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This paper studies a class of models where full identification is not necessar-
ily assumed. We term such models partially identified. It is argued that par-
tially identified systems are of practical importance since empirical investigators
frequently proceed under conditions that are best described as apparent iden-
tification. One objective of the paper is to explore the properties of conven-
tional statistical procedures 1n the context of identification failure. Qur analysis
concentrates on two major types of partially identified model: the classic simul-
taneous equations model under rank condition failures; and time series spu-
rious regressions. Both types serve to illustrate the extensions that are needed
to conventional asymptotic theory if the theory is to accommodate partially
identified systems. In many of the cases studied, the limit distributions fall
within the class of compound normal distributions. They are simply represented
as covariance matrix or scalar mixtures of normals. This includes time series
spurious regressions, where representations in terms of functionals of vector
Brownian motion are more conventional in recent research following earlier
work by the author [23]. These asymptotic results are covered by a limit the-
ory that we describe as a limiting mixed Gaussian (LMG) family. Extensions
of the LMG family are also explored. These are designed to embrace all of our
asymptotic results. A new theory is put forward that is based on a limiting
Gaussian functional (LGF) condition. This leads to the required extensions. It
is distinguished from the LMG theory in several ways: first, in form, since it
involves functionals of random elements on function spaces rather than func-
tions of finite-dimensional random vectors; second, in generality, since it
accommodates unit root limit theory as well as LMG; and third, in its impli-
cations, since it allows for a certain type of variable random information in the
hmit distribution when applied to maximum likelihood estimators. Some appli-
cations are discussed including the Gaussian AR(1) for stable, explosive, and
unit root coefficients. The latter example illustrates well the need for a theory
such as LGF.

1. INTRODUCTION

The subject of my talk today is partially identified models. This is the term
that I shall use to describe models that are identified in some parts while
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being unidentified in others. This will include totally identified and totally
unidentified systems, so that the term is rather comprehensive.

Identification, as we presently study it, is a mathematical property of a
model and it is a subject that we tend to treat very much in isolation. Prior
to estimation, it is conventional to assume that the model is fully identified
or, at least, that we are working with estimable functions. Such assumptions
may be explicit or implicit but they underpin all of the commonly used the-
ories of inference. Asymptotic statistical theory, in particular, is almost
invariably developed in this way. The approach is well illustrated by the
modern theory of inference in nonlinear regressions. Here, the identifiabil-
ity conditions are often rather strong. They are designed, with attendant
regularity conditions, to ensure that the objective criterion converges almost
surely and uniformly to a nonrandom function with a unique optimum at the
true value or ultimate point of consistency. In some cases, this good behavior
of the objective function is even directly assumed.

This approach has always seemed heroic and rather unjustified to me. It
does go a long way towards simplifying asymptotic theory and inference, but
in doing so it rules out many interesting possibilities. For example, in noner-
godic models and totally unidentified models, the objective criterion does not
behave in this way. Instead, the criterion, upon suitable standardization,
converges weakly to a random function whose optimum may also be ran-
dom. In such examples, a different and more general approach to the devel-
opment of an asymptotic theory is needed.

These issues have a major bearing on empirical work, Here, investigators
typically proceed under conditions that are best described as apparent iden-
tification. That is, estimation and testing goes ahead in practice as if the
model were fully identified but with no certainty that this is true. As we
might expect, the properties of the statistical procedures that we employ
hinge crucially on whether the system is identified or not. When there is iden-
tification failure in a model, the properties of our estimators and tests
undergo important changes. This is especially true of properties that rely on
an asymptotic theory of inference. It seems important that we should under-
stand the implications of identification failure for statistical inference. Yet,
this is a subject that seems to be virtually untouched in the literature. The
primary aim of the present paper is to investigate this rather neglected class
of problem.

There are many situations where we might expect identification failures to
arise in econometrics. We shall concentrate our discussion on two major
types of partially identified model. These will serve to illustrate most of the
problems that can occur and to provide guidelines for the development of
a general theory. The first of these is the classic simultaneous equations
model. In single equation estimation, identification failures can result in
some coefficients being identified and others unidentified. Those that are
identified may be regarded as asymptotically estimable functions. In systems
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estimation, some equations in the system may be identified while others are
not; and those equations that are unidentified may contain some identifiable
coefficients.

The second type of partially identified model with which we will be con-
cerned is a time series spurious regression. This could be a single equation
regression in which some components are spurious and others are not. Or it
could be a system where some regression equations are spurious (possibly
only partially spurious) and others are not. As our analysis will show, such
time series spurious regressions have a close formal similarity with partially
identified structural equations. The results we obtain for both types of model
indicate the nature of the extensions that are needed to conventional asymp-
totics to accommodate partially identified systems.

A second aim of the paper is to develop such extensions and thereby tie
together the asymptotic theory for unidentified, partially identified, and fully
identified systems. As we shall show, some of the cases that we consider
come within what we shall call a limiting mixed Gaussian (LMG) family.
However, there are many exceptions. Prominent among these are certain
time series regressions involving integrated processes and unit root auto-
regressions. A second level of generalization that is designed to accommo-
date this rather important class of exceptions to the LMG family will also
be developed.

The plan of the paper is as follows. Section 2 deals with structural estima-
tion in simultaneous systems. We first develop a finite-sample theory for par-
tially identified structural equations and then show how a general asymptotic
theory follows through the operation of an invariance principle. Properties
of conventional statistical tests and estimators are considered in detail. Sec-
tion 3 deals with time series regressions. This includes spurious regressions,
partially spurious regressions, and cointegrating regressions. Representations
of the limit distributions that go beyond functionals of Brownian motion are
pursued and, in most cases, these turn out to be simple scale mixtures of nor-
mals. A close formal similarity between spurious regressions and totally
unidentified structural equations is discovered. Section 4 explores the LMG
theory and the extensions that are necessary to embrace all of our earlier
asymptotic results. Some conclusions are drawn and some topics for further
research are discussed in Section 5. Proofs are given in the Appendix.

A word on notation. We use the symbol “=" to signify weak convergence,
the symbol “=” to signify equality in distribution, and the inequality “> 0”
to signify positive definite when applied to matrices. Stochastic processes
such as the Brownian motion B(r) on [0,1] are frequently written as B to
achieve notational economy.1 Similarly, we write integr?ls with respect to

Lebesgue measure such as f B(s)ds more simply as f B. Vector Brown-
0

‘ 0
ian motion with covariance matrix Q is written “BM (Q).” We use O(n) 10
denote the orthogonal group of n X n matrices, V; , to denote the Stiefel
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manifold { H,(n X k) : H{H, = I}, U(V, ,) to signify the uniform distribu-
tion on ¥, ,, and the abbreviation “a.s.” for almost surely. We use r(II) to
signify the rank of the matrix II, Py to signify the orthogonal projection
onto the range space of II (with Qy = I — Pp), and | II} to signify the
Euclidean norm {tr(II'I1)}!/? of the matrix II. Finally, 7(1) is used to denote
an integrated process of order one and 7(0) denotes stationarity.

2. STRUCTURAL ESTIMATION
2.1 Partially ldentified Structural Equations

We will work with the structural equation
y1=Y25+Zl‘y+u=W5+u, (1)

where y, (T x 1) and Y,(T X n) contain observations of n + 1 endogenous
variables, Z;(T X k) is an observation matrix of k; included exogenous
variables, and u is a random disturbance vector. The reduced form of (1) is
written in partitioned format as

II
[y, Y] = [Zl,Zz][7r1 1] + [, V2l Q)
m I
or
Y=ZII +V,

where Z, is a T X k, matrix of exogenous variables excluded from (1). It is
assumed that k, = n so that (1) is “apparently” identified by order condi-
tions and that Z is of full column rank k& = k; + k,. We also assume that
(2) is in canonical form (see [18] for details of the necessary transformations)
so that the rows of V are independent and identically distributed (i.i.d.)
(0,1,,), m = n + 1. Use of the canonical form helps to simplify subsequent
arguments, involves no loss of generality {18], and is a convenient route to
results for the unstandardized model. For the development of a finite-sample
theory, we will also require the more specific:

(C1)  V=Nr,0D),

which will be removed later when we study asymptotic behavior. However,
as we shall see, many elements of the finite-sample distribution theory per-
sist in infinite samples and, moreover, retain their validity under general con-
ditions when the normality assumption is removed. This is an instance of the
operation of the invariance principle (see, for example, (3, p. 72]) and is an
interesting and important feature of partially identified systems.
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To complete the specification of (2) and to facilitate the development of
an asymptotic theory, we assume the conventional condition:
(C2) T-'27Z-M>0

as T — o. We partition M conformably with Z as

M=o vl

The identifying relations connecting the parameters of (1) and (2) are
m =1L B=1, ()]
m —ILB=0. )]

We know that (1) is identified if and only if r(II,) = n < k,. We call this
the fully identified case. The polar opposite occurs when

IL =0 6)

and r(I1,) = 0. This is often called the leading case in econometric distribu-
tion theory [17,19]. Note that the parameter vector (8 is totally unidentified.
Interestingly, however, the structural equation (1) is not totally unidentified
even in this case, provided that k; > 0. As is clear from (3) when II, = 0,
for example, the entire coefficient vector vy = 7, is identified and equals a
subset of the reduced form coefficients.

Suppose IT; # 0 and r(I1,) = k. Define an orthogonal matrix

kll k12
R=[R,, R;,]1€O0(k),
where R, spans the null space of Ilj, k, = k;; + ky,, and O( ) denotes the
orthogonal group. We now use R to rotate the coordinate system in the

space of the included exogenous variables in (1). Under this rotation we
obtain:

=Y+ Z,RRy+ u,

©

or
n=N+Zyn+Znytuy )]
where Z,, = Z,R,, Z\, = Z, R;, and the new coefficients are given by

vi =Riy = Ri=, ®
Y2 = Ryy = Rym — R3IL, 8. 9

In the new coordinate system v, is identified and +, is totally unidentified
(since R5II, has full row rank). y, may be regarded as a vector of asymptot-
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ically estimable functions of the coefficients in (1). In terms of the former
coefficients, we have

Y =Rivi + Raya. 10)

In the general case where II, and II, are of arbitrary rank, we may rotate
coordinates in both the space of endogenous variables Y, and the space of
exogenous variables Z, to isolate estimable functions. Suppose r(II;) = n,
and define

n, Hy
S=1[8, 8,]€0(n)),

where S, spans the null space of II,, n = n;, + n,, and II,;, = I, S, has full
rank n;. Let

61 = S{B’ 62 = S2,67
and then (4) becomes
7, — I,88'8 = m, — 8, =0

in the new coordinates, so that 3, is identifiable. Similarly, under this rota-
tion, we have

0,8 =11,8,81 + I, S, 8, = 1111 B + 11,8, (say).
Now define
ki kp
R =[R,, R,] €0(k),
where R, spans the null space of IIj, and let
v1 = Riy = Rim — R{I1;; B,
Y2 = R3y = Riym, — R311,, 8y — R311,,6,.

Under the simultaneous action of (11) and (12), the structural equation (1)
becomes

N = stslﬁ + ZIRR”Y + u,

11)

(12)

or
n=YuBi+ Yauby+ Ziy v+ Zpy: + 1 (13)

In (13), the coefficients (B8;,v,) are identified and (B,,v,) are totally
unidentified. The original coefficients are recovered from the equations:

B =86, + 8,82,
¥ =Riv1 + Ryv,.
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Equation (13) represents the estimable function format of a general par-
tially identified structural equation. Systems of equations involve no new dif-
ficulties and comprise a set of structural equations, each of which falls into
the general format of (13) upon appropriate transformation of coordinates.
However, it is important to observe that in general there will be no single
rotation of the coordinate system which will transform the model into a sys-
tem in which each equation is in estimable function format as in (13).

