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ABSTRACT. This paper develops stanstics for detacnung the presence of a unit rootin time series
data agamnst the alternauve of stanonanty. Unlike most exusung procedures, the new iests allow
for determunisoc trend polynomuals in the mamntained hypothesis. They may be used to discnimunate
berween umit root nonstabonarity and processes which are stanonary around a determimsuc
polynomual tend  The tests allow for both forms of nonswtaoconanty under the null hypothesis.
Moreover, the tests allow for a wide class of weakly dependent and possibly heterogenously dismbuted
errors. We illustrate the use of the new tests by appiying them t0 2 number of models of macroeconomic

behawior.

1. Introduction

The purpose of this paperis to extend some existng stanstical procedures for detecting a umut
root in ume senes data. In the tests of Dickey and Fuller (1979) and Phillips and Perron (1988),
the maintined hypothests is that the time senes is integrated with drift but with no trend.
This paper extends these tests to allow explicitly for a determinustic polynomial time trend
in the mamntined hypothesis. An imporant fearure of the new procedures is their invanance to
the presence of drift and polynomial trend in the gue data generation process. They should
therefore be helpful in discriminating berween the difference staniopary and mend stationary
specification.  Our analysis is motvated in part by recent work by Bhargava (1986) which
emphasizes the importance of developing tests of the unit root hypothesis that explicitly aliow for
trend in the meintained hypothesis. It is also motivated by the view that the linear time trend
hypothesis is inappropriate for modelling the determinisuc component of an economic time
senes. Perron (1987) has recently demonstrated the importance of using a fiexibie specification
for the determunistic component. He shows that the results of Nelson and Plosser (1982),
which provide support for the unit root hypothesis, may be reversed by using unit root tests which
allow for a sguctural break in the deterministic component of a time series.

The issue of trend stationarity versus difference stationarity is critical in the ongoing debate
on the nature of the business cycle. Most macroeconomic time series exhibit nonstationanty
through the presence of a secular growth component. If a macroeconomic variable is trend
stationary, then shor-term shocks (such as those arising from variadons in govemment
policy) have only a temporary impact op the long-run evolution of the series. This behavior 1s
consistent with waditional theones of the business cycle. However, if a macroeconomic
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variable is difference stationary, then short-run shocks affect the level of the variabie
permanently. This is more compatible with real business cycle models of equilibrium output.

Prior to the work of Nelson and Plosser (1982) the prevailing view was that the secular
component of macroeconomic time series was trend stationary and that the long-term trend
had linle to do with the year-to-year variations in economic conditions. This led to the routine
practice of detrending macroeconomic series in order to identify the cyclical component that
was 1o be explained by business cycle theory. However, using the Dickey-Fuller (1979. 1981)
procedures for detecting a unit root in time series models, Nelson and Plosser (1982) found
stong evidence against the trend stationary model. Nelson and Plosser tested the null
hypothesis of a unit root (with drift) for 14 macroeconomic time series and could not reject the
unit root hypothesis in 13 cases. Perron (1986) has recently confirmed the findings of Nelson
and Plosser using the statistical procedures developed in Phillips (1987) and Phillips and
Perron (1988). Unlike the Dickey-Fuller statistics, these procedures allow for quite general
weakly dependent innovation sequences. From the point of view of business cycie theory, the
Nelson and Plosser results are more consistent with the implications of real business cycle
theones since innovations in the stochastic trend apparently account for a significant portion of
the shor- as well as the long-run variation in the time series. The interested reader is referred
to Campbell and Mankiw (1987) for further discussion on the implications of the unit root
hypothesis for modelling macroeconomic behavior.

The appropnate representanon of nonstatonanty in macroeconomic ime series is also a vial
issue from an econometric perspective. Durlauf and Phillips (1987) show that misspecification
of a random walk as a stationary process evolving around a deterministic trend has major
effects on the statistical analysis of the data. For example, it is well known that inappropriate
detrending of a random walk produces spurious penodic behavior at long lags, and this gives
a misleading impression of persistence and high variance inthe business cycle (Nelson and
Kang, 1982, and Chan, Hung and Ord, 1977). In addiuon, the theory of cointegration has
emphasized the need to pre-test ime series for unit roots. A comntegrated processis a linear
combinauon of integrated variables which are stationary. In practical applicatons it is
important 1o determine whether each series (once purged of its deterministic part)
possesses a unit rool.  Pretesting guards against inadvertently mixing processes which are
integrated of different orders (such as /(1) and /(0) processes, where the notation (k) signifies a
process whose kth difference is stationary) since such processes are trivially cointegrated. Finally,
a null hypothesis of no cointegranon may itself be tested by applying unit root procedures to the
residuals of the cointegrating regression (see Phillips and Ouliaris, 1987).

The organization of this paper is as follows. Section 2 develops Wald statistics for the null
hypothesis that a time series has a unit root and possibly trend polynomials of an arbitrary
order. The staristics are developed using the methodology in Phillips (1987). In Section 3 we
show how 10 incorporate a general polynomial time trend in the maintained hypothesis when
the bounds procedure of Phillips and Ouliaris (1988) is applied. The new procedures are then
applied 10 empincal models in the cointegration literature to see whether the original dara stands
up to the null hypothesis of a unit root.

2. Unit Root Tests with Deterministic Trend

Following the methodology in Phillips (1987), we begin by letting {y,}7 be a time series
generated according to:
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21
Y= Eﬁkf"")«-ﬁ'&- BER. ¢))
0

Yo = random with a distribution that is independent of a , the sample size .

