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This paper continues the theoretical investigation of Park and Phillips [7]. We
develop an asymptotic theory of regression for multivariate linear models that
accommodates integrated processes of different orders, nonzero means, drifts,
time trends, and cointegrated regressors. The framework of analysis is general
but has a common architecture that helps to simplify and codify what would
otherwise be a myriad of isolated results. A good deal of earlier research by
the authors and by others comes within the new framework. Special models of
some importance are considered in detail, such as VAR systems with multiple
lags and cointegrated variates.

1. INTRODUCTION

In Part 1 of this work (Park and Phillips [7]), we embarked on a simple and
unifying analysis of multivariate regressions with integrated processes. We
showed how all of the major asymptotic distributions in such models can be
represented in a common form which provides a simple groundwork for sub-
sequent analysis. This common form helps to simplify the presentation of
rather complicated results and it illuminates earlier research findings by
clarifying their specialized structure within a much broader context. Our
attention in Part 1 was devoted to processes that are integrated of order one.
As in Part 1, we call a time series {X,} an integrated process of order £ (an
I(k) process) if the time series of k-th differences {A*X,} is stationary (an
1(0) process).

The object of this sequel is to show how the regression theory in Part 1
lays the groundwork of an asymptotic theory for regressions with processes
that are integrated of different orders. The simplest extension allows for the
presence of stationary regressors as well as (1) processes. The stationary
regressors may be jointly dependent variables or exogenous variables; the
I(1) processes may be lagged dependent variables or other time series with
unit roots; there may be nonzero means, drifts, and possibly time trends in
the formulation; and, since the setting is multivariate, we may wish to allow
for cointegration among the 7(1) regressors. At the next level of generality
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we wish to include 7(0), I(1), and J(2) processes as regressors. This allows
for vector autoregressions (VAR’s) with unit roots and additional /(1) regres-
sors. Once this model is extended to allow for nonzero means, drifts, pos-
sible time trends, and cointegrated regressors, the framework is sufficiently
broad to provide a fairly complete picture of the asymptotic theory of regres-
sion for integrated processes of different orders. Note that the inclusion of
I(k) regressors of different orders itself requires that the theory must accom-
modate cointegration since, for example, 7(0) and I(1) processes are trivi-
ally cointegrated. Moreover, once the theory is completely developed for
I1(0), I(1), and I(2) regressors, generalizations to higher orders are straight-
forward. Note also that the presence of 7(0) regressors in the framework
allows us to treat higher order VAR systems with many lags as a simple spe-
cial case of the general theory. The paper thus includes as a special case
recent results in Sims, Stock, and Watson [12], which deals with the asymp-
totic normality of coefficients in a VAR with unit roots. To sum up, our aim
in this sequel is to bring together a set of results into one general framework
which will give a comprehensive asymptotic theory of regression for mod-
els of this type.

The plan of the paper follows the same lines as Part 1. The models that
are central to our study are discussed together with some preliminary theory
in Section 2. Section 3 develops the asymptotic theory for least squares in the
new context and relates the results to our earlier theory in Part 1. Hypoth-
esis testing is the subject of Section 4, and we develop and study extensions
of the G- and H-statistics of Part 1. Specializations of our theory are exam-
ined in Section 5. These include regressions with strictly exogenous regres-
sors, general linear models with cointegrated regressors, VAR systems with
exogenous regressors and general VAR’s with many lags, unit roots, and
cointegrated variates. Some concluding remarks are made in Section 6.
Proofs are given in the Appendix.