2.2 Distribution Theory

To fix ideas, it will be convenient to work with the structural equation (1)
in the partially identified case (5). As we have seen, this equation may be
written in the estimable function format (7), where v; = R}y is identified
and (8,2 = Rjv) is totally unidentified. The main ideas are then well illus-
trated by considering the instrumental variables estimator:

8 = argmins(y — Wo) Py (y — W$),

where H={Z,,7Z;] is a T X (k; + k3) matrix of instruments with Z; a sub-

matrix of Z, formed by column selection. We require k3 = n, so that the

order condition of sufficient instruments is satisfied. Define &k, = k, + k5.
Subvector coefficient estimates are given by:

B =[Y3(Py — Pz)Y,1 7 [Y3(Py — Pz) 1], 14)
3 =(Z{Z))"'Zin — (Z{Z)"'Z{ Y18, as)
with

1 =Ri¥,  F2=R37.
We now have the following theorem.
THEOREM 2.1. Under (Cl)
(@ B= N(0,S7")pdf(S)dS, S= W,(ks,I), (16)

S>0
= / N(0,zI) pdf(z)dz, 1/z=x2, g=ks—n+1, A7)
z>0

= q—l/th’ 18)
=r (say),
where t, denotes an n-vector multivariate t distribution with q degrees of
freedom. The density of 8 is

Y

pdf(r) = A Frn@nn’

19)
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where
¢c=T((qg+ n)/2)/T(q/2)x"">. 20)
(b) Y1 E/ N(y,(1 + r'r)G,) pdf(r)dr, 21
R"
= N(v,,(1 + m)G,) pdf(m)dm, (2)
m>0
= 5y (say),
where

G = RiI(Z{Z,) 'R,

mEB,<Q,k3—n+ 1),
2 2

and B’ denotes a beta-prime distribution with the stated degrees of freedom,
ie.,

_ -1
pdf(m) = [B(%E—;—“” mr2 (1 + m) ka2, @3)
© Y2 = N(Rym — R3ILir, (1 + r'r)G,) pdf(r)dr, 4)
Rn
=35 (SaY)s

where
G, = R5(Z{Z,)"'R,.
@ ¥ =Rys; + Ry,
= s (say).
COROLLARY 2.2. Under (Cl) and (C2)

@ B=r= f N(0,z]) pdf(z)dz, 25)
z>0

®) VT —v) = N(0,(m + 1)G,) pdf(m)dm, (26)

m>0
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Gl = RiMl_]lRl .

©) Y2 = Rymy — R3ILr = f N(R;m,zR I IT{ Ry) pdf(2)dz, (2T)
2>0

@ '?=>f ON(Y,szﬂnﬂiPz)pdf(z)dz, 28

= § (say),
where
¥=Ryvi + Pymy,
P, = RyR;,
and the scale variates 7 and m are as in Theorem 2.1.

Remarks. (i) Note that the density of 8 given by (19) is independent of 3.
The fact that this distribution carries no information about 8 is consonant
with and, indeed, is a consequence of the fact that 8 is totally unidentified.

(ii) Note also that the density (19) is independent of 7" and is the limiting
distribution of §, as indicated in (25). Thus, the distribution of 8 is the same
in finite and infinite samples. This distributional invariance to 7 and the
nondegeneracy of the limiting distribution are manifestations of the uncer-
tainty about 8 that is implicit in its lack of identification. The phenomenon
is further discussed in earlier work [17,19,21] where (19) and (25) were first
derived.

(iii) 4, is consistent for v;, the identified exogenous variable coefficients.
In finite samples, 4, is distributed about v, as a variance mixture of nor-
mals, represented by (22). This mixture distribution persists in the limit.
Indeed, the limiting distribution of YT(4; — v,) is a variance mixture of
normals with the same mixture distribution (23) as in finite samples. Interest-
ingly, this limit distribution differs from the conventional asymptotic theory
for consistent estimators of identified coefficients. Rather than the usual nor-
mal theory, we have here a mixture of normals where the mixture distribu-
tion carries the effect of the lack of identifiability of 8 into the asymptotic
distribution of §,.

(iv) v, is totally unidentified and 4,, like B, has a nondegenerate limit dis-
tribution. Unlike 8, however, the finite sample and asymptotic distributions
of 4, given by (24) and (28), respectively, are not the same. This is
explained by the fact that some sources of variation in ¥, that are present in
finite samples are eliminated as 7 — oo: in particular, the variation that
results from the estimation of the reduced form coefficients (w;,I1;). The
source of variation that remains as 7 — oo is the uncertainty about 3 arising
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from its lack of identification and this is embodied in the limit variate r that
appears in (27).

(v) As we shall see in Section 4, all of the limiting distributions given by
(25)-(28) fall within the LMG family. In particular, they are all represented
as scale mixtures of normals. Interestingly, this conclusion holds for both the
identified and the unidentified coefficients, with the different rates of con-
vergence that apply in the two cases. Note also that in several instances, such
as (16), the distributions may also be written as covariance matrix mixtures
of normals, which are still within the LMG family. However, in all cases
these are easily reduced to scale mixtures of normals as shown in the final
results (25)-(28).

(vi) The above results refer explicitly to the model (1) and (2) as formu-
lated in canonical form. Here, the rows of V are i.i.d.(0, 7). In the general
case, the rows of V are i.i.d.(0,Q2) with @ > 0. The transformations that
reduce the general case to canonical form are given in Phillips {18, Theorem
3.3.1]. We use an asterisk to signify coefficients (and associated estimators)
in the general case and partition Q as

Q= [wn wﬁl]_
w2y %8
Then
B = iV FMPA(B* — Q' wy),
v = w7y,

where wy; .5 = wy; — w51 Q37 w,,. The corresponding IV estimators of 8* and
v* satisfy the equations

r* = wl{%9%"%r + % vy, (29)
s* = whhs. 30)

We deduce from the above correspondence and (25)-(28) that

Br=r*= | NQZw, 201 295 ) pdf(z)dz, €)))
>0

7r=5t= f N(¥*, zw 2 PIL L Py) pdf(2)dz, (32)
>0

with

¥* = wlihy.

Analogous results hold for the component estimators VT (1 — 1) and 5.
Note particularly with regard to (31) that the limit distribution r* is now
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a scale mixture of normals centered at Q5'w,;, which is the regression coef-
ficient of y; on Y, for a population with covariance matrix Q.

2.3 General Asymptotic Theory

The results given in Corollary 2.2 are obtained under (C1). It is easy to see
that they apply for all i.i.d.(0,I) error distributions as well as those which
are i.i.d. N(0,I). In fact, a somewhat stronger result is possible. Suppose the
rows of V form a martingale difference sequence with the natural filtration
and assume that the differences are stationary, ergodic, and have conditional
covariance matrix I,,. Define

D= [QZIZ3(Z3’QZlZ3)‘1/2, Zl(Zle)‘l/z] = [Dl,Dz]- 33)
Then we have under (C2):

LEMMA 2.3.
D'V = N, m(0,1). 34)

THEOREM 2.4. If (C2) holds and if the rows of V form a sequence of
stationary, ergodic martingale differences with conditional covariance matrix
I, then (a)-(d) of Corollary 2.2 continue to hold.

Remarks. (i) Theorem 2.4 is an instance of the operation of an invariance
principle. Theorem 2.1 and Corollary 2.2 were obtained under the N(0,7)
error condition (C1). According to the invariance principle, the asymptotic
results should hold for a much wider class of errors. Broadly speaking, each
statistic of interest can be written in the form f;(D’V’), where fr is a
sequence of continuous functions that converge to a continuous function f.
We know from Lemma 2.3 that D’V = N(0, ) for a general class of errors
V. By an extension of the continuous mapping theorem ([3, Theorem 5.5]),
we deduce that

Sr(D'V) = f(N(O,1)), (3s)

and the results obtained under the N(0,7) error condition (C1) now apply
for the wider class of errors.

(i) Note that the operation of the invariance principle described above
increases the value of the finite-sample distribution theory performed under
N(0,I) errors. In particular, for unidentified coefficients such as 8 in (7), the
exact finite-sample distribution of 8 under N(0,I) errors is also the asymp-
totic distribution in the wider class. Thus, the finite-sample theory under nor-
mal errors explicitly addresses the distribution of the functional f(N(0,7))
that represents the asymptotic theory in the more general case (35). A spe-
cial case of this phenomenon was given earlier in [22].
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2.4 Statistical Tests

The properties of conventional statistical tests in partially identified struc-
tural equations are also of interest. We shall concentrate our discussion on
Wald tests of hypotheses relating to the coefficients of the endogenous and
exogenous regressors in (1). Each of these make use of the equation error
variance estimator

82 =T7' (3 = W18 (1 — W16 = T7' (3 — 12B) Qz, (1 — Y2h).

To test

Hg:AB =a,

where A is p, X n matrix of rank p, (=<n), we would use the statistic

Ws = (AB — a) (A[Y3(Py — P7)Y,17' A’} (AB — a) /6>

Similarly, to test

H, :By=0b,

where B is p, X k; matrix of rank p, (<k;), we have the statistic

W, = (By — b)' [B(Z{QZ,)"'B']"'(Bf — b)/&?,

where

Q = Py — PyY,(Y;PyY,) ' Y3 Py (36)
When the structural equation (1) is fully identified and (C2) holds, these
statistics are conventional asymptotic x 2 criteria and

Wo=Xp  Wy=Xap @7

under the null hypotheses. When the equation is partially identified, the limit
theory (37) breaks down and we get quite different results.

As before, we will work with the leading case (5) to illustrate the effects
of departures from the standard theory. The results are especially interest-
ing in the important subcase where both 8 and +y are totally unidentified.
Here, we have r(I1I,) = k; < n, and we introduce a rotation

n— kl k]
L € O(n)’ L= [ Ll N Lz]

with the properties that
Iy, =1L, = 0,
Iy, =10, Ly, r(Il) = k.

The following preliminary results are useful. They hold under the conditions
stated in Theorem 2.4.
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LEMMA 2.5.

N

2=1+rr,
where r is the random vector given in (25).
LEMMA 2.6.
(@  (Y3PyYy)™'= Li(L1E'QpEL) 'L,  n>ky,
(b) (T7Y;PyY)7'o (M IDTY, n=k,
where
§ = N, n(0,1),
ki

0 n —kl
F= .
[Mlll/znu] ki

LEMMA 2.7.
Z{QZ, = {3 ' &(Qr — Qr&i(E]QrE) T & Qr) £:1T1,
= ;7' Wy, (ke — n, DI, 38)
where
[£1,82] = &Ly, L] = EL = Ny, 0(0,1).

Remarks. (i) Lemma 2.5 shows that, in contrast to identified structural
equations, the standard error of regression converges weakly to a random
variable, whose distribution depends on the limiting distribution of the struc-
tural coefficient estimator.

(ii) Lemma 2.6 shows that when n > k| there is a singularity in the limit
of the inverse of the sample moment matrix (Y;PgY>)"!. Moreover, the
limit matrix

Li(Li&QptLy) 'Ly =L (§1QrE1) 'L,
is random and its distribution depends on the inverse of
£10rE = W i (ki — ki, D). 39

The rank of the limit matrix (39) is n — k,. When n = k;, the matrix L, has
no columns and (39) may be interpreted as the zero matrix. In fact, rescal-
ing is required to avoid degeneracy and part (b) of the lemma gives the ap-
propriate result for T(Y;PyY,)~! in this case. Note that part (a) is very
different from conventional theory for simultaneous systems where we would
expect (Y3 PyY2)™' = O,(T~"). The differences arise not only because of
the lack of identifiability of 8 and y but also because of the column rank
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deficiency of II,. The latter ensures that there are certain linear combina-
tions of Y, which depend only on the errors ¥, and not the exogenous vari-
ables Z;. The limit behavior of idempotent quadratic forms in such linear
combinations is quite different from those involving the exogenous variables.
This follows directly from Lemma 2.3.

(iii) When n = ky, there is no rank deficiency in IT, and the sample
moment matrix 7' Y;P,Y, has a nonsingular probability limit MG, 10,
The limiting behavior in cases (a) and (b) of Lemma 2.6 is therefore quite
distinct. Note also that the standardization is different in the two cases.

(iv) Lemma 2.7 describes the limiting behavior of the matrix Z;QZ,.
Note that this is proportional to the inverse of the usual estimate of the
asymptotic covariance matrix of ¥. We see that Z{ QZ, converges weakly to
a random matrix of full rank k; a.s. Thus, the limit of (Z{QZ;)~! is given
by

(L2 W, (ke — n, DI = (W, (K — 1, (Tp0055) 7)), (40)

and this random matrix properly represents the uncertainty about 4 that is
implicit in its (total) lack of identification in this case.

(v) Note also that (38) holds for all # = k, in spite of the different limiting
behavior of Y; Py Y, in the two cases n > k; and n = k, given in Lemma 2.6.

(vi) The proof of Lemma 2.7 is of some independent interest. Observe that
under (C2), Z{Z, is O(T). The limiting behavior of Z{QZ, therefore in-
volves a degeneracy in which the leading term is zero. The proof in the Ap-
pendix shows how to develop an expansion that yields the next dominant
term. In the present case, the next term is O,(1) and Z{QZ, converges
weakly to the nondegenerate random matrix (38) in the limit.