Model (1) allows y, to be an integrated process with a p* order deterministic time polynomial
in the null hypothesis. It encompasses most of the unit root models considered previously in the
literarure as special cases. Vror example, Phillips (1987) considers (1) under the assumption that
p =0 while Phillips and Perron (1988) allow p = 1.

In what follows, we assume that {§,]5 is a weakly stationary, zero mean ‘inm‘vation sequence

. ]
with spectral density f,(3). The partial sum process X,(r)=n-12§,,,=n"2 Y ¢, for re [0,1), is

1
required to saisfy an invarance principle for partial sums of weakly dependent innovations.
Specifically, we require

X,.(r)-—D>B(r)asn—>-°. (03]

The symbol 'g' here signifies weak convergence of the associated probability measure, while
B(r) is scalar Browrnuan mounon with long-run variance

@ = m -;-—E(S?.): 2n/(0)= 62+ 2

A -

where o> = E(t}), A= }:_E(g, t,). WeletB(r)=wW(r) so that W(r) is the standard Brownian motion
=2

We refer 1o ©? as the long run variance because
N

A TE = X, (1) 3 B(1) = N(O, o).
1

In what follows we represent B(r) by B and W(r) by W to simplify the presentation of the results.

Invanance pnnciples such as (2) have been used extensively to analyze time series models
with general integrated processes. They are known to apply for a very wide class of random
sequences which are weakly dependent and possibily heterogeneous. In particular, following
Hall and Heyde (1980), it may be shown that the invariance pnncipie applies to all stationary and
inveniible ARMA models. Thus the maintained hypothesis given as (1) encompasses a very
broad class of time series models.

Consider the least squares regression:

?
yi=htt +aya+h. ©)
0

The hypotheses we are interested in testing are:

N a=1,

Ur) a=1,andB,=0.
Let h,(&)=n(&~1) represent the test statistic for (/) based on the estimated parameter for a
derived from least squares estimation of (3). Similarly, let 4,(&) and F,(&§,) denote the ¢ and
Wald statistics for (/) and (/7), respectively. We assume 8, =0 in (3) when the null hypothesis is

true. If a < 1 under the alternanve, however, 8, may not be zero. We therefore maintain a ;_;"'
order polynomial trend both under the null and the altemative. The stagistics are invanant with

respecttofe, k=0,...,p-1



10 SAM OULIARIS, JOON PARK, PETER PHILLIPS

Note that one must include a p* order time polynomial in the fitted regression in order to test
() and (7) satisfactorily. A regression model without this term would not discriminate between
the trend/difference stationary specification since the regressor y,.; in (3) would contain an
unexplained time trend s» which clearly dominates all the other components. In fact, the
asymptotic power of s-type stanstics for the null hypothesis a=1 using (3) without r» would
be zero. (See Perron, 1988 for a formal proof of this statement when p = 1).

The asymptotic distributions of the above statistics may be represented succinctly in
terms of standardized Brownian motion. To facilitate the representation of the distributions, we
define W,(r) to be the stochastic process on [0, 1] such that W,(r) is the projection residual of a
Brownian motion W(r) on the subspace generated by the polynomial functions 1,r,....r* in
L2[0,1]. Here, L*{0, 11] denotes the Hilbert space of square integrable functons on [0, 1] with the

inner product (£, g) = _ffg for 7, geL2[0,1). For explicit representations of W,, k=0,1 , see Park
0

and Phillips (1988) and the review paper of Phillips (1988a). We also define r, to be the
projecuon of r on the space spanned by the polynomuals 1,r,...,77"%.
Theorem 1 represents the asymptotic distribunons of these statistics in terms of the above

notation.

Theorem 1. Assume the nme series {y,) is generated by (1). Then

1 1
@ h@ 3 @ W,dw+0) (@ WE,
1] [}
D 1 1
®) 7@ = (1/0) @ W,dw + 0 (@2 [Wiy2,
[} 0

1 1 1 1
© FP(&B) g-ﬁ%—[(w’fW,dW-o-k)’(w’JWZ)"+(deW)2( Jr;)-‘}.
0 0 0 0

The hmiung distributions of the statstics are nonstandard. They depend on nuisance
parameters through the presence of A and w®. This hinders hypothesis testing, making the
selecton of appropriate critical values for staustical inference extremely difficult. However,
we may define transformanons of the statisucs that eliminate the nuisance parameters
asympiotically, In parncular, we define:

o n2(&’ -&)
K,(a)= n(@-1)- ——m——=,
250

A2 a2
a(® -G )
A

ay O =
S, (@) = —1(a)— and
(00 P 2050
2,02 n3(6 62 .
G (&.B,)= (& /@&)F, +—7;—2——n(&—1)(1-[6/w]’)
W 53

where
53 = residual sum of squares from the regression of y,p0n 1,4,...,¢% , and

&* = any consistent estimator of &? Obtained from the estimated residuals in (3), £
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The asymptotic distributions of these statistics are presented in the following theorem.,

Theorem 2: Assume the time series {y,) is generated by (1). Then
1 1
xr@) 3 ({%M(ofwzr* .
D 1 1
5@ > (IW,M(OIWErm,ma
[}

1 1 1 1
G, 3 [(OIW,mz (Jwiy +({r,M(°Irﬁ)-‘].
[}

These distributions are free of the nuisance parameters A and w®. Monte-Carlo techniques can
be used to sumulate the distributions and thereby provide critical values for the purpose of
hypothesis testing. The asymptouc distributions of the staristics are tabulated in Appendix 2 for
p=2,3,4,5 Monte:Carlo evidence on the perfomance of the statistics for p =2 is presented in
Appendix 3.

