQZZ AX,,

which has zero long-run correlation with Ax,. Then

TSl xut — A= olfs [ BaW = N©,0,.6)dPG).

G = }'o' B,B;,

where
.;—l = A2| - ‘blzﬁfz‘ A22

is a consistent estimate of

n = Elxoug ).
We now define the ‘‘fully modified” estimator 4* using
Yo =y = c?’lzﬁz_zle:
and

it = (X'X)'"X' Yt —e,TA;]
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Also define

T 0 0

ér=1 0 T 0

0 0o LT
and

1

Jry=1 r [, O0<r<gt
By(r)

Then

62(d* — a) =>(}'0' JJ')_l(J';JdW)w:/,%Z.

Conditional on %, = 6(B,(r),0 < r < 1), this has the distribution

N(o,w.,‘z(ﬂu')_l), ()

which is analogous to conventional asymptotic theory. Uncondition-
ally, of course, the limit distribution is the mixture of normals

_ NO,0,:67)dPG), G = (J'o' JJ’).
Turning to inference, we consider the linear hypothesis
Hy: Ra=r, rank(R) = g¢,
and the test statistic
Grld*,@yy.2) = (Ra* —rY[@, ,R(X'X)'R""(R a* —r),

where @, ., is a consistent estimate of w,,.,. We see from (7) that under
H,,

Grld@*, @, )=} as T— oo, (8)

which is not generally true if 4 or 4* is used in the construction of
Gr(*).
One common application is the single-coefficient test, i.e.,

. — 0
Hy: a =a.
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Then we can construct a modified ¢-statistic

(4, - d)

CRE ®

W™ —a,@y.,) =

and from (7) we have under A,
W@t —d,@,,)=N0,1) as T-oo.

This permits us to define “fully modified standard errors” by the
quantity

(X X)), dyy0]"

to replace the conventional “standard errors” calculated by statistical
packages. '

These fully modified estimators have several advantages over the
unadjusted and bias-corrected estimators. First, the standard distri-
butional results for fully modified statistics permit inference to pro-
ceed conventionally. The bias-corrected estimators, on the other hand,
produce test statistics with highly complicated limiting distributions,
making inference problematic. Second, since w,.; € w;;, it would
seem that the fully modified estimator has smaller dispersion asymp-
totically than the bias-corrected estimator. In fact, under certain
conditions the fully modified estimator is asymptotically efficient and
equivalent to full maximum likelihood [see Phillips (1989b) on optimal
inference].

. SIMULATION RESULTS

The data-generating process (DGP) used for the simulation is based
on that used by Banergee et al. (1986) and Engle and Granger (1987):

N—2x, = u, (1 —pLyu, = ¢, (10a)
-y, +3x, =z, (1 —L)z, = &, (10b)

e )" [ 0 1 60 ]
= lldN N ’ |P| < lv lel < L
{82’}| 0/ \eb o

Equations (10) state that one linear combination of y, and x, is
stationary while another is /(1). We may rewrite these two equations

where
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into a conventional simultaneous equation system:

y, = 2x,+ u, (11a)

X, =z, +u,. (11b)

The fact that the error terms in (11a) and (11b) are perfectly correlated
seems unusual, but could have been generalized without substantially
affecting the results if additional parameters were introduced.

Equation (11a) resembles many equations in macroeconometrics: y,
and x, are cointegrated with a serially correlated error team. Equation
(11b) shows that the long-run behavior of x, is governed by the
random walk z,. Thus x, will be long-run independent of », when (and
only when) Az, is long-run uncorrelated with «,. This occurs when 8 = 0,
which was the parameterization implicitly chosen by Banerjee ez al.