THEOREM 2.8. Under the conditions of Theorem 2.4,

(@) W= (Ar —a)y W(A)(Ar —a)/(1 + r'r), @n
(b) W, = (Br — by W(B)(Br—b)/(1 + r'r), 42)
where

W(A) = W, (ks — n + p,,(AA4")7"),
W(B) = W, (ks — n + p,,(BB')™),
B = —BII,, b=b— Br,.
In these representations r, W(A) and W (B) are dependent variables.

Remarks. (i) The limiting distributions represented by (41) and (42) are
not chi-squared, so that conventional theory under the null is obviously inap-
propriate. We also observe that (41) and (42) continue to hold under the
alternative hypotheses

H,:AB # a, H, :3y +b.
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The tests are therefore inconsistent. This squares with the fact that 8 and y
are unidentified. Even an infinite sample of data delivers no information
about these parameters, so that data-based tests cannot discriminate between
the null and the alternative hypothesis.

(i) Note also that the distributions given in (41) and (42) are invariant to
the true values of 8 and v. Thus, the distributions themselves are invariant
under the null and alternative hypotheses.

The polar case in which the coefficient vector 7 is fully identified is also
of interest. Here, IT; = 0, and hence Y, = V,. The limiting behavior of the
sample moment matrix 77'Z{QZ, is now quite different from (38). We
have instead:

LEMMA 2.9. IfII, =0, then as T — oo,
T71Z{QZ, = M{*6, 05 M|{?, “43)

where O, is the k| X (k. — n) submatrix of

ke — n n
ell 612:| k3
0 = € O(k,
[ O  Onlk €U

in the displayed partition and
6 = U(O(k,)),
i.e., © is uniform on the orthogonal group O (k).
THEOREM 2.10. IfII, = 0, then as T — oo,
W, = §'B'{B(M{{*0,,05M\{*)"'B"Y'Bs/(1 + r'r) @4)

under the null hypothesis H,; and W, diverges when H_ is false. Here

§= N(O,(1 + m)yMi") pdf (m)dm,

m>0

as in (26) (with R, = I), r is given by (25) and Oy, is given in (43).

Remarks. (i) Theorem 2.10 shows that when v is identified, a Wald test
of H, is consistent. However, use of conventional chi-squared critical val-
ues leads to a size distortion in the test which persists asymptotically. This
distortion is caused by the nonidentifiability of 8, which induces: (a) a ran-
dom limit for the error variance estimator 42; (b) a nonnormal limit distri-
bution for the scaled error in the coefficient V7 (4 — v); and (c) a random
limit for the covariance matrix estimator 7'Z/QZ,. Each of these effects
figure in the nonstandard limit distribution as it is expressed in (44).

(ii) Notwithstanding the above remark, the numerator quadratic form in
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(44) is a standard x 2 variate. To see this, it is simplest to work directly from
W,,. Under the null,

By —b=B(y —v) = B(Z{QZ\)"'Z{Qu,

where

u=uv — W

is the structural equation error in (1). When II, = 0, we have Y, = V, and
so QV, = 0. Thus, Z{Qu = Z{Qu,. In view of Lemma 2.3,

D'V =D’[v, V2] = [ X1, X3] = Ny, .m(0,1),
and from (All) in the Appendix, we have
T=Y2Z{D - [0, M}{*] = E (say)
as T — oo. We write, under the null,
(By — b)'[B(Z/QZ,)"'B']""(By — b)
=v{QZ\(Z{QZ,)"'B’'[B(Z{QZ,)'B'1"'B(Z{QZ,)"'Z{ Qu,
= v{Q(B)v, (say).
Here, Q(B) is idempotent of rank p, and depends on D’Y, = D’V,. Under
(C1), it is obvious that conditional on D'V,
viQ(B)y, |1)'V2 = Xﬁb,
and, being independent of D’ V5, this is also the unconditional distribution.
The same argument applies in the limit as 7 — oo in the general case. Since
Q= Py Q = QPy, we simply write
v{Q(B)v, = v{D(D’'Q(B)D)D’v, = v{DQD'v,.
Here O = Q(D'V,, T~2Z{D) is idempotent of rank p, and depends only
on the random matrix D'V, and the nonrandom matrix 7~'2Z{D. But
D'V,= X,, D'v; = X, and X, and X, are independent. Thus,
v{D{Q(D'V,, T™2Z{D)\D'v, = X{{Q(X2,E)} X, = X},
by the argument above. It follows that (44) may be reduced to the simpler
form
W, = x2/(1+r7r). “5)

However, it is easy to see that the numerator and the denominator of (45)
are statistically dependent. In fact, partitioning D = [ Dy, D,] as in (33), we
may write conformably

D'V, = [D‘,VZ} = [XZ‘} =X,
DZI/Z X22
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and
Div, X
D'v, = = X;.
o [Dzlvl] N [X12 !
Then we have

B = r= (X X3) " X1 X1,

which makes explicit the dependence in the ratio (45).

(iii) The form of (45) is simple and rather interesting. It even suggests the
possibility that inferences about y might be performed conditional on esti-
mates of the unidentified coefficients 8. To examine this possibility further,
consider the form of 4 given in (15), namely,

1
g = (Z{ZI)“Z{Y( >
-8
Under II, = 0, we have y = =; and
§ =y =(Z{Z))'Z{(v; — V1B).
Conditional on 8 (or, equivalently, D{ V) and under (C1), we have
7 —vlg=N©O,(1 + BBNZIZ)™).
To test H, : By = b, consider the statistic
W, = (By — b)' {(1 + B’B)B(Z{Z,)"'B"} "' (B} — b).
Now
Wyl8 = Xpy
When (C1) is relaxed, we obtain, using Lemma 2.3, the same result in the
limit, namely,
Wylo = X3y (46)

The relation (46) may be used to make valid conditional inferences about .
In effect, we estimate (1) and then conduct statistical tests conditional on the
estimated values of the unidentified coefficients. Note that in the present
context, we may regard 3 as an ancillary statistic. Its distribution, as we have
seen, does not depend on any parameter other than the degrees of freedom
q = k; — n + 1. In particular, the distribution of B does not depend on 7.
In making inferences about v, it is therefore appropriate to proceed condi-
tionally on the observed estimate of B. This approach leads directly to an
asymptotic x2 test based on (46). Some of the conceptual issues involved in
performing conditional inferences of this type have recently been discussed
by Lehmann [13].
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(iv) Since y = 7, when II, = 0, we may conduct tests of /7, that are based
directly on reduced-form estimates such as

ity = (Z{Q2Z) ' Z{ Oy 1, Q> =1—-2,(Z;2,)"'Z;.
Thus, we have the Wald test

W, = (Bit, — b)' [B(Z{Q,Z,)"'B’']"'(B#, — b)/é3,
where

07 = T7'9{{Qy — Q2 Z\(Z{Q2Z)) ' Z{ Q2 } ).

This leads to conventional asymptotic tests based on
W = Xp,-

(v) We must observe that the procedures outlined in Remarks (iii) and (iv)
above both depend on the knowledge that II; = 0 and, in the case of (iii),
that 8 is unidentified (I, = 0). This information is not available in practice,
although, if it were suspected, pretests of II, = 0 and IT; = 0 could be car-
ried out using reduced-form estimates of these coefficient matrices. In effect,
such tests would assess the empirical support for the total lack of identifi-
cation of 8 and the identifiability of v. In the absence of such information,
we can expect that tests based on W, will be conducted and then the results
of Theorem 2.10 apply.

(vi) The analysis of this section may be extended to the case where 0 <
r(II;) < k;. The algebra is somewhat more complicated and will not be
reported here. The polar cases of r(II;) = 0 (v identified) and r(II;) = k,
(7y unidentified) serve well in illustrating the main conclusions.

3. TIME SERIES REGRESSIONS

3.1 Spurious Regressions

Let {z,}5 be an m-vector integrated process with generating mechanism
=z t+ &, t=12,.... 7)

The initial value z, in (47) may be any random variable, including a con-
stant. The sequence {&,} is strictly stationary and ergodic with zero mean,
finite variance, and continuous spectral density matrix f;; (A). We further
assume that the partial sum process constructed from {£,} satisfies a multi-
variate invariance principle. In effect, for r € [0,1] and as T — o, we
require:

(C3) Xr(r)=T722"¢, = B(r),
where B(r) = BM(Q), i.e., Brownian motion with covariance matrix

Q= 27!‘f£g(0) = Qo + Ql + Q]’ (48)
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with
0= E(fof), = 3 E(totd.
More explicit conditions under which (C3) holds are discussed in detail in
earlier work by the author [23,25,29].

We now partition z, = (y,,Xx/)’ into the scalar variate y, and the n-vector
X, (m = n + 1) with the following conformable partitions of Q and B(r):

1 n
e @yl _ | Bi(r) | 1
8= [0021 922}’7, B(r) = [Bz(")]n.

In this section and in Section 3.2, we shall assume that @ > 0. We shall fur-
ther use the following conformable block triangular decomposition of Q:

Q="r1L, L:[l” 0}
121 L22

with
Iy = (wpy — @5 Q5 wyy) 2, Ly = 932wy, Ly = Q%2
Our object of study is the linear least-squares regression
Yo =B+ i (49)

When {&,} is i.i.d. N(0,7), (49) reduces to the Granger and Newbold pro-
totype of a spurious regression. In this context, y, and x, are independent,
integrated processes. Yet the regression (49) typically leads to apparently sig-
nificant correlations in conventional regression significance tests, thereby
justifying the nomenclature spurious regression. The properties of such time
series regressions in the general stochastic environment determined by (47)
have recently been analyzed in detail by the author [23].

The limiting behavior of 3 in (49) is a simple consequence of (C3). In par-
ticular, as shown in Phillips [23], when 7 — o

([ ) ([ )

a matrix quotient of quadratic functionals of the Brownian motion B, As it
stands, the representation (50) is simple and elegant, but not very helpful in
terms of setting the limiting distribution of § in the wider context of general
asymptotic theory. The following results help to do just that.

Let the m-dimensional Brownian motion B be defined on the probability
space (Q,F,P) and let F, be the sub-o-field of F that is generated by
{By(r):0 < r < 1}. We use the symbol “-|F,” to signify the conditional
distribution relative to F,.
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LEMMA 3.1.
Bilp, = w5, Q%' B, + I, W, (51)

where W, is an independent standard Brownian motion, i.e., W; = BM(1)
and is independent of B,.

THEOREM 3.2.
B= | NQZwu,w112V(B)dP(V), (52)
V>0
= [wON(Q;Z’wZI,vw“ S5 dP(v), (53)
where

1 opl
V= f f C(r)(r A s)C(s) drds,
0o Jo

1 1
u=[ f U((ry(ra s)U(s)drds,
0 4]

1 \—1
cr) = (f BZBZ') By (r),
0

i -1
ur) = e{(f Wsz') Wy (r),
0

e = (1,0,...,0), (nx1),

and W, = BM(1I,,) or n-vector standard Brownian motion. P(V) denotes the
probability measure on the covariance matrix V = V(B,) > 0 that is
induced by the vector Brownian motion B,; and P(v), similarly, is the
probability measure on the variance v = v(W,) > 0 that is induced by the
standard Brownian motion W,.

Remarks. (i) Lemma 3.1 shows how to represent a conditional Brownian
motion as unconditional Brownian motion about a given Brownian path.
The latter is the conditional mean of the new process and the conditional
variance is simply proportional to [}, = wy, 3 = w;; — w) Q37 wy, the con-
ventional conditional variance from a multivariate normal distribution. In
fact, (51) may be regarded as the Gaussian process analogue of familiar the-
ory from normal multivariate analysis. It has many useful applications.

(ii) Theorem 3.2 gives the limiting distributions of 8 as a covariance matrix
mixture of normals in (52) and as a simpler variance mixture of normals in
(53). Note that the covariance matrix of the process z/ = (), x/) iS approx-
imately Q. Theorem 3.2 shows that the limit distribution of the sample
regression coefficient 3 is a scale mixture of normals centered at 0%}w,,;,



PARTIALLY IDENTIFIED MODELS 201

which may be interpreted as the population regression coefficient of y on x
for the time series {z,} with asymptotic covariance matrix .