2. THE MODELS AND PRELIMINARY THEORY

Let {¥,]7 be an n-dimensional multiple time series generated either by

Y=A X, + Ayxy + 14, a
or by
N =Ayxy + Ay xy + Azxs + U, )

where A, A,, and Aj; are, respectively, n X m,, n X m,, and n X m; coef-
ficient matrices and where

_ _ 2.
Xy = Vi AXy = Uy A%Xy = U3y, 3

In (3), A is the standard first difference operator. Initializations of the pro-
cesses {Xy,}5 and [x3,}%; at £ = 0 and r = —1,0, respectively, do not affect
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our results, and any random initial values are permissible. As in Part 1, we
shall also consider as direct extensions of (1) and (2) time series { y,}7 that
are generated by

Yi=p+ Aixy + Arxy, + 14, ay
YVo=p+0t+ Axy + Arxyy + 1y @~
and

Ye=p+ Arxy + Ayxy + Azxs + u, )
Yi=p+0t+ A x, + Ayxy + Asxy, + uy. Q)"

The conditions for the innovation sequence w, = (u/, vi;, V3, V3;) are
entirely analogous to those in Part 1. We require that the partial sum pro-
cess S, = L} w, satisfy a multivariate invariance principle. Thus, if for r €
[0,1],

Xr(r) = T8
thenas 71 oo
X7(r)y= B(r) @

where, as usual, the symbol “=" signifies weak convergence of the associ-
ated probability measures. In (4),

n my iy i
B(r) = (Bo(r), Bi(r), B:(r), B;(r))

is k-vector Brownian motion (K = n + m; + m, + ms) with covariance
matrix

Q Q Qo Qu3|n
Qo U Q2 Q3 imy

"= Qo U & On|m
Qo sy Oz Oy [my )
= lim 1 E(SrS7)
Too T
=LX+A+ A
where

£ = lim 1T ETE (w,w!) ©)

T—oo
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and

1 7 t—1
A=lim = > D E(w,w/) a
T-o =2 y=1
L, and A, for i,j=0,...,3 are defined to be submatrices of L and A cor-
responding to @, in (5). We assume the diagonal submatrices (, (2, and Q5
of Q, and I, and I, of I to be positive definite but we do not require @ to
be positive definite. Our theory also requires weak convergence to matrix
stochastic integrals of the form fol BdB’ which, as well as (4), holds for a
wide class of sequences { w,} that are weakly dependent and possibly heter-
ogeneously distributed under quite general conditions. For these conditions,
see Part 1 and the references given therein. Finally, we require weak laws to
apply to the second sample moments of {w,}; more specifically we need
T '2Tw,w; - L in probability which holds under very general weak depen-
dence and moment conditions (see, for example, McLeish [5]).
When [w,} is weakly stationary, {x;,} is an I(2) process, {x;,} is I(1),
and {x,,} is 7(0). In this case, (6) and (7) reduce to

L=E(w;w)

and
A= 3 E(w,w)).
J=2

Moreover, if the series defining A is absolutely convergent, then the process
{w,} has a continuous spectral density matrix f,,,,(\) and

@ = 27f, (0). &y

Throughout this paper it will be convenient to refer to {x;,} as a stationary
process and to [x,,} and {x3,} as integrated processes, although, strictly
speaking, our theory allows for somewhat greater generality.

The model defined by (1) or (2) (together with (3)) may be regarded as a
simultaneous equations system in which we have both stationary and inte-
grated regressors. In this case, none of the common exogeneity conditions
for the regressors is presumed. Many other models that have been previously
studied in isolation come within the framework of (1)-(1)” or (2)-(2)”.
Indeed, our subsequent theory is applicable to a wide range of important lin-
ear models in statistics and econometrics. Some of these will be individually
discussed in later sections in detail. We list a few of the most relevant
specializations below:

Model (1) + (3) can be specialized to: (1a) first order VAR systems with
unit roots and additional stationary regressors; (1b) higher order VAR sys-
tems with single unit roots; and (Ic) multiple time series regressions with
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regressors that are cointegrated of order CI(1,1) in the terminology of Engle
and Granger [2].

Model (2) + (3) similarly specializes to: (2a) first order VAR systems with
unit roots and additional Z(1) regressors; (2b) higher order VAR systems with
double unit roots; and (2¢) multiple time series regressions with regressors
that are cointegrated of order CI(2,1) or CI(2,2).