In most macroeconomic applications, analysts include a time
trend. This is the correct procedure if any variables display “dnft.”
The distributions tabulated by Ouliaris in the appendix of the work-
ing paper version of Park and Phillips (1988) show that this yields
a significantly “fatter” distribution for OLS under long-run endo-
geneity than the simple case without a trend. To ensure the relevance
of our simulations, ali our resuits are based upon estimates of the
regression

Y, = 4 + Gt + 4y, + i, (12)

However, we report only the distributions of estimates of a;, as this
is the parameter of typical economic interest. We tried four estimation
techniques, which we will refer to as OLS, IVZ, IVS, and IVK for
brevity:

OLS: ordinary least squares,
IVZ: instrument x, with z,,
IVS- instrument x, with s,, an independent
Gaussian random walk,
IVK. instrument x, with k;,, some deterministic function.

In some sense, z, is an “‘ideal” instrument for x, a prior: since they are
cointegrated, yet z, is not ‘‘contaminated” with u,, as is x,. This is
idealized as well because z, may not be observable in an actual
application.

In all our simulations, we generated 2000 series of length 200,
starting with ¥, = 0 and z, = 0, and then discarding the initial 100
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observations, generating a sample of size 100. The GAUSS matrix
programming language and its RNDN function were used to generate
the pseudonormal innovations. The latter function uses the fast
acceptance-rejection algorithm proposed by Kinderman and Ramage
(1976). Start-up seeds were randomized by the clock. In our opinion
the exact properties of the pseudonormal numbers are unlikely to be
very important in studies of this nature, since the theory is asymptotic
and does not require normality or serial independence.

We need to select a suitable choice of instruments for IVS and IVK.
Unfortunately, asymptotic theory provides little guidance. Our first
simulation compares a variety of choices, under the parameterization
p =0.8,0 = 0.5, and allowing g to vary among {0.5, 1,2}. The results
are reported in Table 1. For IVK (trended instruments) a variety of
time polynomials and sinusoids are compared. Average bias (3@ — 2)
and square root of the average mean squared error (a — 2)* are
reported, the latter in parentheses. All the choices fared reasonably
well. Based on MSE we selected the fourth option. consisting of two
sinusoids and two cosinusoids.

Table 1. Trended/Spurious; Bias (Root MSE)

Trended instruments c

P 4, 05 10 20
2,3,4 - 0 385 (0.525) 0.178 (0 379) 0.063 (0.173)
1/2,2,3, 4 - 0.411 (0 498) 0.190 (0 298) 0.071 (0.152)
2,3 - 0.340 (0.777) 0.163 (0 537) 0067 (0.392)
- 1,2 0.422 (0.495) 0193 (0 279) 0075 (0.148)
- 1,2, 4 0466 (0.510) 0.225 (0.281) 0091 (0.138)
- 2,48 0.581 (0 615) 0319 (0 371) 0143 (0 195)
2,3 2,4 0466 (0 510) 0.225 (0.279) 0.091 (0 138)

kr = {1"‘,1”2., . s Q2rA, ¢ T),

cos(2ri ¢ T). .stn (214t T),cos 2nA, TH}.

Spurious instruments

1 25.737 (1170) 0.522 (1253) —1.240 (83.2)

2 0.397 (0 810) 0.189 (0.603) 0084 (0 401)
3 0.432 (0 609) 0.208 (0.378) 0081 (0212)
4 0450 (0.550) 0.209 (0.322) 0.087 (0 167)
5 0.460 (0.530) 0218 (0 300) 0.088 (0 155)
6 0470 (0 526) 0227 (0.297) 0.093 (0.148)
7 0479 (0 528) 0.234 (0 295) 0.096 (0.145)
8 0 486 (0.529) 0240 (0 293) 0.099 (0.145)
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Table 2. Uncorrected Estimates: Bias (Root MSE)

[

0.5 10 2.0 50 10.0

0=0p=07

OLS 0545 (0.566) 0241 (0.268) 0.075 (0 100) 0012 (0023) 0003 (0013
IVZ 0083(0.383) —0017(0138) —0.004(0.063) ~0001(0025) —0001 (0013)
IVS 0357 (0.435) 0.127 (0.212) 0037 (0 100) 0005 (0 038) 0001 (0018)
IVK 0262 (0.410) 0081 (0.207) 0020 (0.105) 0002 (0 045) 0000 (0023)