(iii) As discussed in Phillips [23], the limit distribution of B is nondegener-
ate. This is a manifestation of the spurious nature of the regression. In
effect, the noise in the regression (49) is as strong as the signal and is, more-
over, contaminated with it. This leads to a persistent indeterminacy in the
regression which is reflected in the dispersion of the limit distribution of 8.

(iv) There is a striking relationship between the results in Theorem 3.2 for
the time series regression (49) and those obtained earlier in Section 2.2 for
the structural equation estimator when the coefficient vector 8 is totally
unidentified. For the latter case, we obtained (see (31) above):

B~ f N(@5 s, 2011 2053 pdf (2) dz, e
>0

where 3* is the IV estimator of the structural coefficient 8 in (1) and where
Q is the covariance matrix of the endogenous variables that appear in the
equation. The similarity between (53) and (54) is indeed striking; and it goes
deeper than the apparent similarity in the formulae. This is because both
regressions share a fundamental indeterminacy: the structural-equation case
in view of the total lack of identification of the coefficients; and the time
series regression since the signal is persistently swamped by the strength of
the noise. In neither case is the signal delivered by the regressors sufficiently
clear and uncontaminated by noise to provide determinacy. Our results indi-
cate that the spurious-regression case may be regarded as a time series ana-
logue of the structural equation regression under lack of identification.

(v) Suppose, for example, that for some constant n-vector 8, we defined
u, = (1,—8’)z, with z, generated by (47). Then, we have

¥, =B8'x,+ u,, 55)

and the regression (49) might purport to estimate (55). However, there is no
information about 8 in the generating mechanism (47) so that 8 is clearly
unidentified. In this sense, the time series model (55) with reduced form (47)
may be reinterpreted as an unidentified structural equation in a simultaneous
system. Note that there are no identifiability relations corresponding to (3)
and (4) because in the present case IT = 0. Indeed, we may write the reduced
form (47) simply as

L= Uss v =0y + & (56)

Here, the noise v, in the reduced form is itself an integrated process and
there is no systematic component (i.e., I = 0). We then obtain u, =
(1,—B’)v, in (55), and the noise in (55) is as strong as the signal x, and is,
in general, contaminated with it. Since IT = 0 in (56), the data carry no in-
formation about 8 and the vector is unidentified.
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(vi) The above results may be readily extended to regressions such as (49)
with a fitted intercept or time trend. The formulae derived still apply but
with B, (and, hence W,) replaced by demeaned or detrended Brownian
motion, namely,

1
B, = B,(r) — f B,, 57
0
B, =B,y(r) — & — aur, (58)
where

1 ~1 1 1 1
Qg 0 f S f 32 4[ B, — 6[ SBZ
0 0 0 0
1 1 1 1 1
) f S f 52 f sB, 12[ sB, — 6[ B,
0 0 0 0 0

(and W, W,, respectively, in the case of W5).

3.2 Partially Spurious Regressions

When the generating mechanism (47) involves a systematic component such
as a drift, then regressions such as (49) are only partially spurious. Let us
suppose that, in place of (47), we have the corresponding model with a drift
vector u, namely,

Zr=u+z0+ &, (59)

or in partitioned form

[J’z] — [Hl] + [J’z-—l] + [fn]. (60)
Xt |25 Xi—1 $2

We assume that u, # 0 and to simplify notation we further assume that the
system (60) has been scaled so that usu, = 1. Note that (59) and (60) may
also be written as

z=pt+z0,  yi=mt+y), Xo=pat + X0

where the superscript zero signifies a driftless 7(1) process, i.e.,

P =z + &, W=yl + b xp =x2, + £

Since u, # 0, we have

Vi mpsXe = yP = mpsx? = u, (say), (61)

where u, is a driftless 7(1) process also.
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We now write (61) as
Ww=px+u, B=mpp, (62)

and the least-squares regression equation (49) may be interpreted as an esti-
mate of (62). The following theorem gives the asymptotic properties of these
regression coefficients for data generated by (59). It is convenient to intro-
duce the rotation

H = [uy, Hy] € O(n)
and transform coordinates of the regressors in (62) according to
yi=B'HH'x; + u,,

= Bi X1 + BrXa + Uy 63)
where
By =B'p2=p, B2 = Hj3B = p Hipr =0,
and

X1 =t + pix?d,
Xor = H3x) = X1y + H3&2,.

Let 3, and $3, be the least-squares regression coefficients of 8, and 3, in
(63). Then

B = H@ = By + Hyf, 64)
and
B =HpB = p28y + Haf3r = p2ps- (65)

Assuming that {£,} satisfies (C3), we construct from B(r) the n-vector
Brownian motion

B, (r) 1 g

= = = BM({Q
B [Ez(r)] [0 2']B(r) @
with

Wi Wy
Q= R
- |:¢£21 sz]
where

Wy = — 28'w + B U2f,
wy = Hy (w2 — 0220),
Q= HyQpnHj.

We now have the following theorem.
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THEOREM 3.3,

1 -1 1
(a) \/7(31—61)=<f0 s“z) (fo n_sl),

= N(O,Qll'Zvl)dP(vl)’

v1>0

1 -1 1
(b) 32=><j; fm’) (fo nEl),

= N(Q3' wo1,0112V2)dP(V3),

V>0

= N(Q3' w21, 1011.295 AP (v,),

v2>0

where

1 1 -1
fry =r— (f sﬁs) (f _Bzga) Ba(r),
(4] 0
1 1 —1
-B,(n-([| B 2)
7(r) = B,y(r) (j; _zs) (j;S) r

1 1
2 =f f U (r)(ras)U, (s)drds,
0 0

1 \-1
Un(")=<f fz) §(n),
0

1 1
V, = f f Co(r)(r A s)Cy(s)drds,
0 Jo

1 -1
Cy(r) = ‘ ,
2(r) <f0 nn) n(r)
1 1
vzzf f U,(r)(r A s)U,(s)drds,
0 0
1 -1
Uz(r)=e{<./; M') n(r),
1 1 —1
w0 =w = ([Cwr) (')
0 0

W, (r) = BM(I, ).

(66)

67

(68)

(69)

(70)
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COROLLARY 3.4.

. 1 -1 1
5—5=H2<f 7171/) ([ 711_31),
0 0

=H, N(2%' wo1, v2w11 295 )dP(vy). (7)

v,>0

Remarks. (i) We see from Theorem 3.3(a) that B =By + O,(T7?),
so that (3, is a consistent estimator of 3;. The component 8; = u58 = u;
may be interpreted as an (asymptotically) estimable function of the vector
B in (62).

(i) Again, we have an analogy with structural equation estimation. In this
case, (62) may be viewed as a structural equation in which (y,,x;) are en-
dogenous with reduced form given by

z=pt+2z0, =zl + & (72)

The systematic component in the reduced form (72) is u¢. The analogue of
the identifiability relation (4) is

(L,=B)u =0,
or
p1— B'p2=0.

This relation not only determines the conditions under which a particular
component of 8 is identifiable (namely, u, # 0) but also indicates what that
component is, namely, 8; = u38 = p;.

(iii) Note that, when u, # 0, x; itself involves a drift and that we may
write x, = u,t + x?, where x? is a driftless 7(1) process. Thus, x, = O,(?)
and this trending component of x, dominates the stochastic trend in x? =
O, ( V). Moreover, the presence of this trending component in X, ensures
that the regression (49) results in a consistent estimate of u,, the trend in
¥ = pyt + y0. The remaining components in the regression are spurious.
This leads us to the nomenclature, partially spurious regression. In effect,
there is a component in the signal x, which dominates the noise and it is this
component that is consistently estimated in the regression.

(iv) The limiting distribution of VT(3, — 8;) is mixed normal as we see
from (67). Note especially that when n > 1, this distribution is nonnormal.
When n = 1, we have {(r) = r (the component of {(r) involving B,(r) is
annihilated) and

1 1 1 2
v =/ f rs(ra s)drds/(f rz) =
0 0 ]
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is a constant. In this special case, we have
VT(By — B1) = N(0,3wi; 2)-

(cf. Park and Phillips [15, p. 17]).

(v) Those components of 8 which are unidentified when n > 1, namely,
B, = H58 = 0, are estimated by 82. For these components, we have results
that are entirely analogous to those that apply in a spurious regression.
Indeed, the representations of the limiting distribution of B, given by (69)
and (70) closely mirror the earlier representations (52) and (53). We see that
this asymptotic theory again falls in the compound normal family and may
be regarded either as a covariance matrix mixture or a scalar mixture of
underlying normals.

(vi) The representations (66) and (68) depend on the functionals {(r) and
7(r) of the Brownian motion By(r). These functionals have simple interpre-
tations. In the space L,[0,1], ¢{(r) is the projection of r on the orthogonal
complement of the space spanned by the components of B,. Similarly, in
L,[0,1]7"1, 5(r) is the projection of B, on the orthogonal complement of
the space spanned by the trend r. These functionals preserve, in the asymp-
totic representations (66) and (68), characteristics of the finite-sample con-
struction of the statistics 8, and B, that are evident from regression
formulae. See, in particular, formulae (A20) and (A21) in the Appendix.

3.3 Cointegrating Regressions

In Sections 3.1 and 3.2, we have assumed that @ > 0. When  is singular, a
different theory applies. In this case, the variables in z, are said to be cointe-
grated [5] and the generating mechanism (47) has a deficient set of unit roots.
An asymptotic theory for regression has been investigated in other work
[23,29,30,32]. When the submatrix 2, > 0, we know that v’ = (1, —w5,2%')
is a cointegrating vector, that @y = 0, and that B;) Q5 wy; (see [23]). We
write the new cointegrated system as

Ye=B%+ &1, (73)
Xt = Xe-1 + &20 (74)

where 8 = Q%' w,, and where £/ = (&,,, £5;) satisfies (C3) as before. We have
the following limiting distribution theory from Phillips [30]:

1 -1 1
T(B-B)= (f Bsz') (f Bdel+x), (75)
0 0
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where

A= D) E(&20810)- (76)
k=0

Here, (75) depends on the theory of weak convergence to the stochastic inte-
1

gral f B,dB, (see [4] and [26]) and allows also for a bias term A. Note
0

that A is nonzero even for i.i.d. sequences {£,} when wy * 0.

The term \ arises because of the correlation between x, and &, and it car-
ries what is, in effect, a second-order simultaneous equations bias. Because
of the strength of the signal x, (an 7(1) process) relative to the error £, (an
1(0) process), B is consistent for 3; and the bias term A has only a second-
order effect on the asymptotic distribution of B. This is in contrast to the
first-order effect of conventional simultaneous equations bias for models
with 7(0) regressors, where the bias induces an inconsistency in the least-
squares estimate B.

The presence of the bias term in (75) does not of itself seem of major sig-
nificance. Nevertheless, it turns out to be of importance (i) in matters of
inference because of the nuisance parameters carried in A and (i) when it
comes to determining the general asymptotic family to which (75) belongs.
When A = wy; = 0, (75) falls within the compound normal distribution
family; when X\ # 0, it does not. To see this we note that, when w, =0, B,
and B, are independent, and when A = 0, we have

1 -1 p1 1 -1
([ Bsz') f BydB,| = N(wau 2(f Bsz') ), w2 = W1
0 0 F, 0

an
Upon integration with respect to the probability measure P(G) on G =
1
f B>B; > 0 that is induced by B,, it is clear that (77) becomes
0

N(0,0,,G™")dP(G) E[ N(0, gw1, 0% )dP(g), a8
g>0

G>0

a compound normal distribution. On the right side of (78) (which is proved
in the same way as (53) of Theorem 3.2), we have

1 —1
g=e{<f Wsz’) e,
0

where e{ = (1,0, ...,0) and W, = BM(1,). This proves the stated result for
A=0.
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When A # 0 and w,; = 0, the limit distribution is a convolution of (78)
1

1 —
and < f BZBZ') A. In fact, conditional on F,, we have
0

1 -1 1
<f BzBZ’) <[ B,dB, + )\)
0 0 F,
1 -1 1 -1
= N(([ BzBé) )\,(1.)11 <f BszI) ),
0 0

and integrating over G > 0, we find the unconditional distribution

1 -1/ p1
(f Bsz') <f B,dB, + )\) N(G™'\ w;G™HdP(G). (79)
0 0 G>0

Relation (79) does not belong to the compound normal family. It is a mean
and covariance matrix mixture of normals, and as such it belongs to a more
general family that we describe as limiting mixed Gaussian in the next
section.