In order to make the new procedures fully operational, we require a consistent estimator for
the long-run variance . It may be consistently estimated in a number of ways. Newey and
West (1987) and Phillips (1987) recommend a class of estimators which can be written as

. 13, 2 2
==Y+ =T wilk) T Eh
ny L =i+l

for a suitable weight function w;(k) which depends explicitly on the lag truncation parameter /.
Since ?=2n7(0), the asymptotic variance may also be estimated by obtaining a consistent
estimate of the spectrum at frequency zero. Let

Lev)=na"| Z'},,e“’v, |2
1

represent the penodogram of & evaluated at the frequencies, v, = -gfie [-n, ). Estimates of o’
may be formed by smoothing the periodogram ordinates around frequency zero, namely:

*k
a>’=zw,<j)1[-2-’—"—}. 1l sk,
% n -
where

§W“(j)= 1, W,(j)z20forall j,
-k

+k
and k grows with n such that k/n — 0 and TW2(j) - 0. The lanter condition is required in order
-k

to ensure thatthe estimator is consistent for &?.

Note that there is always a tradeoff between bias and variance in choosing 2 weight function.
A weight function which assigns equal weights to 2 very broad band of frequencies will
produce an estimate of f,(0) which may have a large bias because the estimate depends on values
of the periodogram at frequencies which are distant from zero. On the other hand, 2 weight
funcuon which assigns most of its weight to a narrow frequency band centered at zero will yield
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an estimator of the spectrum with a relatively small bias, but a large variance.

The bias can be controlled by prewhitening the series prior to estimating the spectrum.
Prewmtenmg serves to equalize the periodogram ordinates over a broad band of frequencies,
thereby minimizing the role of the weight function. For example, suppose we fit the following
ARMA(p, g) model to &,:

LW ="¥(L)v,
where

$LY=1-0,L-4;L2~yL? = -+~ =g, L7,

YL)=1-yiL -yL? =yl - -~y LT,
and v, is 2 weakly stationary process with spectrum £, (x,). (All the roots of ¢{L) are assumed to be
outside the unit circle.) Then the spectrum of g, at frequency x, is given by

L4 .
L1-3 e~ 12
1

f{(x‘j) =fv(K])-__—— .
[1-Ty,e |2
i

Thus, forx, =0
l1-36,12
7O = £ 00—
l1-3%, 12
H

where ¢; and , are consistent estimates of ¢, and v, respectively.
The results presented in this paper are based on the Daniell estimator for f,(0). The Daniell
estimator uses equal weights to smooth the periodogram. Thus W(k) = (2k)~! and

&
B = %;xe [l(% ] @
Since the Daniell estimator is best suited to models with ‘fat’ periodogram values around
frequency zero, the prewhitening technique will be used in order to minimize the distoruon
arising from large periodogram ordinates distant from zero.

Finally, a word of caution must be given with regard to the estimation of the long-run variance
o* used to construct the statistics. It is important to use the residuals from the regression (3) and
not to incorporate the hypothesis p=1 when estimating w?. Failing to do so has substandal
effects on the power of tests and may result in the procedure being inconsistent. This problem
has recently been pointed out by Phillips and Oulianis (1987) in a related context of the residual-
based tests for cointegration. To look at the problem more closely, consider the simplest case of

p = 0. The tests are therefore based on the regression,

»= @y, +&. (5)
Under the assumption of integration we may estimate @ using {4y,) or {§]) from (5). This would

not affect the result since G=1+0,(n"') under the null hypothesis. The two estimators.
however, behave rather differently under the alternative hypothesis of no unit root. This occurs
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because {Ay,) has a moving average representation with 2 unit root when (y,) is stationary. If
the estimation is based on {Ay,), then Q 70. Furthermore, if some estimators such as a
smoothed spectrum are used, we have & =O(n") and the test becomes inconsistent (see
Phillips and Ouliaris, 1987). Loosely put, the inconsistency is due to the fact that the behavior
of the correction term mimics that of the leading term too closely when & is negligible. The
proof is essentially the same as the one in Phillips and Ouliaris (1987) and will not be
repeated here. The problem of inconsistency does not arise if the estimation of w? is based
on the regression residual in (5).

3. Testing for Unit Roots with General Deterministic Trends

The statstical procedures developed in the previous section enable us to detect a unit root in
models with a deterministic time polynomial of an arbitary order. However, they cannot
immediately deal with more general rend cycle models of the form:

=p+0(1, 0) +u, ©)

where ¢(1,8) is a deterministic function of time with parameter 6. Although it is in general
possible 10 modify Wald statistics to account for general deterministic trends such as (6), the
crincal values of these statistics depend on the form of ¢(, 8). This is, of course, already clear
from Theorem 1 (a) - (¢) where these limit distributions depend on the projection of W(r) on the
orthogonal complement of the polynomial trend of order p, namely Wy (r).

Equation (6) embodies a broad spectrum of stationary data generation processes and yields a
very general alternanve to the difference stationary specification. It is therefore desirable to
have a method for directly teshng (6) against a unit root specification. We now develop a
nonparametric method for doing this. Our approach is based on the univariare bounds
procedure for no cointegration developed in Phillips and Ouliaris (1988). This procedure
expioits the fact that differencing a stationary series induces a negative unit root in its MA
representation, resulting in a zero spectrum at the zero frequency. The bounds procedure
provides a diagnosuc for assessing whether or not the estimated spectrum at the zero frequency
is sufficiently small to be negligible. It caneasily be modified to deal with models such as (6).