9=0p=085

OLS 0654 (0673) 0326 (0359) 0108 (0 145) 0.020 (0 046) 0 005 (0 022)
IVZ 1036(47.2) —0059(0.283) -0015(0110) —0001 (0043) —0000(0021)
IVS  0.563 (0 628) 0246 (0 345) 0075 (0 345) 0014 (0064) 0004 (0032)
IVK 0498 (0611) 0202 (0 349) 0059 (0 349) 0011 (0074) 0003 (0037)

8=05p=07

OLS 0.533 (0 546) 0280 (0.297) 0.121 (0 134) €.037 (0 044) 0016 (0 020
IVvZ  0.187 (0 255) 0112(0.148) 0062 (0.084) 0025 (0034 0013(0018)
IVS 0373 (0422) 0164 (0 217) 0064 (0 100) 0017 (0 037) 0007 (0018)
IVK  0.284 (0 381) 0.110 (0 197) 0041 (0.100) 0011 (0 042) 0.005 (0 022)

8 =05p=085

OLS 0611 (0621) 0358 (0374) 0.170 (0 187) 0058 (0069) 0026 (0 032)
IVZ  0.246 (0 359) 0160 (0.210) 0.093 (0 122) 0042 (0056) 0022 (0 029)
IVS 0541 (0577) 0.287 (0 339) 0126 (0173) 0.040 (0 067) 0018 (0.033)
IVK 0488 (0553) 0.238 (0 326) 0098 (0 167) 0031 (0 071) 0014 (0036)

For IVS (spurious stochastic instruments) we tried from one to
eight independent random walks with pseudonormal increments. The
MSE seems to decline with the number of instruments, although the
differences are fairly small after five instruments. Nevertheless we
chose to use eight in the subsequent simulations.

Table 2 reports the performance of the five (uncorrected) estimation
techniques. Twenty parameter settings are reported. As expected, OLS
displays considerable bias for low signal/noise ratios. In fact, OLS is
generally beaten by the other techniques for low o. For large ¢ OLS
continues generally to display the highest bias, yet beats the I'V tech-
niques in MSE for 6 = 0, and performs similarly in MSE for 8 = 0.5.

Notice the high MSE for IVZ under ¢ = 0.5, 6 = 0, p = 0.85. This
occurred in unreported simulations under different parameter settings
for low ¢, and seems to have been caused by low-frequency outliers.
This fat-tailed property can be explained as follows. As ¢ approaches
zero, the behavior of z, approaches that of a constant. Since a constant
and time trend are the other two instruments, the subspace spanned
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by the instruments approaches two dimensions as ¢ — 0 and identi-
fication fails. As discussed by Phillips (1989a), partially unidentified
IV estimators have nondegenerate Cauchy-type distributions, which
seems a likely explanation of this aberration in the simulation.

In addition, it is interesting to note that IVS and IVK are upwardly
biased, although this is not predicted by asymptotic theory.

The estimation of bias corrections, as noted earlier, is complicated
by the dependence of these corrections upon preliminary coefficient
estimates, which may possess considerable bias in small samples, as
shown in Table 2. In order to focus on the potential value of bias
corrections, we first sidestep this issue by using the “true” residuals to
calculate the bias correction terms. Throughout, we used the esti-
mation equations:

{
A=r1"'Yy
k=01

™=

7’
M xMes
i

[
Lt

.
i{ T

T-'Snm + T“kZ Wy Y, i+ 1),
=t

t=k+1

Q

n = (ﬂr’Aanzr)” Wy = i -k/(1+ I)

The triangular weights used to estimate Q constrain Q to be positive
definite (see Newey and West, 1987). The bias corrections A,, and A,,
do not need this constraint, and are therefore estimated without the
weights. The lag truncation number / was set arbitrarily at 7.