In the general case where w,; # 0 and A # 0, we may write (following (51)
above)

B, = 0% Q%'B, + I, Wy,

where W, = BM(1), independent of B,. Then (75) is distributionally equiv-
alent to

1 -1 pl 1 -1
<f Bsz’) ‘/‘ BdeZIQ2_21w21 + (] Bsz’) A
0 0 0
1 -1 pl
e[ m] [ g,
0 0

Conditional on F,, this is
N(¥Q%'wy + G\ w1 2.G™Y),

where

1 -1 1
¥ = <f B2B2’) <[ Bdez’),
0 0

1
G= f B;B;.
0
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Upon integration with respect to the joint probability measure P(¥,G), we
get

(foleBz’)_l (j:Bdel +\>\)

= fN(\IvQ;;wzl + G\, w1 .G 1)dP(¥,G), 80)

where the integral is over G > 0 and ¥ € R™,

We observe that ¥ is a matrix version of the classic unit root distribution
([24, Eq. (10)]), so that (80) is to be distinguished from (79) in that it involves
both mixed Gaussian and unit root elements. When w,; # 0, the latter are
elimindted only by explicitly incorporating intg the estimation the informa-
tion on the presence of unit roots in (74). This can be achieved in various
ways; for example, by the use of maximum likelihood methods on (73) and
(74) jointly. This is an approach that is explored in detail in subsequent work
[27]. We shall have occasion to refer to it again in Section 4.3(iv) below.

4. LIMITING MIXED GAUSSIAN (LMG) AND LIMITING
GAUSSIAN FUNCTIONAL (LGF) FAMILIES

4.1 The LMG Family

The limit distributions obtained in earlier sections of this paper have a simple
general form involving matrix ratios of random elements. In Section 2, the
limit distributions involved functions of finite-dimensional Gaussian random
elements, while in Section 3, they involved functionals of Gaussian random
processes. The form of the results suggests that the criterion function under-
lying estimation may in each case admit a related linear-quadratic asymptotic
approximation that involves the same random elements.

To fix ideas, let A (k) denote a sample objective criterion used in the es-
timation of a parameter vector # € R” and suitably centered and scaled so
that its argument 4 measures scaled deviations from some fixed parameter
value 8,, say. The examples given below will make this formulation more
transparent. Optimization of Az leads to an optimization estimator § and
the associated deviation is /iy = 871 (8 — 6,) for some sequence of (diagonal
matrix) scale factors 8. When 8 is a consistent estimator of §,, we have
| 87] — O, but for estimators whose elements converge with probability zero
we can set 67 = I, for all T.

Following a suggestion of a referee, we shall call {Ar(#):h € R"} a limit-
ing mixed Gaussian (LMG) family if (C4) and (C5) hold as 7 — oo:

€4 Ar(h) — [h'(s;/zzr N -3 h'VTh] >0,
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where A is a constant vector and
(CS) (ZTs ST) VT) = (Z, S: V)y

with Z = N(0,1,), Z independent of (S,V)and $>0, V>0 a.s.
In view of (C5), we have

Ar(h) = A(h) = h'(SV2Z + \) — %h’Vh. 31)

Since

~

hy = argmax Ar(h),
we obtain

hr = argmax A(h) = VI(SV2Z + \),

= f AVLVTISV-hdP (S, V), 82)
5>0V>0

where P(S, V) is the joint probability measure of (S, V). With one excep-
tion, which we shall discuss later, the LMG family and the limit distribution
(82) include all of the asymptotic results obtained in Sections 2 and 3. Note
that (82) is, in general, both a mean and a covariance matrix mixture of nor-
mals. But when A = 0, it reduces to a simple covariance matrix mixture.

Quadratic approximations, such as that implied by (C4), are in no way
new. They appear in a general form in LeCam [11; 12, p. 210] in the con-
text of log-likelihood ratio criteria and in the work of Jeganathan [8], Davies
[5], and Basawa and Scott [1] on locally asymptotically mixed normal
(LAMN) families, again in the context of likelihood objective functions. The
LAMN theory, in particular, involves a linear-quadratic approximation con-
dition that is quite closely related to (C4). It will be helpful to our discussion
if we give the conditions of the LAMN theory here. We shall use the treat-
ment in Jeganathan [8] as the basis of our outline.

Let {Er}7< = (Qr, A7, Py, 150 € O}7., be a sequence of probability
spaces (or experiments) whose probability measures are indexed by § € R".
We denote the log-likelihood ratio by

Ar(¥,0) =In(dPy,7/dPy 1),

where the symbol “dP/dQ” signifies the Radon-Nikodym derivative of the
Q-continuous part of P with respect to Q. Then from Jeganathan [8], {E;}
satisfies LAMN condition at § = §° if, as 7 — oo,

(C6)  Ar(8°+68rh,6°) — [h'Sr(6°)2Z1(6°) — (1/2)h'Sr(8°)h] 20,

under Pyo 7,
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and
€n (Z(6%),57(8%) = (Z,5(6)), under Pyo 7,

where Z7(6°) (n x 1) and S7(6°) (n x n) are Ar-measurable matrices
with S7(8°) > 0 a.s. (P, 1), h € R" is any constant vector, and 67 is a
sequence of matrices for which | 67| - 0 as T — oo. The limit random
matrix S$(°) > 0 a.s., the limit random vector Z = N(0,/,) and Z is inde-
pendent of S.

Now let 6 be the maximum likelihood estimate of §° and set

hr = argmax Ar(0° + 67H,0°). (83)

Then, A7 = 67'(6 — 6,). From (C6) and (C7), we have

1
Ar(0° + 67h,0° = h'S(8°)2Z — > h’'S(0°)h,

= A(h) (say). (84)
Let
h= argmax A(h). (85)
We deduce from (83)-(85) that sz = hor equivalently
871(6 — 0% = S(6%)"12Z = f N(0,S5(6%)~1)dP(S). (86)
S$>0

In this case, therefore, the limit distribution is a covariance matrix mixture
of normals and is a good deal simpler than (82) when \ # 0.

Note that the quadratic approximation in (C4) is the same as that in (C6)
when A = 0 and V= S;. These are important additional elements in the
LAMN theory. First, maximum likelihood takes into account all informa-
tion in the system and for correctly specified likelihoods this ensures that
A\ = 0 (no bias effects). Second, when V= S, we have in the limit

E[exp{h’SmZ - %h’Sh” =1,

and this ensures that the sequences of measures { Py, r} and §{ Py 5,4, 7} are
contiguous for all 4 (see, for example [31, pp. 98-99]). Finally, Jeganathan
[8, Theorem 3] shows that the contiguity of these sequences and the weak
convergence

Sr(6°) = S(6%),  under Pyo,s. 7, t.3)]

are necessary and sufficient conditions for (86). We shall return to this point
later in Section 4.4.
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The class of estimators that we wish to consider is larger than maximum
likelihood. We also wish to allow for situations of misspecification which
will of their very nature induce bias effects. For these reasons, we shall focus
our attention on the LMG family and take as examples some of the estima-

tors considered earlier in the paper.

Example 1 (Unidentified Structural Estimation). To begin let

Ir(B) = (1 — YaB) (Py — P2)(y; — Y»B).

Then the case of the structural equation IV estimator f given in (14) satisfies

a

B = argmin J-(8).
Define
Ar(h) = —(1/2)(Jr(h) — Jr(0)),
and note that
hr = argmax Ap(h) = B.
h
Now
Ar(h) = K'Y (Py — Pz)y1 — (1/2)h'Y3(Py — P,)Ysh,
and we write
Y;(Py — Pz)y, =YD, D{y,
= [(Y3D,D{Y,)"*1(Y3D,D{Y,)""*Y;D,D{y,]
= SII"/ZZT’
Y;(Py — P)Y, = Y;D,D{Y, = S¢.

When (5) holds, we know from Lemma 2.3 that
Z;r=(YiD,D{Y,)"'?Y;D,D{y, = Z = N(0,1,),
ST = Y2’D1D1’ Y2 =S = W/n(kS’I)a

and Z and S are independent. It follows that

Ap(h) = h'S¥2Z, — % h'Sph,

(88)

(89)

and this satisfies (C4) and (C5) with V; = S and \ = 0. Thus, Ar(h)

belongs to the LMG family with 6, = I.
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Example 2 (Partially Identified Structural Estimation). Consider the case
in Section 2 where II, = 0 and II, = 0. Here, § is unidentified and y = =, is
identified in (1). Let

Jr(B,v) = (0 — YaB = Z1v) Py(y) — a3 — Z1y),

and define

Ar(h,m + UNT) = —(1/2) {Jp(hy w1y + IUNT) — J(0, 7)),
Y;Py,

T-Y2Z{Py
Y;PyY, T-V2y5PuZ, | [k

T-2z7/P,Y, T-'ZZ, I

Write Py, = DD’ as before and define

Wir=D'(y,— Z;m) =D'v, = X,

Y;D X,
War = ~1/2 7+ = ’
T7Y*Z{D My,

where
[ X1, X3] = Ng,,m(0,1),
M, = [0,M111/2]-
Also define
Zr = WarWsr) > WarWir,
Sr = WarWir,
and note that
Zr=>Z7Z=N(0,1),

XZXZI XZM{I:I
MIIXZI Mll

= [h',l'][ ](Y1—21T1)

- (1/2)[h’,l’][

ST = S = [
Then
Ar(hymy + UNT) = (B, 1)) S¥2Z, — (1/2)(h',l’)ST(};).

We see that the criterion A7 belongs to the LMG family with V3= Sy, A =
0, and 6, = I as in Example 1. We have

Ar= [R,1'18V?Z — (1/2) [h’,l']S[};J,

= A(h,l) (say).
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Noting that v = 7,, we write

[ﬁr— = [ 8 ] = argmax A
Ir ] VTG - ) r
and

. [

lir = li = argmax A.

Il L

The vector (A’,I") satisfies the system
[ XX XM, ] m _ [XZXI ]
M X; MMyl My X, |
and thus

h= (XZQM',.Xz)_leQM',,Xl,

= N(0,571)dP(S),

550
with

S = X50wm;, Xz = Wylks, D),

corresponding to earlier results in Section 2. Similarly,

I=My, Ox;M{) "M, Ox;X1),

= N, V-1ydP(V),
V>0

where
V= MllQXz’Mil = M, KK'M|,,

where K is uniform on the Stiefel manifold Vieenk, = {K(ke X k, —
n):K’K = [, _,}. Note that we may also write

I= M Mi)™'M X — (M M)~ 'My X34,

1
= (M;Mi) "My, [ X, X5 ] [ﬁ]

Since 4 depends on Owmy, [ X1, X5], which is independent of M, [X;, X3],
we deduce that

[= fN(o.u + h'h)y (M, M})"))dP(h),

= /N(O,(l + RhYMYYdP(h),
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again corresponding to earlier results in Section 2 (specifically, (26) with
R, =1I)).

Example 3 (Spurious Regressions). We take the case of (49) above. Using
the notation of Section 3.1, we have

B= argmin Jr(8),
with
Jr(B) = TL{(y, — B'%)* = T72(y — XB)' (¥ — XB)
in conventional regression notation. Define 8 = 03, w,, and set
Ar(h) = —(1/2){Jr (B + h) — Jr (B)},
=T {h'X’'(y — XB) — (1/2)h' X’ Xh}. (90)
In view of (C3), we have

1
T‘ZX’(y—Xﬁ)nf B,(B, — B,B),
0

1
T2X'X = f B,Bj]
0

and from Lemma 3.1,

1 _ 1 1 p1
f Bz(Bl"Bzﬁ')leElu/ szVlEN(O’wllZf f Bz(r)(r/\S)le(S)>,
0 0 o Jo

1 p1 12
= (/ f Bz(")("/\s)Bz'(S)> N0, w11.21).
o Jo

Moreover, simple calculations show that
1 1
T“‘X’ATX=>]v f By (r)(r A s)B,(s) drds,
0 0

where

Az = [(min(5, /), 1«7,

and

(T*X"Ar X)" VAT 72X (y — XB)) = N(0,w;;.,1),

where the limit distribution is independent of B,. We may therefore write
(90) in the form

Ar(h) = K (T X' Ar X)) UT X Ar X) " VT 72X (y — XB)])
— (1/2)R' (T72X'X)h,
= W'SY2Z, — (1/2)h' Vi h (say). o1
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Here
Zr = (T*X'ArX) VX (T2X'(y — XB)) = Z= N(0,w,, 2 1), 92)
1l
Sr=8= f f By (r)(r A 5)B;(s), 93)
o Jo
1
VT = VE‘/l BZBZ/’ (94)
0

and Z is independent of (S, V). Clearly, Ar(%) belongs to the LMG family
and satisfies conditions (C4) and (C5) with 6, = I. A

As shown earlier in Theorem 3.2, the limit distribution of 3 is mixed nor-
mal. Indeed, from (91)-(94), we have
Ar(h) = A(h) = h'SV?Z — (1/2)h' Vh, 95)

and setting # = argmax A (h), we obtain

B—B=hr=h=V"152Z= f N,y 2 V(B)dP(V(By), (96)
V(B3)>0

where

1 -1 A e 1 -1
V(B,) = (f 3232') (f f Bz(")("/\S)Bz(S)'> (f Bsz') .
0 o Jo 0

In place of (95), we may write the weak convergence directly in terms of
functionals of Brownian motion, as in Section 3. Thus,

Ar(h) = '/ (T72X"(y — XB)) — (1/2)h’ (T 2X'X)h,

1 1
= h’f B, (B, — B,B) — (1/2)h’ (f Bsz’>h = A(h). (Cr))
0 0

This representation of A (%) is suggestive. It indicates the possibility of
extending the LMG family of limit distributions in terms of Gaussian func-
tionals. Indeed, the form of (97) may plausibly be interpreted as a continu-
ous stochastic process extension of (81) or (84) where the limits are functions
of finite-dimensional random elements. The need for such extensions will
become more apparent below.