The general approach is best ingoduced by way of example. Letp =0 and

L=8Y =Y =Y -

Under the null hypothesis of a unit root, {&]) is a stationary process having positive asymptotic
variance. If, however, {y,} is stationary under the alternative, then (&) has an MA(1)
representation with a unit root and its spectrum will be zero at the zero frequency Moreover, if
the smoothed spectrum estimator is used to estimate @? =0, the results in Phillips and Ouliaris
(1987) imply that & is O,(n~). This means that we may obtain diagnostic evidence in favor of
the trend stationary specification by showing that the estimated spectrum at the zero frequency is
negligible and thus consistent with the alternative hypothesis of @ =0. This in turn may be
done using the unit-free (scalar) bounds procedure of Phillips and Ouliaris (1988).

To explain this procedure, let p? = (@/G)%, and 7~ = (&/8)?, be any consistent estimator of p2.
Also, we assume ©? is estimated by (4). We are therefore interested in the alternative hypothesis:

wz

H.=p2=?=o.
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According to the univariate bounds test, H, is accepted if the upper limit for the true p? is
‘sufficiently’ small Phillips and Ouliaris (1988) point out that under the mn[ hypothesis that

-~ - I3 3 . “
p?> 0,7 has an asymptotic normal distribution with mean p? and variance p? IW,(j»} Thus
r J

for the Daniell estimator given by {4) we have

EV2E - p2)/p2 4 N, 1) m
with a corresponding confidence interval for p? of:
P/ +(20/61) < ? <77/ (1-(20/£ 1)) ®

where 2z, is the (1-¢) percentage point of the standard normal distribution. Similarily, H, is
rejected if the lower limit is above a preassigned level.

A maintained polynomial trend may be allowed for in a straightforward fashion. That is, when
p 2 1 we simply compute the regression residuals § from:

ol
ay,= Thr+&
0

and mount the bounds test using £. Of course, this approach can be generalized to allow for
any form of deterministic trend in the maintained hypothesis, such as ¢(z, 8) for example. Fora
given ¢ the null hypothesis is specified as:

Y=+ O, 0+ +h
and the test is mounted using the least squares residuals £ from the regression:

Ay, ={i+0(6)+E .

Again, we need to test whether ¢, has an MA(1) representation with a unit root. Since the least
squares estimators of (i and § will be 0,(n '?) consistent under the null, we do not need to make
any adjustments to the procedure.

In order to make the diagnostic procedure operatonal, guidelines must be set as to what
constitutes a ‘sufficiently’ small estimate for the upper bound. It is also necessary to set criteria
for deciding when the lower bound is too large to accept the alternative hyponhes:s of p?>=0.
These 1ssues are complicated by the fact that the limit distribution (7) for 7 ? does not hold when
p>=0. Moreover, smce our estimate of the lower bound is always greater than zero. the
confidence interval for p? wxu never encompass p? =0. This happens because we do not use the
asymptotic distribution of 7 #* under the hypothesis p? = 0. The procedure is constructed so that
this is the aliemnative,

Following Phillips and Ouliaris (1988), we ltcommend using 0.10 as the rejection point for
the upper and lower bounds. If the upper bound for p? is less than 0.10, one could be fairly
confident that the true value of the spectrum was sufficiently close to zero so as to be compatible
with the altemative hypothesis of p?= 0. If the lower bound for p? is greater than 0.10, then one
could be very confident that the true spectrum at the zero frequency is not zero.

In order to get some indication of how adequate such a decision rule may be, we simulated
critical values for r~ using mndomly-sclectcd processes under the altemative hypothesis of
p2=0and the null hypothesis of p? # 0. The form of the data generation process was assumed to
be ARMA(1,1). The series was dzﬂ’erenced in order to induce a unit root in its moving average
representation for the alternanve p2=0. The parameters of the ARMA(1,1) process were
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selected randomly from a uniform distribution over the interval {-0.6, 0.6}, thereby restricting
draws to ensure that the process, possessed a unit root in its MA representation. Table I
presents the values obtained for 7 7 by averaging the upper and lower percentile values of the
empirical distributions of 50 processes. The simulations suggest that an upper bound of 0.10
would provide an extremely conservative decision rule for the upper bound since the 95
percentile point for the average distribution is 0.45.

TABLEL
Percentiles for p? under the Null and Altemative
99.00% 97.50% 95.00% 92.50% 90.00% 87.50% 85.00%
Alternative Hypothesis of Stationarity
0.2250 0.2026 0.1863 0.1751 0.1670 0.1608 0.1556
Null Hypothesis of a Unit Root
0.8989 0.8416 0.7920 0.7618 0.7378 0.7185 0.7014
Average
0.5618 0.5221 04891 04684 0.4524 0.4396 0.4285

Nowe: These values were obtaned by averaging the lower and upper percentiles of the empirical
distnbuuon of 7~ under the null hypothesis of a urut root and the alternative hypothesis of stationanty
respecuvely. The data generauon processes were drawn from an ARMAC(1,]1) process with randomly-
selected coefficients. The empirical dismbunons were simuiated using 2500 iterations and 250
observanons. Fifty data generauon processes were drawn at random.

The above analysis bears directly on recent papers by Cochrane (1986) and Campbell and
Mankiw (1986, 1987). These papers analyze the real per capita GNP trend/difference
stationarity issue by considering the magnitude of the spectrum of real per capita GNP at the zero
frequency. Campbell and Mankiw (1987) find that the long-run variance of real per capita GNP
is large, and thus argue that this is strong evxdcnce in favor of the difference stationary
model. In contrast, Cochrane (1986) estimates 7 ? for real per capita GNP and argues that since
7#* was small (0.40) the random walk component of real per capita GNP was negligible.