Table 3. Bias-Corrected Using True Coefficients: Bias (Root MSE)

[

05 1.0 20 5.0 100

0=0p=07

OLS -0029 (0.155) —0015(0.114) ~—0.005(0063) ~0002(0029) -—000! (0015)
IVZ —0036 (0.365) —0.006 (0.148) —0.001 (0.071) —0002 (0.030) -0001 (0015)

0 =0p=085

OLS 0.042 (0.217) 0.018 (0.182) 0.006 (0.118) 0002 (0.048) 0001 (0029)
IVZ -—-0298(559) —0.024(0.318) —0004(0138) 0001 (0 049) 0001 (0025)

§=05p=07

OLS —-0114(0164) —0.094(0130) —-0060(0084) —0025(0036) —0.013(0.019)
IVZ -0235(0.333) —-0126(0176) —0066(0089) —~0026(0038) —~0013(0019)

6 =105,p =085

OLS -0.017 (0.179) —0040 (0.155) —0035(0110) —0.034 (0057) —00I8 (0030)
IVZ —0215(219) —0.111(0.279) —0.052(0.138) —0.037(0.061) —0.019 (0 031)
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Table 4. Fully Modified Using True Coefficients: Bias (Root MSE)

[

0.5 1.0 20 5.0 100

§=0,p=07

OLS -—0017(0138) -—0.006(0095) —0001(0055) —0.001(0023) —0.001(0012)
IVZ —-0.076(0.582) —0.014 (0152) -~-0003(0071) 0011 (0.030) 0003 (0014)
1vS 0.333 (0435) 0122 (0272) 0.042 (0207) 0006 (0.181) 0002 (0.177)
IVK 0.247 (0.449) 0.080 (0.310) 0.022 (0272) 0.001 (0243) —0.001 (0237)

0=0,p=085

OLSs 0059 (0.200) 0029 (0 152) 0.010 (0.089) 0003 (0 037) 0001 (0 019)
IVZ -0536132) —0.044(0303) -~ 0.008(0.126) 0020 (0051) 0005 (0 024)
1vs 0.537 (0615) 0.234 (0 374) 0071 (¢ 235) 0.008 (0.186) — 0002 (0 180)
IVK 0467 (0.611) 0.201 (0 414) 0065 (¢ 293) 0.007 (0232) —0002 (0229)

9=05p=07

OLS —0078(0134) —0052(0095) —0.026(0055) —0009(0022) —0004 (0011
IvZ —-0018(0192) 0017 (0 105) 0011 (0055 0014 (0 028) 0005 (0013)
1vs 0.333 (0404) 0.140 (0.245) 0050 (0195) 0.015 (0 181) 0007 (0178)
IVK 0.256 (0 405) 0.094 (0.286) 0.030 (0.253) 0007 (0 230) 0002 (0 230)

§=05p =085

OLS —0.007 (0.152) ~0.027 (0 118) —0.021 (0077) —0012(0036) —0007(C019)
IVZ —-0142(995) 0064 (0 187) 0041 (0 105) 0.030 (0 049) 0012 (0 024)
1vs 0499 (0.545) 0.260 (0 335) 01100219 0033 (0 168) 0013 (¢ 164)
IVK 0414 (0 561) 0.214 (0.371) 0086 (0272) 0027 (0229) 0.009 (0 223)

Table 3 reports bias-corrected OLS and IVZ. As indicated above,
the corrections were calculated using the true residuals. IVS and IVK,
of course, do not need corrections according to the asymptotic theory.
The small average bias and MSE in Table 3 are encouraging for
bias-corrected OLS. Bias-corrected IVZ, however, in general did not
improve over its uncorrected performance.

Moving to Table 4, which displays the fully modified estimators,
we see continued improvement in OLS. The other estimators, how-
ever, perform quite poorly when compared to their uncorrected
counterparts. The message from this simulation is clear: For small
samples (in this case, T = 100) bias corrections and fully modified
statistics only work well on OLS; additionally, if the true coefficients
are known then the fully modified least squares estimator will be
highly accurate.