Nankervis and Savin [6] study (1a) and (2a) by Monte Carlo methods
applied to the subcase of a simple scalar stochastic difference equation with
an exogenous variable. (1¢) was considered by Sims [11,12]. Fuller, Hasza,
and Goebel [2] examined (1a) and (1b) in a simple scalar case and a univar-
iate version of (2b) was considered by Hasza and Fuller [4].

The notation introduced in (4) to (7) will be used throughout the paper.
Particularly, By(r), B,(r), B,(r), and B;(r) denote, unless otherwise
stated, four vector Brownian motions which are, respectively, n, m;, m,,
and m, dimensional with covariance matrices given by the corresponding
diagonal submatrices of Q in (5). We also define

By(r) = frBs(S)ds
0

and
Az = Ly + Az, Ay = Lo + Ay

Moreover, we shall frequently write these and other stochastic processes
without the argument for notational brevity when there is no risk of misun-
derstanding.

The following lemma will be used extensively in the derivation of our sub-
sequent results:

LEMMA 2.1.
1 1
@ @ T—S/ZngXatﬂf By, (i) T"3/221Tx2t="/‘ B,,
0 0
(i) T72Lx, = B;(1), (v) T7V2ZTu; = By(1);

1 1
® @) T‘7/221Ttx3,=f rBy, (i) T“S/ZEthxZ,=>f rB,,
0 0

1 1
(iii) T‘3/ZE,Ttx1,=>f rdBl=Bl(l)_f B,
0

0

1 1
(iV) T_3/22{tu,=>‘/‘ rdBo =Bo(1) —f BO;

[ 0

1 1
© @ T‘4ElTx3,x§,=>f B3B;, (i) T‘3Elrx3,x§,=>f B;Bj,
0 0
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. 1
(il) T-2ETxy x5, = f B,B;,
0

1 1
(iv) T‘ZETX3tXIt=f BydB{ = B;(1)B: (1)’ —f B;Bj,
0 0

1

1
v) T_zglrxstut':f B;dB; = B;(1)By(1)’ —f B3 By,
0 0
1
(vi) T_'21sztxiﬁ>f B,dB{ + Ay,
0

1
i) T7'ZTx,,u/ =>f B,dB; + Ay
0
Joint weak convergence of all the above also applies.

3. LEAST SQUARES ESTIMATION

As in Part 1, we consider three multiple least squares regressions correspond-
ing, respectively, to (1), (1)’, and (1)”:

Ve=Axy + Ayxo + 1 @)
Vi=n+ A x + Ayxy + ity 9)
Ve=pi 40t + A x;, + Ay xoy + iy (10)
Similarly, for (2), (2)’ and (2)” we define

Vi=Ayxy, + Ayxy + Ayxs, + an
V=it Aixy + Aryxy + Ayxy + @1, 12)
Vi=ph+0t+ A x + Ayxo + Ayxy, + @y 13)

We let A = (A;,A4,) in (1) or A = (A,,A4,,A3) in (2) with analogous
definitions of A, 4, and A in (8) to (13). Similarly, we let x/ = (x],,x5/) in
(1) or x{ = (x{;,X5,,%5,) in (2). Define x}' = (1,x/), x¥ = (1,£,x/), and
given a sample of size T, define

X =(x1,...,x0), XV =(x,...,x})., X% =(x},...,x3). 14)
With this notation we have:
A' — Y’X(X’X)_l, /Il — Y/Xl(Xl'Xl)—l’ A’Z — Y/XZ(XZ’XZ)—I

where A' = (i, A) and A% = (i, 0, A). The least squares estimator of the
covariance matrix is given for each regression equation by

1 = 1
=Y (I - P)Y, =~
T Y« Y, Lo=o

Lo Y'(I-Py)Y, £, = —IT- Y’ (I — Px2)Y
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where P = C(C’C)™!'C’ for any matrix C of full column rank (with prob-
ability one, if it is random).