However, neither Cochrane (1986) nor Campbell and Mankiw (1987) compute upper bounds for
p2 If the focus of attention is whether or not p2 is small (and not necessarily zero), then the
appropriate procedure is obviously to compute the upper bound of the confidence limit for p?

using (8).

4. Empirical Applications

The new unit root procedures are particularly useful in applied work which utlizes the theory
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of cointegration to test steady state models of economic behavior. The steps involved in testing
for cointegration may be outlined as follows. First, all the variables in the model should be
pre-tested for a unit root, since a regression model involving 2 mixture of 7(0) and /(1) variables is
trivially cointegrated. Second, it is necessary to test whether the residuals of the model (or the
deviations from the equilibrium condition) possess a2 unit root. If the residual vector has a unit
root, the model is not 2 cointegrated system. When the cointegrating vector does not need to
be estimated, standard unit root tests (such as those developed above) may be applied to the
residual vector. If the cointegrating vector needs to be estimated, unit root tests may also be used;
however, different critical values apply (see Phillips and Ouliaris, 1987).

We now demonstrate the use of the new tests by applying them to the following standard
economic models (all of which have recently been reformulated as cointegrated systems
and all of which have known cointegrating vectors under the hypothesis of cointegraton): (1)
Spot and Forward Exchange Rates (Corbae and Ouliaris, 1986, Corbae, Ouliaris and Zender,
1987); (2) Purchasing Power Parity (Corbae and Ouliaris, 1988) and (3) The Real Monetary
Equation (Engle and Granger, 1987). In what follows we are primarily interested in determining
whether the existing results for these models are changed by using unit root tests which allow for
polynomial trends in the maintained hypothesis. For completeness we bnefly review the theory
underlying the above models in the context of the cointegration framework.

4.1 SPOT AND FORWARD EXCHANGE RATES

A necessary condition for market efficiency in the forward exchange market is that the
difference between the spot and forward exchange rate is equal to the current risk premium plus a
white noise error. When the spot and forward exchange rates are integrated processes, and the
risk premium is stationary, this condition corresponds to the hypothesis that the spot and
forward exchange rate are cointegrated with a known cointegrating vector of (1, -1). Moreover,
since the unit root tests allow for innovation sequences which are in the ARMA class, we do not
need to identify the risk premium in order to carmry out the test. Thus the theory of cointegration
provides a robust test for a necessary condition for market efficiency which does not require
identification of the risk premium.

We shall consider this hypothesis for six U.S. dollar exchange rates: Canada, Germany,
Switzerland, France, Japan, and the United Kingdom. In particular, we are interested in
determining whether the spot and forward rates can be modelled individually as integrated
processes and whether the difference between the spot and forward exchange rates are stationary.
The data are weekly, spanning the flexible exchange rate period January 2, 1976 to January 2,

1986.
4.2 PURCHASING POWER PARITY

According to the absolute version of purchasing power parity, the dollar value of goods
produced abroad and the dollar value of goods produced domestically should be equal in
equilibrium.  In stochastic versions of the standard model, this requirement would correspond
to the statement that there should only be stationary fluctuations around the equation P, = §,P;,
which relates the level of domestic prices (P,) to foreign prices (P}) and the spot exchange rate.
Moreover, when P,, S, and P; are integrated variables, purchasing power parity is equivalent 1o
the statement that log S,, log P; and log P, form a cointegrated system with a known cointegrating
vector of (1,-1,-1). In other words, if purchasing power parity holds, the logarithm of the real
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exchange rate should be a stationary variable.
.‘l"he PPP hypothesis will be tesied for five countries: Canada, France, Italy, the United
Kingdom, and West Germany. The data are monthly, spanning the 1973(7) - 1986(12) period.

4.3 THE REAL MONETARY EQUATION

If prices, the money supply, and real income are integrated processes then the real monetary
equation implies that these variables should form a cointegraied system. In particular, we
require that the velocity of circulation displays only stationary fluctuations. Note that the real
monetary equation is simply an exampie of a broader class of models which derive from
equilibrium conditions implicit in steady state growth models,

We shall test the hypothesis that velocity is a stationary variable for four alternative
definitions of the money supply: M1, M2, M3, and ML (Liquid Assets). The data are
quanterly. and span the 1959(1) - 1986(4) period.

Table II presents the results of applying the new statistics 10 Models (1) - (3). The table
contains the computed values of 5p(&), G,(&. B,) and 7° for a representative value of p (the order
of the time polynomial).

The following conclusions may be drawn from the computed values of (&), and G, (&, ):

(a.) The spot and forward exchange rates of Germany, Switzerland, France, Japan, and the
UK are integrated processes. The null hypothesis of a unit root in the level of these series cannot
be rejected at the 5% ievel of significance using p =4. This finding is not affected by including
higher order polynomials in the firted regression.

In contrast, the spot and forward exchange rates of Canada appear to be stationary. The null
hyppthesis of a unit root in these series may be rejected at the 5% level of significance using
G.(&.8,) and a1 the 10% level of significance using S,(5). We may therefore modei the spot and
forward exchange rates of Canada as a stationary process around a fourth-order polynomial
trend. It is interesting 10 note that this finding depends on the order of the time polynomial which
is included in the fited regression. For example. when p=3, $3(&)=-29240 and
G1(&, ;)= 85581, both of which are smaller than the 5% critical value. This result emphasizes
the importance of including the fourth order polynomial term in the firted regression. It also
highlights the importance of adequately modelling the deterministic part of the time series when
testng for a unit root  Interestingly, Corbac and Ouliaris (1987) find, using the Phillips-
Perron (1988) unit root tests where p =1, that the Canadian exchange rate is an integrated
process. The results presented 1n Table O suggest that this may be due to the omission of
higher order polynomial terms.