4.2 The LGF Family

Following up this idea of extending the LMG family, we shall say that the
criterion function Ar(h) satisfies the limiting Gaussian functional (LGF)
condition if

(C8) Ar(h) — (W Wy — (1/2)h’'Sph)} ;»0
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for some n-vector Wy and n X n matrix Sy; and

1 1
€9 (Wp,Sp) = ( f MdN + \, f MM’).
0 0

In (C9), the elements of M are square integrable and lie m D[0,1], the space
of all real-valued functions on [0,1] that are right continuous and have finite
left limits; N(r) is a Gaussian random function whose sample paths lie in
C[0,1]; and X\ is a constant vector.

The following special cases will help to clarify the relationship between the
LGF and LMG families. We suppose that A(#) is LGF with limit function

1 1
A(h) = h<f MdN + )\> - % h’(f MM’>h. 98
0 0

§2

() If N(p) = f G (r)dr, where G(r) is a Gaussian process with covari-
0

ance kernel matrix K(r,s) and is independent of M, then LGF reduces to

LMG with
1 1

S=f f M(r)yK(r,s)M(s)'drds,
[} ]

and

1
v= [ mm.
0

In this way LMG may be regarded as a special case of LGF.
(ii) If M and N are independent with N = BM(I), then LGF reduces to
LMG with

1
S = V=f MM’
0

When \ = 0, this corresponds also with (84).
(ili)) LGF need not always reduce to LMG. For example, if N=B,, M =
B,, and B = (B{,Bs)’ = BM(Q) with Q > 0, then

1 1
A(h) =h(f B,dB, +>\>% h(f Bsz’)h,
0 ]
1 [ 1 1
= [h(f B,dWl,, +>\> -3 h<f Bsz’” +h’f B>dB3055 ).
0 0 0

99
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The term in square parentheses belongs to the LMG family as in (ii) above.
Thus, when w,; =0, Ar(#) is LMG. But when w,; # 0, the linear term in
(99) cannot be included in the LMG family. This is precisely what happens
in the general case of a linear least-squares cointegrating regression as in (75)
above. To see this, note that when B, = BM(1), we have

1 1 1
f B,dB, = 5 (32(1)2 -)= E (X12 -1,
0

whose distribution is skewed, whereas the distribution of S2Z in the linear
term of (81) is always symmetric. We shall consider other examples where
this arises below.

4.3 Applications of the LGF Family

We shall now look at some specific applications of the LGF family. The first
of these also fall within the LMG family but are worth considering because
their treatment is instructive and helps to demonstrate the flexibility of LGF.

(i) Partially spurious regressions: In the notation of Section 3.2, define

B2 = 03 wy.

Let

Jr(B1:82) = T2y — x18) — X28,)" (¥ — X181 — X182),
and

Ar(h D) = = (1/2) (e (B + T7V20, B, + 1) — Jr(B41,82)).
Then

1
fo r(B; — B;B,)
Ar(h, )= [h1] ]

f B, (B, — B3B)
0

1 1
[r [
0 0
1 1 ’
/ B,r f B,B3 l
0 0

- (1/2)[h, 1]

= A(h,l).

We now set A =0,
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’
My = [Bz(") }’

and

1
N(r) =f (B (s) — Bi(s)B;)ds.
0

This example falls within the LGF framework of (C8) and (C9). Note that
by optimizing A(4), we obtain directly

[ﬁfﬁl - 61)] = [}f] = argmax A(h,[)
B2 — B2

!
1 —1 1
(f ?2) fﬁ']}l
0 0
1 —1 1
( f nn’) f n(By — Bifs)
0 0

consistent with the earlier results (66) and (68).
(i) Structural estimation: We shall take the case of the IV estimator 3
given in (14). As seen in (88), we have

Ar(h) = h'Y{(Py — Pz)y1 — (1/2)h'Y;(Py — Pz)h,

and in place of (89), we may write this as

1
AT(h) = h’STZT - 5 h’STS;'h, (100)

= h'SZ — % h’'SS’h = A(h),

where

S7=YiD; = 8= Ny, (0,1),

Zr=Diy, = Z=N(0,1,).

Now partition

S =1[8,82,...,8], Z' =1[2,,Z,,...,Z,],

and then

k3 ks [i/ks 1
SZ=352=3 MdN = f MaN, 101
J=1 0

1 v (—1)/ks
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where we define
N(r) = W(r) = BM(1),
M(r) = k1?8, 0=<r< 1/ky,
= ki/28,, 1/ks < r < 2/k;,

=k}2S,, (ks— 1)/ks<r<|1.
Note that

J/k3
f MdN = k3*S, (W (j/ks) — W((j — 1)/k3)},
(

J—1)/k3
=S5,Z,

where Z, = N(0,1) and is independent of S, = N(0, Z,). This justifies (101).
We also have

It follows that

1 1
Alh) = h’(f Ma'N> - (1/72)n’ </ MM’>h,
0 0

which, together with (100), gives us an alternative way of looking at
(A7 (h),A(h)) in terms of the LGF family.
(iii) The Gaussian AR(1): Let { X,} be generated by the AR(1)

X, =0X, + u,, (102)

where u, is i.i.d. N(0,1) and X, = 0. The asymptotic behavior of the coef-
ficient estimator

s s

6= ZX,X,_I/Z XA, (103)
1 1

is well-known to depend on whether the model (102) is stable (|6]| < 1),

explosive (|@| > 1), or has a unit root (§ = 1). Let 6, be the true value of 6
in (102) and define the log-likelihood ratio

Ar(h) =In{pdf(X;0)/pdf(X;0,)}, 6 =60+ orh,

T T
= —(1/2) X (X, — 0X,y)* + (1/2) 25 (X, — 60X, 1),
1 1

T T
= h(BTZX,_lu,) - (1/2)h2<62TZX,2_1). (104)
1 1
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The limiting behavior of A(#4) is also well-known and may be character-
ized as follows for the three distinct cases. We remark that case 1 is classi-
cal. Case 2 is covered by Basawa and Brockwell [2] and has recently been
extended to explosive and partially explosive Gaussian AR(p)’s by Jegana-
than [9]. Case 3 has been recently studied in detail in Phillips [24], Chan and
Wei [4], and Jeganathan [10]. We have

Ar(h) = A(h).

Case 1 (|6,] < 1, 67= T2,
A(R) = hY(60)Z — (1/2)h*Y (6,)?, (105)
with Z = N(0,1), Y(6y) = (1 —63)"2.

Case 2 (|0,] > 1, 67 = (68 — 1)/6]).
A(h) =hYZ — (1/2)h?Y?, (106)
with Z = N(0,1) independent of Y = N(0,1).

Case3 (0,=1, 6 =T7").

1 1
A(h) = h(f BdB) - (1/2)h2<f Bz), ao7
0 0

with B(r) = BM(1) on C[0,1].
Each of these cases comes within the general LGF family defined in (C8)
and (C9). To see this, let

1(r)y =1, O=sr=<l,

be a constant function on C[0,1]. Then we have
M(r) = 1(r)Y(6,), in Case 1,

M(r) = 1(r)Y, in Case 2,

M(r) = B(r) = BM(1), in Case 3,

with

N(r) = B(r)

in all three cases and where B is independent of Y in Case 2. We may then
write

1 1
A(h) = h(f MdN) - (1/2)h2f M?,
0 0

embracing all three cases within the LGF family.
It is apparent that Cases 1 and 2 also fall within the LMG family. How-
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ever, Case 3 is not covered by LMG. This is because the stochastic integral
1

f BdB cannot be written in the form of a simple scale mixture of nor-
0

mals, as required for LMG. Thus, in this unit root case there is a real need
for a family that is more general than LMG.

It may be remarked at this point that, since the objective criterion A(#)
is a log-likelihood ratio and 6 is the maximum likelihood estimate (MLE),
Ar(h) also falls within the LAMN family in Cases 1 and 2. These cases
have been studied earlier [2,9]. However, to the best of our knowledge, no
theory has until now been put forward which accommodates the unit root
Case 3 as well as Cases 1 and 2. We shall examine why the unit root case is
not covered by the LAMN theory more fully in Section 4.4 below.

(iv) Cointegrating regressions: In the notation of Section 3.3, \ is given
directly by (74), M(r) = B»(r), and N(r) = B;(r). We write

Jr(B) = (y — XB) (y — XB).
Then

Ar(h) = =(1/2){Jr(B + T7'h) — Jr(B)},

1 1
= h’(f B,dB, + )\) - (1/’“\h’(f Bsz’)h, (108)
0 0

so that Ar(h) falls directly within the framework of (C8) and (C9).

We emphasize that this result applies to the least-squares estimator 3 de-
rived by minimizing the objective function J-(8). There are many other
ways of estimating 8 in the cointegrated system (73) and (74). We remark
that the full maximum likelihood estimate (MLE) of 8 requires complete es-
timation of the generating mechanism of the innovations ;. Such estima-
tion is difficult if, as is typically the case, ; is modeled by a vector ARMA
process for which the orders of the polynomial lags must also be estimated.
However, the MLE (B, let us say) has powerful advantages over § for
inferential purposes. Complete estimation removes the bias term \ in (108)
and purges B, of its dependence on B, (arising directly from the endogene-
ity of the regressor x; in (73)). These effects bring the log-likelihood ratio
criterion for 8, Ar(h) (let us say), within the LAMN family. The reader is
referred to a subsequent paper by the author [27] for a detailed study of this
case. We should also remark that these apparently rather favorable results
for the MLE f arise only when (73) and (74) are estimated as specified with
the unit roots of (74) explicitly incorporated. When any of these unit roots
are estimated, as they can be in unrestricted vector AR or ARMA specifica-
tions for z,, the limit theory is analogous to the AR(1) Case 3 and the LMG
(and here LAMN) families no longer apply. We shall now look into the rea-
son for this breakdown in the presence of unit roots.
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4.4 Why the LGF Family Is Needed When
There Are Estimated Unit Roots

Our analysis is facilitated by the very detailed study of the LAMN condition
in the recent work of Jeganathan [8-10]. We shall focus our attention on the
Gaussian AR(1) example considered above, since this includes cases where
the LAMN condition holds (namely, |6,] < 1 and |§,| > 1) and where it
does not (6 = 1).

In [8, Theorem 3], Jeganathan gives necessary and sufficient conditions
for the pair (Wr, Sy) that appear in (C8) to satisfy

(WT’ST) = (S]/ZZ,S)a (109)

where Z = N(0,7,) and is independent of S > 0 (a.s.). In the context of the
LAMN conditions (C6) and (C7), we have the parametric dependencies

(Wr,87,8) = (Wr(00),Sr(60),S(6p))

and an underlying sequence of experiments { Er}7-, = {((Q4, Ar, Py.r):0 €
O}7,. We write 6 = 0y + d,-h, where 67 is a sequence of matrices for which
|67] — 0, and we construct a sequence of associated probability measures
{ Py,+5,4, 717=1 adjacent to the sequence {P,,}7-,. Now Jeganathan [8, The-
orem 3] proves that (109) applies if and only if the two following condi-
tions hold:

(C10) {Po,,7},{ Poyvs,n 1} are contiguous for all # € R”,
(Cll) ST(OO) = S(e()) under P00+67~/t,T for all # € R".
Using this result, we find the following.