The knowledge of the true coefficients is not completely impossible,
if, say, the entire coefficient vector is specified in the null hypothesis
to be tested, as in, for example, the test of purchasing power parity by
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Table 5. Feasible Fully Modified OLS: Bias (Root MSE)

[

05 1.0 20 50 100

8 =0p=07

OLS 0455 (0501) 0.178 (0 232) 0052 (0 095) 0.008 (0 031) 0.002 (0 015)
IvS 0298 (0.411) 0092 (0213) 0025 (0.108) 0.005 (0 035) 0001 (0018)
IVK 0.200 (0 424) 0.049 (0.236) 0.140 (0 124) 0004 (0039) 0.001 (0.019)

9=0p =085

OLS 0.585 (0 629) 0266 (0.339) 0084 (0 155) 0016 (0 051) 0.004 (0025)
VS 0518 (0 608) 0217 (0.340) 0.068 (0 174) 0013 (0.058) 0004 (0 029)
IVK 0463 (0638) 0183 (0.369) 0055 (0 201) 0.013 (0.065) 0.004 (0.032)

0 =05p=107

OLs 0419 (0 452) 0191 (0 230) 0075 (0 105) 0021 (0 035) 0009 (0 016)
Vs 0278 (0 361) 0096 (0 185) 0030 (0091) 0.013 (0.033) 0006 (0016)
IVK 0188 (0367) 0047 (0 203) 0008 (0 104) 0010 (0 038) 0.005 (0019)

6 =05,p=2085

OLS 0533 (0.559) 0.281 (0.319) 0.119 (0.158) 0045 (0063) 0.020 (0 030)
1vS 0470 (0524) 0221 (0298) 0.086 (0.153) 0.038 (0.064) 0017 (0.031)
IVK 0433 (0534) 0.185 (0.311) 0067 (0173) 0.035 (0069) 0.016 (0 033)

Corbae and Ouliaris (1988). The use of the null specification to
calculate the correction term is analogous to the Lagrange multiplier
(LM) statistics in tests of linear restrictions in the standard linear
model, where the constrained parameter values are used to calculate
the variance of the error term.

In general, of course, most, if not all, of the coefficients will be
unknown. The bias corrections will be calculated from coefficients
estimated by a preliminary OLS or IV regression. Table 5 presents
simulation results for “feasible” fully modified OLS. Three methods
are used for the first-stage regression: OLS, IVS, and IVK. Compare
the bias and MSE of the estimators in Table 5 with unadjusted OLS
(Table 2). In general, feasible fully modified OLS performs better than
unadjusted OLS, but not be much. When compared to the fully
modified OLS estimates using the true coefficients (Table 4), we see
that the use of first-stage regression coefficients significantly reduces
the effectiveness of the modifications. Regardless, the results of
Table 5 indicate that these are the best feasible estimation methods.
When comparing among choices of first-stage estimation, it appears
that IVS may be the best choice for low signal/noise ratios, while OLS
may be more appropriate for high values. This is surprising at first
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glance since we know from Table 2 that IVK generally performed
better than OLS and IVS both in bias and MSE. A close reading
of those figures shows that IVK has a high variance. This presuma-
bly increases the variance of the estimated bias corrections. Look-
ing back at Table 5, we see that feasible OLS using IVK first-stage
estimates has lower bias, but higher variance, than the estimators
using OLS or IVS first-stage estimates. Thus bias corrections using
IVK are more accurate, but more variable, than those based on OLS
and IVS.

We now turn to the problem of inference by examining the distri-
bution of the standard and modified s-statistics for a,. For brevity,
only OLS techniques are examined. We consider three -statistics:

-

t t(dJ - 2’&5)’ 65 = T—lzxrﬁxz,

t*

t(d; - 2’ d’n )’

t+

Kdy + 2,0y.2).