(b.) The difference between the spot and forward exchange rates, or the implied risk
premium, is stationary in the case of Canada, Germany, Switzeriand, and France. We may reject
the unit root hypothesis at the 5% level of significance using S,(&) and G, (G, 8,) forp =2. It also
bolds for p=0. and p=1. The Canadian result is to be expected, since the spot and forward
exchange rates are themselves stationary processes.

The results for Japan and the United Kingdom are not very favorable 1o the hypothesis that the
implied risk premium is stationary. For these countries one can reject the pull hypothesis of no
cointegration between the spot and forward exchange rate only at the 15% level of significance
usingp=2.

(c.) The results for the real exchange rate data do not yield any evidence in favor of
purchasing power parity. We cannot reject the null hypothesis of a unit rootin the real exchange
rate data for any of the countries represented in the data. Moreover, the results are not affected
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by including higher order polynomials in the fitied regression. These findings are consistent
with those reported in Corbae and Ouliaris (1988), which are based on the same tests with p set

10 zero.

TABLE II. Values of S, (8),G, (&, £,) and 7 for Models 1-3.

Series P 5,@) G,(@.5,) 7 L 7y

1. Spot Exchange Rate
- Canadian Dollar 4 —4.6406 223890 0.5262 0.1364 09160f
- Deutsche Mark 4 -2.8141 8.2826 0.6119 0.1586 1.0652
- Swiss Franc 4 -3.0333 9.4625 0.8765 02272 15259
- French Franc 4 -2.7834 12.2638 0.5859 0.1518 1.019
- Japanese Yen 4 -3.1699 10.1147 13141 03406 22876
- UK pound 4 -2.7493 11.9862 0.8018 02078 13958

2. Forward Rate
- Canadian Dollar 4 -4.7252 226782 04150 0.1075 0.7224
- Deutsche Mark 4 —3.1526 102546 0.6857 0.1777 1.1436
- Swiss Franc 4 -3.3083 11.1881 0.8918 02311 1.5525
- French Franc 4 -2.9697 116177 05772 0.1496 1.0049
- Japanese Yen 4 -3.2066 10.2988 1.3532 03507 23556
- UK pound 4 -3.1738 13.8568 0.7499 0.1943 13055°

3. Risk premum
- Canadian Dollar 2 43334 19.0590 0.1842 0.0477 03207
- Deutsche Mark 2 -39186 15.6565 03291 0.0853 0.5730
- Swss Franc 2 —4.1356 17.1039 0.4021 0.1042 0.7000
- French Franc 2 43782 19.2336 04016 0.1041 0.6991
- Japanese Yen 2 -3.6850 13.5803 04611 0.1219 0.8125
- UK pound 2 -3.5058 12.5471 03980 0.1031 0.6929

4. Real Exc. Rate
- Canadian/USA 2 -23318 62390 1.1964 03101 2.0828
- France/USA 2 -1.0546 2.4047 22337 0.5789 3.8885
- Ialy/USA 2 -0.9441 22236 22262 05770 3.8755
- UK/USA 2 -1.1451 32189 24569 0.6368 42710
- West Ger/USA 2 -1.5366 3.6827 2.6262 0.6806 45717

5. Velocity
-M1 4 -0.4670 12.7186 0.8014. 02077 13951
-M2 4 -3.0827 10.1963 1.4662 03800 2.5524
-M3 4 -29562 9.0206 1.2585 03262 2.1908
- Liquid Assets 4 -29410 8.7984 0.6688 0.1733 1.1643

Notes to Table I

1. Data: (a) Spot and forward exchange rates, measured in logarithms, January 2, 1976 to January 2,
1985. Number of observations = 458. (b.) Real exchange rate, measured in logarithms, July 1973 to
December 1986. Source, CITIBANK databank, December 1987. (c.) Velocity, measured in

loganthms, March 1959 to December 1986.

. See Table ITI for the critical values of the staustcs.
3. Some of the series were passed through an AR(3) filter in order to equalize the periodogram
ordinates around frequency zero. These series are tagged by ‘f* in the table. The penodogram iself
was esamated using the Danell esimator with k = 7.
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(d.) The money supply data doe; not provide any support for the real monetary eguation.
There is no evidence 10 suggest that velocity is a stationary variable. Moreover, this finding
docs not depend on the definition of the money supply, the value of p, and is consistent with the
results reported in Phillips and Ouliaris 2(1988) using principal components methods.

Tuming 10 the computed values of 7, the upper bounds for the true value of p? are all larger
than 0.10, irrespective of the value of pused. Thus if we employ the 0.10 decision rule forthe
upper bound we would conclude that all the series in the data possess 2 unit root — 8 result which
is obviously in conflict with that suggested by the S,(G) and G, (&, §,) statistics. Given that these
tests are formal statistical procedures, the results for the bounds test raises doubts about the
usefulnezss of the general approach.

The 7 procedure is best interpreted as a diagnostic too) rather than a formal statistical test. It
should be evaluated with this qualification in mind. The empirical results su that the
bounds procedure is quite good at detecting the presence of 2 unit root. The 7° procedure is
clearly in agreement with the 5,(G) and G,(&. §,) statistics when these tests imply that 2 senes
possesses a3 unit root, since the corresponding point estimates for the upper bound are all very
large. In contrast. the upper bound estimates for the series which S,(G) and G,(G.§,) imply are
stationary around a deterministc trend are uniformly less than 1.0. Thus there is some
indicauon that a stationary series yields consistently smaller values for the upper bounds than
anonstabonary series.