Proposition 4.1. If {X,} is generated by the AR(1) given in (102) with
6o =1 and if 6 = 0, + T'h defines an adjacent parameter sequence with
associated probability measures { Py, 7-14, v}, then (C11) fails. In particular,

T 1
Sr=T7Y X% = f J# = 8(60,h) (say), (110)
1 0
= S(0), for h # 0,
where
Ju(r) = f eU"9%dB(s)
0

is a diffusion process on Cl0,1] and B = BM(1).

Remarks. (i) Proposition 4.1 clarifies why the LAMN condition breaks
down for the unit root case 6, = 1. In effect, there is more variability in the
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“random information” component S of Ar(#) than the LAMN framework
permits. This is shown directly in (110), which specifies the way in which the
limiting random information depends on /4 or the extent of the deviation
from 6, = 1.

(i) The phenomenon noted in the previous remark may be described as
variable random information. Changes in the sequence of probability mea-
sures { Py r-14r} brought about by changes in 4 induce changes in the
limiting random information measure S(6,, /). In effect, the quadratic
approximation to A(h) itself varies for different contiguous sequences
{P90+T—‘h,r}-

(iii) Recently, Jeganathan [10] has studied the AR(p) model with roots on
or near the unit circle under quite a general condition on the density of the
errors. His results (especially [10, Theorem 14]) are more general than (110)
and are used to establish the contiguity condition (C10) and to construct an
asymptotic approximation to the likelihood ratio. These results also fall
within the LGF family rather than LAMN and for the same reason, namely,
the failure of (C11).

5. CONCLUSION

This paper has covered a good deal of ground. Our primary aim has been
to open up, for theoretical study and asymptotic analysis, models that are
partially identified. The most obvious candidate for investigation in this area
is structural estimation under rank condition failure, the subject of our study
in Section 2. Spurious regressions present another major application, as we
found in Section 3. Other examples include errors in variables systems under
identification (or instrument) failure and ARMA model estimation in the
presence of degenerate common factors. Similar problems can also arise in
microeconometric models with endogenous regressors, such as models with
self-selectivity. In such models, where two-step procedures and instrumen-
tal variables are routinely used, partial identification occurs because of
instrument failures. That is, the instruments fail to satisfy what might be
called the relevance condition. This condition requires that the asymptotic
correlation matrix between the instruments and the regressors be of full
rank. If the instruments fail, then the model is only partly identified and
conventional asymptotics break down. Much of the ongoing literature on
econometric estimation places great stress on the orthogonality condition for
instrument validity. The relevance condition is equally important but is sel-
dom discussed. In microeconometric settings, instrument failures through the
breakdown of the relevance condition deserve particular attention because
of the low explanatory power of so many regressions with micro data sets.
Very low R*’s in the companion regressions which form the instruments in
such cases point to the possibility of instrument failure and the associated
breakdown of conventional asymptotics.
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Our second aim has been to develop the extensions to conventional asymp-
totic theory which are needed to embrace partially identified systems. In
most of our applications, the limit distributions come within the class of
compound normal distributions and are simply represented as covariance
matrix or scalar mixtures of normals. We have put forward two limit the-
ories for optimization estimators: one based on the LMG conditions (C4)
and (CS) and the other based on the LGF conditions (C8) and (C9). The
LMG and LGF conditions are very similar but they differ in that, in the
limit, wne latter involves functionals of Banach-valued random elements
whereas the former involves functions of finite-dimensional random vectors.
The LGF theory seems to have a particularly wide range of interesting appli-
cations including models in which there are estimated unit roots.
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APPENDIX

Proof of Theorem 2.1. We first write Py — P, = D, Dy, where D, is a T X k;

matrix of orthonormal vectors spanning R(H) N R(Z,)*; for example,

D,

=0z, Z3(Z3’QZIZ3)'V2.

Then it is simple to deduce that

(Y3;D,D{Y,)""2Y;D\Di{y,|y, = NQ©,1I,),

and this is also the unconditional distribution since it is independent of Y,. Fur-
thermore,

S=

YD\ D} Y, = W, (ks, 1),
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so that
B = (W, (ks,D]"V2N(0,1),

= N(0,5 Y pdf(S)dS,
5>0

as required for (16). We now note that the conditional characteristic function of 3
given S is

1
cf(t) = exp{—i t’S“‘t} ,

1 —1
=exp| —=t'th’'S™ hy,
2
where h = t/(2'1)"2. Set z = h’S™ ' h and note that
1/z= (W'S~'h)! = Wy (ks — n + 1,1) = XZ_ns1
so that

B = f N(0,2zI) pdf(z)dz,
z>0

as required for (17). Equations (18) and (19) now follow directly from standard mul-
tivariate theory (e.g., [14, p. 33D.
To prove (b), we note from (15) that

1

1 = Ry = Rim + R;(Z{Zl)“IZ{V(_B).
Since Z{V and § = r are independent, we have
41l = N(Rim, (1 + r'O)R{(Z{Z,)"'Ry),
so that
i Ef N(v1,(1 + r'ryGy) pdf(r),

R7
as required for (21). We now transform r — (m,h) using the decomposition r =
hm'2 with m = r'r and h = r/(r'r)'’2. The measure transforms as
dr = (172ym™* 'dm(dh),

where (dh) is the invariant measure on the sphere S, = {A:h'h = 1}. We obtain

. (c/z)mn/Z 1
= [ Nant+me) G mf (dh),
where the constant c is given in (20) and
ns2 n
(dh) =27 /I‘(—).
Sn 2

This leads immediately to (22).
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To prove (c), we note that

1
Y2 = R3¥ = Rymy — R5ILr + Ré(Z{Z,)*’Z{V(_r) s

so that
4y = f N(Ryw, = R5ILy1, (1 + 'r)Gy) pdf(rdr,
R’l

giving (24) as stated. Part (d) follows directly from (b) and (c). |

Proof of Corollary 2.2. Part (a) follows from (17) since the distribution of r is inde-
pendent of 7. Part (b) follows from (22) by noting that

T—1 Gl g C—;l
under (C2). Parts (c) and (d) then follow from (a) and (b). |

Proof of Lemma 2.3, Take the scalar case with
T
d'v= 2 dgv, dd=1.
J=1

Let X7, = dryv,, and define the system of o-fields Fp, = o(X7y,...,Xp), i =
]

1,...,T. Then (S, Fr) with Sg; = ZXTJ is a martingale array. Its conditional
J=1
variance 1§
T T
VT=ZE(X727|FTJ—|)=Zd%J=1, (A1)
J=1 1

and for ¢ > 0, we have

T
E{XF (| Xg;| > €)| Fpy]
1

7=

T €
- Zd%JE{vfI(lvjl > —) |FT,_,],
; ldg)

T €
- d2>E{ 21( > _—-—>},
<‘T" v vl o] max |dr,|
J

=E{v,21(|v,| > ——e——)],
max |dr;|
J

-0 (A2)

A

as T — oo since

max |dp| -0, as T— oo,
J
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(Note that under (C2), the elements of D are O(T ~*/?).) In view of (Al), Vy— 1
a.s., and in view of (A2), the conditional Lindeberg condition is satisfied. Thus,
d'v= N(0,1) by the martingale central hmit theorem (e.g., [7, p. 58]). The matrix
case is handled in a similar way by treating an arbitrary linear combination of the
elements of D’V. The stated result then follows by the Cramér-Wold device. =

. Proof of Theorem 2.4. From the proof of Theorem 2.1, it 1s clear that we can write
B8 = f(D'V), where fis a continuous function of the elements of D’ V. It follows from
Lemma 2.3 and the continuous mapping theorem thart

B=fINO,I) =r,
as given by (25). In the case of (b), we have
VT (4, — v1) = R{(T'Z{Z,)""2A(D'V),
= RIM"2f(N(0, 1)

by the continuous mapping theorem, again for a suitably defined continuous func-
tion f( ). This yields (26) directly and the other results follow in an analogous fash-
ion. [ ]

Proof of Lemma 2.5.
62 =T (3, — 128)Qz (y; — 128,

o« 1
- (1,—6’)(T"Y’Qz,Y)(_B),
= (1+1r7),

as required. |

Proof of Lemma 2.6. Transform

“L=ZII,+V,

on the right by L giving

[Ya1, Y22l = Z[IL;,,10,5) + [Va, V2], M0, =0, (A3)
where

oL = Y5[Ly,L,] = [Y3,, Y],
VoL = V5[ Ly, Ly] = [V, Vaal.
Then

o Vi
LY;PyY,L=| " |PylVa, Yal,
2

__[72'1‘721 I72'2)—’22} Ad)
YV Yl
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where V5, = V5 = D'V;, Yoo = D'Ys,, and D is given in (33). Write the partitioned
inverse of (Ad) as

_ Gu Gy

L' (YiPaYy) ’L=[ , (A5)

. Gy Gn
with
Gy = (Vle)"szn)‘l,
Gy = — (Y5, V) V3,1, Gyy,
Gy = (Y5 Vo) ™' + (Y5, V00) 7 VW31 Gy V51 Yon (Y5a Vp) L
Now
T—I/Z 722 - T»—l/Zl)rZII—I12 + Op(T—l/Z) ?E
T 72'2722;’ M1, >0,
QVZZ?I — F(F'F)'F' = Qp,
Vay = D'Vyy = D'VaLy = £Ly = Ny, iy (0.1),
where
F' =10,F;) = [0,11}; M{{”],

E = Nk*,n(oyl),
and
(F'F)™' = (M)~
We deduce from these results and (AS5) that
L& L)™' o
L (YiPyYs) 'L = [( 18°QpkLy) ]’
0 0
and thus
(Y3PyYy) ™' = Ly (Li§'QpELy) 'Ly,
as required for part (a).
To prove part (b), we observe that when n = k,

Yz = Y22 = Zlnl + V2v
and II;, = II}, is k; X k; and nonsingular. We deduce directly that
T! YﬁpﬂYz‘;’ M, 10,
as stated. a

Proof of Lemma 2.7. Recall that
Q = Py — PyY,(Y3PyY,) ' Y3 Py,
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and Py = DD, so that
Z{QZ, = Z|D[I — D'Y,(Y3PyY,) ' Y;D1D'Z,.
Now, when » > k, we have

D' Y, (Y{PyY,) ' YiD = D'Y,LL (Y{PyY,)'LL'Y{D,

V. V. ’ ’ —1 YZ’X
(Y21, Yool (Y3 Py Yo) T L 7 |,
Y3,
)721011)72'1 - P?22}721 GHYZ,! - 721011)72'11)?22
+ P)722 + Pf/;zzlGll?Z,lP}Tzzs
= 0%,,¥1 G Y3109, + Py,

and thus
Z{QZ, = Z{D[Qy,, — 07, V21 (Y3, 07,,Y2,) "' 13,0y, 1 D'Z,.
But
T VY =T"2D'Z 1+ T V2D'Vy,
= Fr + T712¥,, (say).
Simple manipulations now show that
Py, = Pr, — T™V2Fp(FrFr) ™' Vi, Pr,
= TV 2Pp Vo (FpFp) ™ \Fr + T2V (FrFr) ™' Fr
+ T7V2F(FpFr) ™ Vi + O,(T ),
and so
FrQyy, = T7V2V5Pp, — T7V2V5 4+ O,(T7),
= =TV Qp + Op(T7).
It follows that
FiQvyFr = T\ V3,05, Vay + O, (T7¥?).
Now T-12D’'Z, = FrIIT and so, from (A6)-(A8), we deduce that
Z{0Z, = T{7 ' F4[ Oy — Oy Y21 (Y3100, ¥21) ' 751 01, 1 Fr 11 ),
=T (T V0V — T 0 Q0r Yo (Y107, ¥21) ' 13,0, Vs
+ 0,(T*) 5,

231

(A6)

(A7)

(A8)

=7 V5[Qp — Or Vo1 (Y5107, 1) 7 V51 O, 1 Voo I + O(T712),

=5 V5 [Qr — QrVa1 (V51 QrVa1) ™' V51 QFl P + 0,(1).
But
[P, Va2l = D'VAIL,, L] = £[Ly, L] = Ni, ,(0,1),
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and, writing