Table 6. Distribution of t-Statistics

f r* I
c=20=0
Mean 2 046 0.304 0 469
Vanance 14.193 8.301 2.552
Skewness -0.163 -0.175 0044
Kurtosis —0595 -0.376 0.221
6=20=05
Mean 3642 0326 0818
Variance 16 389 8833 2.999
Skewness —-0.212 — 0064 0.218
Kurtosis —0.512 -0323 0473
¢=10,0=0
Mean 0270 —-0273 —-0172
Variance 21114 10 747 2077
Skewness —0004 —0.098 —-0183
Kurtosis —1.074 -0727 0076
¢ =100 =05
Mean 0694 — 0457 —-0122
Vanance 21259 10 736 2.149
Skewness -0.013 - 0041 —0133
Kurtosis - 1.053 —0730 0150




242 BRUCE E. HANSEN AND PETER C. B. PHILLIPS

[See equation (9) for the definition of «(+, +).] Here { is a conventional
t-ratio as printed by standard statistical packages, ¢* is the ‘‘bias-
corrected™ ¢-ratio (a signed square root of the Wald statistic proposed
by Park and Phillips (1988)), and ¢* is the fully modified r-ratio of
Phillips and Hansen (1990). t-statistics are commonly compared
against the standard normal distribution for inferential purposes. As
discussed, earlier, asymptotic theory demonstrates that this will not
generally yield valid inferences, except for the fully modified statistics.
Of course, the tables in Park and Phillips (1988) allow ¢* to be used,
although this is a cumbersome procedure, requiring estimation of a
nuisance parameter and only permitting block tests.

Although many other parameterizations were run, we only report
the results for p = 0.7, ¢ = {2,10}, and 6 = {0,0.5} because these
summarize the main effects. Altogether, 8000 replications of samples
of size 100 were generated. Table 6 reports the first four cumulants of
the data. Figures | through 4 display nonparametric estimates of the
probability density function (pdfs). Each figure displays all three
statistics. In each case, the estimates pdf of the fully modified statistic
is the closest to the standard normal density. Its variance ranges from
2 to 3, suggesting that there will be size distortion in moderate samples.
The variances of OLS (14 to 21) and bias-corrected least squares
(8 to 11) are substantially higher.

While the asymptotic approximation to the distribution of ¢* is
N(0, 1), the asymptotic distribution of * is a mixture of N(0, 1) and a
unit-root distribution, depending only upon the parameter 6 (the
degree of long-run correlation). It is interesting to note that this
dependence is not indicated by the simulated small-sample densities.
We note that when 6 = 0, the distribution of ¢* is far from the
asymptotic N(0, 1), and is decidedly inferior to the asymptotically
equivalent ¢*. Moreover, while the estimated density of ¢* is similar
for = 0 and 6 = 0.5, it does change shape as the signal/noise ratio ¢
is varied. This is in contrast to the prediction of asymptotic theory and
is therefore an important finite-sample effect. Similar but less dramatic
effects occur for the statistic ¢* (see Table 6).

These results suggest that the bias-corrected statistics of Park and
Phillips are not well approximated by a standard N(0, 1) even when
this is their asymptotic distribution (the case 6 = 0). On the other
hand the fully modified statistics are much better approximated by the
standard N(0,1). Moreover, this is true even when the long-run
endogeneity correction is not required. It would therefore seem that
little is lost-in finte samples by employing the endogeneity correction.
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IV. THE AGGREGATE CONSUMPTION FUNCTION

A perennially examined macroeconomic relationship is the postulated
linear dependence of aggregate consumption upon aggregate dispos-
able income:

¢, = o+ &y, +u,. 13)

Even though the microfoundations of (13) have never been well
established, it appears in one form or another in many theoretical and
applied macroeconomic models. Since ¢, and y, are both believed to be
I(1) processes (see Hall, 1978; Perron and Phillips, 1987) (13) makes
sense as a long-run relationship if and only if ¥, = I(0). This isempha-
sized in a recent test of the permanent income hypothesis by Campbell
(1987). Given cointegration, we can estimate « using the methods
discussed in this paper. We use quarterly real (31982) per capita
personal consumption expenditure and personal disposable income,
1941/1 to 1987/4, using the consumption deflator for both series. Data
is in thousands of dollars. Since both series display a mild trend, we
estimate

¢, = & + 81+ &y, +4,.