The above results suggest that the 0.10 cut-off point in the #* bounds procedure is 00
conservative for practical applications. A low cut-off point ensures that the probability of a type 1
error will be small for all senes except those which are nearly stationary. However, in the
absence of a formal statistical procedure which allows for the null hypothesis to be p? =0, it
is obviously difficult to set an upper bound for p? which is not too conservative. Nevertheless, it
is encouraging to find that the point esumates for the upper bound are quite large for those senes
where there 15 hitle evidence in favor of the stationanty hypothesis.

8. Conclusion

This paper has developed a number of procedures for detecting a unit root in a time series
model. Unlike exisung procedures for testing the unit root hypothesis, which take the null
hypothesis to be the difference stationary model with/without drift but with no trend, the tests
allow explicitly for polynomial trends and drift in the data generation process.

Our aim was to develop tests which are invariant to the true values of the drift and mend
parameters. Two classes of procedures were developed. The first class extended the Wald type
tests of Phillips (1987) and Phillips and Perron (1988) to account explicitly for linear trend and
drift in the maintained hypothesis. The second class extended the univariate bounds procedure
for detecting no cointegration (or a unit oot in univariate time series models) to very general
(possibly) nonlinear wrend/cycle models. These models incorporate the linear trend model as a

jal case.
speTc.:;n new procedures were illustrated using 2 number of interesting models in the applied
cointegration literature. The results confirmed the importance of carefully modelling the
deterministic component of a time series when testing for a unit root. We were able to show that
some of the series can be modelied as stationary processes around a polynomial trend, in contrast

1o previous findings.
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Notes

* The first author gratefully acknowledges financial assistance from the College of Behavioral and Social
Sciences at the University of Maryland. The paper has benefized by the probing comments of two
anonymous referees of an earlier version. The authors are also grateful to Peter Schmidt for helpful

1. Notable exceptions are the statistics developed in Perron (1987) which allow for stractural breaks in the
determunistic component of time series.

2. The univariate bounds test can also allow for structral breaks in the deterministic component of the
maintained hypothesis. The interested reader is referred to Perron (1988) for applicanons of the bounds
procedure which allow for structural breaks using ¢(z, 6).



UNIT ROOT TESTS UNDER MAINTAINED TRENDS 2]

Appendix 1: Proofs

PROOF OF THEOREM 1. The following results are needed in order 1o prove Theorem 1. Define
t

Y= ?tj and

Wu(’) = (‘51—6))")('»1
where &" is a consistent estimate of the long-run variance of {y,}. Then we have W, 3 Wand

" D 1
L (e i w?[w? ®
1 0
using the results in Phillips (1987).
Now letf,(r)=r‘and f,,(r) = [”]} forr € [0,1). Thenf, — f, uniformly. Hence,
1
1 &+ '__1.'_’. n-12y0 = . 3
n;[ #lyi= I m,Jf,.,W,+o,(1) -)u){f,W. 10)
Also,
L . . _lu !, x
:; o2 ][n—a; mu]_ nlz n)( )J-)Jf,f/ an

Define g (r)=n [[["']”] [WJH for 7€ [0,1). It follows that g, — — f uniformly. We
therefore have

}Eﬁ"""”"r‘i,=n"”ﬁ(;l;)‘§,
"”2@ n"”z[( Ly )‘}}:&,
=W, [Wu(l)‘ngwn}
0

1 1
D
5 w[W(l)—J(f?f,)W]= wlf,aw .
0 0
Finally, we shall make use of the following result which is proved in Phillips (1988b):
n 1
L3 B @wawer, r=2w-o. 12)
1 0
To prove part (2) of the theorem, we write

n@-1)= [iﬁ-xﬂ-le.l [liﬂ-x E::l
1
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where
" a .1
Yo =yiq -[ny-xff'] [foff'] 1
1 1
and
k= (nT12 07V, @2t

Part (a) is immediate from (9) to (12) and the conrinuous mapping theorem.
It is easy to prove part (b) since

G 1/ e
—,(B) = —| Y1 PRI AN
® oL 1
To prove part (c), we use Lemma Al in Park and Phillips (1988) and write
&2 12 df e 2 112 2 Ji 2
= FoB.8,)=—x | Zyaya| | Zyak| +—r|Zni| | Zn&
w w 1 1 [A) 1 1
where

n L] l
n=1- [Zz’tf"-] [th“t‘,’“':l' !
i

i

and 77" is defined as above. The result follows from (10)-(12), and part (a) of the theorem.
Theorem 2 may be proved in a sumilar manner. The proof is therefore omitted.
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Appendix 2: Critical Values

This appendix contains the critical values for the X,(G). S,(6), and G,(a.f,) statistics for
p=2,3,4,5. The critical values are given in Table IIL They were estimated using Monte-Carlo
techniques. The limiting distributions were tabulated by repeatedly computing the various
statistics for a given number of replications. The critical values reported in Table ITI were
computed using 500 observations and 25000 replications. The innovation vector was drawn
from a standard normal random number generator.

The critical values reporied below may be used for models with a smaller number of
observatons. In preliminary runs simulations were conducted with 50. 100, and 200
observations without much impact on the critical values.