[51,52] = g[LhLz],

we deduce that

Z{QZ, = i3 £51QF — Or 1 (E10rE) T 1 OF 6111,
=15 We (ko — n, DI

The last line is obtained by noting that conditional on £, the matrix quadratic form
in £, is Wishart with degrees of freedom equal to

tr{Qr — Qré1 (E1QrE) 'EIQF) = ke — ki — (n — k) = ki — 1.
When n = k|, we have D Y, = D' Yy, = Y5, and
D'Yo(Y3PyY,) ' Y3D = Py,,. (A9)
In this case, therefore, we have
Z{Q7, = T{Ili7 ' F;Qy,, Frlli3'},
and from (A8) and (A9), we obtain
Z{QZ, = {5 ' V5 Qp, Voo I + 0,(1),
= i3 '8 Qp ¢,
= II{7 ' Wy, (ke — ki, DI,

so that the stated result holds for ali n = k. ]

Proof of Theorem 2.8. Note that by Lemmas 2.3, 2.5, and Theorem 2.4,

AB —a=Ar—a,

%=1+ rr,

Yi(Py — Pz)Y,=Y;D,D{Y, = W,(k;,I),

and joint weak convergence also applies. We also have
A[Y3(Py — P,)Y,]7' A = AW, (ks, D] A,

so that

(ALY;(Py — P7)Y,17' A"} = W(A) = Wp, (k3 — 1+ Pay (AA) ™)

by standard theory of the Wishart distribution (for example, [14, Theorem 3.2.11]).
Part (a) follows directly.
To prove (b), we note that by Corollary 2.2 (using R, = I, ¥ = 4,) and Lemma 2.7

7= @~ M,

Z{QZ = Wy, (ke — n, (I, 0155) 7).
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Moreover,

(B(Z{QZ)"'B'1™" = [B{W,, (ke — n,(I1,,1T;;) ') ~1B' ],
= W, (k3 — n + p,, (BN, II;;B")7"),

W (B),

since I1;, 111, = I, II{. We deduce that

W, = (By — b) [B(Z{QZ,)"'B']""(Bf — b) /4,
= (Br— by W(B)(Br — b)/(1 + r'r),

where

B = -BII,,

b= b~ Bm,,

as required for part (b). ]

Proof of Lemma 2.9. Observe that
T-12{QZ, = (T~2Z{D){I - D'Y,(Y;DD'Y,)" ' Y;D}(T~V*D’Z,), (A10)
T-2Z{D = [0,(T~'Z{Z})'?] - [0,M[{?], (A11)
and since II; = 0, we have
D'Y, = D'V, =V, (say),
and
Vs = Ni, 2 (0,1).
Now
0, = (V3R = UV, ),

1.e., 0, is uniformly distributed on the Stiefel manifold ¥V, ,, = {0, (k. X 1) :©;0, =
I,}. Construct the orthogonal matrix

0 =[0,0,] € O(k.),

and partition as

k,—n n
0 0, 1k
0= [ 11 21 ] 3 ,
0, 01k
so that

0,06{ =1—-6,6;. (A12)
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From (A10)-(A12), we deduce that
T-'Z{QZ, = (T"'?Z{D)©,6,(T""*D'Z,),
= M|{?0,,05 M|{?,
as required. |
Proof of Theorem 2.10. Since II; = 0, we have R; = I and from Corollary 2.2

NT (4 —y)=3= N(0,(1 + m)M7") pdf (m)dm,

m>0
where pdf(m) is given in (23). Under the null A, : By = b, we deduce that
NT(By — b) = NTB(§ — v) = BS.

The stated result now follows from Lemmas 2.5, 2.9, and the continuous map-
ping theorem, noting that joint weak convergence of the component variates (3,
VT (4 — v),0,,) also applies. When H, is false, VT (B4 — b) diverges and so too
does the statistic W,. |

Proof of Lemma 3.1. Consider first the finite-dimensional distributions. For fixed
r, we have

B ("

B =
" [Bz(r)

} = N(0,r9).
By the conventional theory for conditional distributions of the multivariate normal,
we obtain
B, ("), = N(w395' By (1), oy 1),
= w5 Bo(r) + 1 Wi (r),
where
Wy 2 = o — w5 05wy =1
is the conditional variance of B, (r) given B,(r) and
Wi(r) = BM(1),

standard Brownian motion independent of B,(r). Similarly, for 0 < r<s=<1 we
have

B(r) = N(0,rQ), B(s) —B(r)=NQO,(r — s)Q)
and the distributions are independent. Thus,
r 0
(By(r),Bi(s) — By(r)lp, = N(wéxﬂz_zl(Bz(f),Bz(S) — By (r)),wn 2[0 . r]) ,
= w} 93, (B;(r), By(5) — By(r)
+ 1 (W (r), Wi (s) — Wi (r)).
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Higher-dimensional distributions follow in the same way. It follows that the finite-
dimensional distributions of B,{F; are equivalent to those of
w3 Q%' B, + 1, W,

given any realization of B, 1n F,. Since the finite-dimensional distributions are a
determining class on C[0,1], the space of continuous functions on the (0,1] interval
(see [3, p. 35]), we deduce that

Bi|p = w30 By + I W,
as required. |

Proof of Theorem 3.2, From (50), we have

b ([ o) ([ )

and by Lemma 3.1,

1 1 1
fBzBllpzz(f Bsz')ﬂz";wz,+lufo B,
0 0

It follows that

! -1 p1 1 -1/ m
(f Bszl) f ByB|p, = 053 w0y + Iy (f Bszl) (f BPVl>' (A13)
0 0 0 0

However, B, is independent of W, so that

( [ 'BZBZ')_‘ / Wi, = NO,V(By), (A14)
where

V(B,) = (1;le32> (f f Bz(r)(rAs)Bz(s)> (f BZBZ> 1,

and

r A s =min(r,s) = E(W,;(r)W;(s))

is the covariance kernel of the Brownian motion #;. Relation (52) follows directly
from (A13) and (A14) by integrating the conditional distribution with respect to the
probability measure of V(B,) induced by B,.

To prove (53), we note first that the conditional characteristic function correspond-
ing to (Al4) is

1
fis|FR) = exp{ -3 S’V(Bz)sx . (A15)

Since B, = BM(2,,), we may write

B, = 9%2Wz
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where W, = BM(1,), independent of W;. Now
s'V(By)s = (s'Q33's) (5 V(B,)S), (A16)
where
§=s/(5'U7's)"2,
and
§'V(B,)§ = 5052V (W) Q5325

= B’ V(W,)A, (A17)
with
h = 05725 = 055/ (s'Q3's) 2.
The vector A lies on the unit sphere in R”. We construct an orthogonal matrix
H=[hH)] €0(n),
and noting that
W, = H'W, = W, = BM(,),
we deduce that
WV (Wy)h = h'HV(H' W,)H'h,

= e/ V(W,)e,. (A18)

It follows from (A16)-(A18) that the conditional characteristic function may equiva-
lently be written as

i
cf(s|F3) = exp{ 3 s’Q{zlsv} , (A19)

where F; = o{W,(r):0 <= r <1}, and
v=eiV(W)e,

1 —1 i 1 1
=e;{(f WZWZ') (f f Wr)(ms)%(s))(f WZWZ')}el.
0 0 0 0

The stated result (53) is obtained directly by integrating the conditional density that
corresponds to (A19) with respect to the probability measure of v induced by W,.
n
Proof of Theorem 3.3. Least-squares regression on (63) yields
By = (xiQax1) ™ (X{ Q2 ¥), (A20)
B2 = (X530, X,) (X350, ), (A21)
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in conventional notation for partitioned regressions. Now
T3x{Qoxy = T7x{x, — (T™32X{X(T2X3X,) " (T2 X3xy), (A22)
1
- f 3 (A23)
0

where

1 1 —1
$(r) = ’—f ’Ei(f Bsz) B,(r),
0 0

and B = BM(H;Q,, H,) = BM(9,,). We may readily verify (A23) by observing the
joint convergence

1
T 3x{x, f r?
0

1
T X, | = f B3
0

-

1
TXiX, f B.B;
0

and by applying the continuous mapping theorem. Relation (A23) then follows
directly from the construction of the process {(r). In a similar way, we obtain

T=2x{Quu = T™x{u — (T3 X (T2X5X) ™ (T2 X4u),

1
=f {Bly
0

where B, is the first component of the n-dimensional Brownian motion:

B(r) = [1_3.1(')] _ [1 —B'] [31(7)] = BM(D),

- B,(r) 0 Hy1LBy(r)
where
Q= [911 Qél]("x")’
wy O
and

@i = wip — 287wy + 800,

w1 = Hap(wy — ©228),

&y = Hy Oy Hj.

Relation (66) now follows directly. To prove (67), we note from Lemma 3.1 that

Bilp, = w3 0%'B, + 1y W, (A29)
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where W, = BM (1), F, is the o-field generated by {B,(r):0 <r =<1} and ], =
w5 = (w1, — Wi %55 ws)/2. Note also that { is orthogonal to the components of
B, in L,[0,1]. It follows that

1 i
fﬁ'.Bl,EzElnf Wi,
0 0
and

([ =) ([ =) .=l ([[) [ om,

= N@O,@11 201), (A25)
where

b = (fol §2>’1 (fol fol §(r)(rAS)§(S)> (fol §2>_'.

Integrating (A25) with respect to the probability measure P(v;) induced by B,, we
obtain (67) as required.
To prove (68), we work from (A21) in a similar fashion, finding

T72X;0X, = T2X3X, — (T2 X3 (T 2 x{x,) (T >2x1 X,),

1 1 1 -1 1
[l ([ ([ ([ )
0 0 0 (1)
1
=f ',
0
T2X30u = (T2 X5u) — (T2 X45x) (T3 x{x) " "(T~32x{u),

1
= f n_Bl 3
0
where

1 1 —1
(r) = By(r) — (f _Bzr> (f r2) r.
0

We deduce that

and

Bz = (leQle)Ml(leQl}’),
= (X350, X)) (X2 Qyu),

- ([ (e
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giving (68). Noting that

[ o ([ o) ([ ([ 5) = o

and again using the conditional Brownian motion argument based on (A24), we find

1 -1 1 1 ~1 p1
(f '?’7') (f "IBI) = 05wy + lll(f Tlﬂ') f Wi,
0 ) Fa 0 0

= N(QZ' wn, 011 2V2), (A26)

1 -1 1 1 1 —~1
Vo= (f nn’) (f f n(r)(rAS)n(S)’) (f nn’) .
0 0 0 0

Integrating (A26) with respect to the probability measure P(¥3) induced on ¥, > 0
by B,, we deduce the stated result (69).
To prove (70), we write

B,(r) = Q%ZV_VZ,

where W, = BM(I,_;). The conditional characteristic function corresponding to
(A26) is

of (s|Fp) = CXD{it_Oélgz—zlS - % Qu-zS'stl .
Now

s'Vys = (s'QR )Y (' V,5), §=s5/(s'QR's) 2
and

§Va8 = 5052V, (W) 05725 = h' V2 (W),
where

b= 05725 = 052/ (' Q5 )12

lies on the unit sphere in R”~!. Using the same argument as that leading to (A18)
and (A19), we find that the conditional characteristic function has the equivalent rep-
resentation

1
of (s|F2) = exp {ig’ilgz_zls 5 %n zsz'Qz_zlS} ;
where
vy = e{ V2 (Wy)e,.

Note that W,(r) is the n — ! dimensional standard Brownian motion (as distinct
from n-vector Brownian motion in the proof of Theorem 3.2). Integration of the con-
ditional density with respect to the probability measure P(v,) yields the stated re-
sult (70). [ ]
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Proof of Corollary 3.4. From (64) and (65),
B-B=H(B~B)=p: (B~ B) + Hy (B, — Bo),
= H,B, + 0,(T~'%),
= H, N(8%' @21, rw11 295" )dP(1y),
v>0
as required for (71). [ ]
Proof of Proposition 4.1. Note that under Py 715, 7, the model (102) is given by
X, =(1+h/T)X,_, +u,, (A27)

where 6, = 1. In the terminology of Phillips [28,29], where models such as (A27) are
studied in detail, { X,} is a near-integrated process. From Lemma 1 of Phillips [28],
we have

T‘Z;TX,Z_I = j: Jy(r)2dr = 8(6y,h),
where

Ju(r) = j;re"‘s”'dB(s).

as required. Clearly,

S(6,h) # S(6) = j:B(r)zdr, h#0,

and (C9) is violated. [ ]