We only consider OLS techniques.
The standard OLS coefficients and standard errors are

¢, = 1.61 + 1.82t +0.851y,.
(66) (0.62) (0.030)

Despite the apparent precision, no modern-trained econometrician
would trust these estimates, as the consumption function is a classic
example of a simultaneous equation system. The theory of coin-
tegration tells us that we can consistently estimate a by least squares,
but that we should place no faith in the standard error estimates.
We will try and improve upon these estimates by first calculating
bias-corrected estimates, and second employing the fully modified
techniques.

To construct bias-corrected estimates we first examine the cross-
correlogram between Ay, and the fitted residuals i,

ZtT=Ir+l ﬁ'A.‘Yl—k
(zra)zran)]”

y(k) =
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k. —-10 -9 -8 -7 -6 -5 -4 -3 -2 —1

k) —094 —1.32 —'1.16 —1.17 —1.40 —-0.60 1.37 1.42 1.60 3.44

k: 0 1 2 3 4 5 6 7 8 9 10

(k) —2.17 —0.89 0.01 —0.69 0.07 0.25 0.16 0.02 —0.27 0.03 —0.89

We notice that the cross-correlogram is small for positive values of &
and rather large for negative values. This suggests that A,, may not
need many lags to estimate A,, , but w,, may need more. By calculating
the parameter A,, for several lag truncations, we can see explicitly how
the bias-corrected estimates are sensitive to this choice:

! ar &t &
1 169 1.89 0.848
2 164 1.85 0.850
5 140 1.62 0.861
10 87 1.13 0.885

The coefficient of interest &¥ is similar to unadjusted OLS.

To construct fully modified estimates, we use an estimate of Q
using a lag truncation of ten due to the large values of the cross-
correlogram for k£ < 0 and the large values of the correlogram for #,
defined by

- Z,ﬁ:ﬁr_u
Tulk) = -
I
k: 1 2 3 4 5 6 7 8 9 10
5 (k) | 0.80 070 060 050 046 04! 039 036 034

We vary the lag truncation number / used to estimate AZ,, separately, finding
the estimates

! ay &y ay

1 181 2.01 0.842

2 179 1.99 0.843

5 161 1.82 0.852
10 114 139 0.873
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Again, the estimates of a, are not very sensitive to the choice of /. The
final statistics needed are the fully modified standard errors. We
calculate @,,., = 7953 from Q and can write in the conventional
format

¢ = 114 + 1.39¢ + 0.873y,
(157) (1.46) (0.071)

(We used / = 10 for A;,.) If a, is the coefficient of economic interest,
we could write the 95% confidence interval [0.73,1.01], which is
unfortunately quite large. We can accept, for example, a unit coeffi-
cient (which is implied by some versions of the permanent income
hypothesis).

V. CONCLUSION

This study set out to explore the small sample properties of OLS and
IV estimators in cointegrating regressions—unadjusted, bias corrected,
and fully modified—in order to evaluate the usefulness of the asymp-
totic theory developed recently by Phillips and Hansen (1990). We
discovered that IV estimators work quite well, including the spurious
procedures, which use instruments structurally unrelated to the DGP.
The fully modified estimators, shown in our earlier work to possess
limiting mixed normal distributions, also worked well, especially when
the true coefficient vector was known a priori. Feasible corrections,
based on preliminary regressions, fared reasonably well but did not
eliminate the problem of small-sample bias in estimation. The approxi-
mation of the distribution of fully modified r-statistics by the normal
density is excellent, and despite a higher variance than unity, performs
substantially better than conventional inference procedures.

The DGP used in this exercise was designed to decompose possible
problems into three categories: signal/noise, serial correlation, and
endogeneity. The critical factor, it appears, is the signal/noise ratio (¢
in the simulation), not the degree of long-run endogeneity. If the
variance of the increments of the random walk that drives the long-
run behavior of the variables is high relative to the variance of the
short-term dynamics, the bias problem is negligible, and OLS works
well, and fully modified estimates will permit inference and testing to
proceed in a conventional fashion. If, however, the relative signal is
low, spurious IV techniques may be necessary to obtain preliminary
estimates for the modified least squares estimator.
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