TABLE I Critical Values for X, (&), S,(&), and G, (&, §,)

Size Ky (&) S52(6) Ga(a.B,)
200 -19.854870 3.239486 11.339620
17.5 -20.657720 3.305651 11.775810
15.0 -21.549160 3.378969 12.284770
12.5 -22.671780 3.466916 12.842630
10.0 -23.890100 3.560110 13.493570
7.5 -25.443810 3.670237 14.362610
5.0 -27.477620 3.827886 15.606460
2.5 -31.167340 4089778 17.592230
1.0 -36.045680 4376567 19.954010
Size K4(@) Sy(@) Gi(a. By)
20.0 -24.728810 3.590699 13.829130
17.5 -25.621250 3.661849 14.307780
15.0 -26.689450 3.735801 14.884850
12.5 -27.834770 3.821583 15521640
10.0 -29.281110 3.922786 16.234650
7.5 -30.976720 4045293 17.224380
5.0 -33.452020 4206791 18.595130
2.5 -37.316560 4.446673 20.529310
1.0 —41.646470 4.739825 23.409930
Size K4() S4(8) G Be)
20.0 -29 498510 3.918707 16.283230
17.5 -30.491740 3.987659 i 16.825820
15.0 -31.665810 4062522 17439930
12.5 -33.055400 4152921 18.128020
10.0 -34.532940 4252258 18.928760
7.5 -36.504750 4 367366 19.940770
50 -38.715880 4.512972 21.305270
2.5 ~42.764600 4,758404 23.591940

1.0 —48.285360 5.063203 26.649970
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Size Ks(®) Ss(6) Gs(6. Bs)
20.0 -34.223020 4215988 18.727650
17.5 -35.334720 4286277 19.330270
15.0 -36.562040 4367253 19.975390
12.5 ~38.002490 4.453981 20.742790
10.0 -39.596630 4552657 21.594930
75 -41.582940 4.662922 22.642760
5.0 -44 064410 4824760 24132100
2.5 -48.524830 5.059557 26.533940
1.0 -54.623880 5.389089 29.997240
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Appendix 3;: Monte-Carlo Evidence

This appendix presents the results of a simple Monte-Carlo experiment designed to assess the
size and power properties of the new statistics. In what follows we assume that the data
generation process for (&)7 is

L=vi+oy, veNO D).

That is, the data generation process for {&} is MA(1) with a moving average parameter¢. The
fundamental innovations, y , are normally distributed with mean zero and unit variance.

In what follows we shall restrict our attention to the case p=2. The size and power of the
statistics may be assessed by varying the wue parameters of the data generation process. Since
the statistics are invariant to the true parameter values under the null hypothesis, size distortion
(if any) may be evaluated by setting a=1 in the data generation function and varying the value
of ¢. To assess power we need 10 set a < 1, for arbitrary values of ¢.

Table IV contains the results of the Monte-Cario experiment. It tabulates the number of
rejections of the null hypothesis, expressed as a percentage of the number of iterations, for
various values of @ and ¢. The computations were performed on an IBM/AT using the GAUSS
programming language. A copy of the GAUSS code is availabie from the authors.

Since the rejection rates for ¢ > 0.0 and @ =1 are close to 5%, the nominal size of the test, we
can deduce that the tests do not possess any material size distortion for positive values of the
moving average parameter. This is not the case for negative values of the MA(1) parameter.
The empirical size of the test grows substanually as ¢ —»-1.00. From a practical standpoint, some
size distortion for negative values of ¢ is not surprising in finite samples since the data generation
process approaches statfonarity as ¢ —»-1.00. Theinterested reader is referred to Phillips and
Perron (1988) for an analytical assessment of this issue using asymptotic expansions.

The simulations indicate that the statistics have reasonable power for negative values of the
MA(1) parameter. However, the power of the statistics falls noticably as ¢ increases and is quite
poor for positive values of ¢. The results for @ = 1.00 and a=0.95 indicate that the statistics have
trouble discriminating between models with a unit root (@ = 1.00) and trend stationary models with
an autoregressive parameter near unity (e.g., a=0.95). Power, of course, increases as a falls from
0.95 16 0.90.

Additional simulations were performed using smaller values for the maintained trend parameter
and a smaller number of observations. The power of the statistics fell slightly (for every value of
¢) when the maintained trend parameter was reduced to 0.01. Power also fell when the number of
observations was reduced to 100. The corresponding tables may be obtained from the authors on
request.
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TABLE IV. Rejections based on 2 nominal asymptotc size of 5%
Innovations follow an MA(1) process: & = v, + ¢y,

True Model: y,=10.0+0.1: +ay,; +&

Fitted Model: y, =g+ B2+ 802+ Gy,

MA 52(3) Ga(a 6,)
parameter
¢ o=1.00 =095 o=090 a=100 a=0.95 o=0590
Size Power ize Power

05 82.44 91.84 100.00 80.44 97.08 100.00

04 59.88 80.16 99.96 5720 89.28 9992

0.3 35.36 64.44 99.40 33.20 7720 99.32

0.2 19.00 51.48 96.52 17.20 64.60 95.32

0.1 11.56 40.04 87.84 10.44 5132 83.44
0.0 6.28 32.44 75.36 6.08 43.00 69.12
0.1 4.16 2424 62.00 4.20 32.72 54.60
0.2 3.80 19.36 51.36 4.00 25.68 43.80
0.3 2.04 16.20 42.60 2.52 21.92 3548
04 220 14.50 40.04 2.68 12.80 3192
0.5 1.96 12.80 38.64 2.40 16.16 29.40

Notes

'i'hc fited regression was completed using 250 observatons.

Number of 1terations = 2500.

Fundamental innovations, y,, drawn from N(0, 1) distnbution.

Computatons were carned out using the GAUSS programming language on an IBM/AT.

an o p
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