As is well known, the inclusion of the constant term in (9) or (12) and of
the time trend in (10) or (13) has the same effect on estimation of the coef-
ficient matrix A as demeaning and detrending the series {x,} prior to regres-
sion (8) or (11). The estimates A in (10) or (13) are thus easily seen to be
invariant with respect to the introduction of a nonzero constant mean for
{v,,}, which turns {x,,} in (3) into a random walk with drift. We can also
have a similar invariance to an unknown mean of {v;,} simply by taking a
regression with a quadratic rather than a linear time trend (i.e. add the
regressor £ to (1)” and (2)").

We can expect under quite general conditions that

T-V2LT (w,w{ — E) = N(0,V°). as)

For example, if we let £, = w, ® w, — E(w, ® w,) and assume {§,]5 is a
weakly stationary process for which the invariance principle (4) holds, then
it is not difficult to show (see, for example, Theorem 3.4 of Part 1) that (15)
also holds, with covariance matrix given by

V0=PD|:q’0+ i (¢j+q’j/):|PD (16)
k=1

where
¢, = E(wwi, ® w,wiy,) — (vec L) (vec L)’

and D is the k% X k(k + 1)/2 duplication matrix. We now define subma-
trices

Vo= (S®S)V(S/ ®S)) (i,j=0123)

where the S, (i = 0,1,2,3) are selector matrices which select subvectors of w,
corresponding to the component vectors u,, vy, vy, and vy, respectively.
Thus, for example, V% is the limiting covariance matrix of 77V2E7x,,u/.
When {x,,} and {u,]} are contemporaneously uncorrelated and L5 =0, as is
often assumed in the standard regression theory, the submatrix ¥, of V° in
(15) may simplify to

V?o =L ® Lo. an

This holds, for example, if we further assume that {(v,,, %)}’ is a martin-
gale difference sequence. The asymptotic normality of T~"2E7x;,%/ which
is given in (15), of course, holds under more general conditions, especially
when I,, = 0. For an introductory and unified exposition of this subject,
see Chapter 5 of White [13].

The next theorem characterizes the asymptotic behavior of the least
squares estimators for A4;, the coefficient matrix of the stationary regres-
sors, in regressions (8) to (13).
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THEOREM 3.1. We have in regressions (8) to (10) or in (11) to (13)
@ A;,A,4,5 At
where A} = A, + LT, Moreover, if (15) holds, then
®) VT(A; - A}).NT(A, — A NT(4, — A7) = N(O, V).
The covariance matrix V' is given by
V=(4® LV ®J5)
where

n n, my + m, n my m,+ ms
Jl = (L _xioxl—la O)’ J2= (O’ 21—1’ O)

The above theorem shows, in short, that the least squares estimators of
A, in (8) to (10) or in (11) to (13) are asymptotically equivalent to the
regression coefficients from the regression of y,, on x,,, where y,, =y, —
A3z X5, 0r o, = ¥, — Az Xa; — A3 x5, corresponding to the underlying data gen-
erating mechanism (1) and (2). It also can be shown that a similar result
holds when there are regressors which are integrated of a higher order.
Therefore, the standard regression theory for the stationary variables applies
to the least squares estimators of A;: these estimators are consistent if
L, = 0 and otherwise, are inconsistent. Moreover, adding integrated vari-
ables as well as a time trend to these regressions only induces 0,(7})
changes in the least squares estimators of A; and does not affect the limit-
ing distributions given in Theorem 3.1(b). We, of course, only need joint
asymptotic normality of 77 V2(ZTx,,u; — Eyo) and T-V2(ZTx,,x{, — L))
for Theorem 3.1(b) to be valid. Notice also that when I,, = 0, the covari-
ance matrix Vis reduced to (/ @ T )VH (I ® E71).

The asymptotic results for the remainder of the regression coefficients in
(8) to (10) are given below in terms of the functional

1 1 ~1
f(B,M,E) = [f dBM’ + E’] [f MM’]
0 0

which we introduced in Part 1.

THEOREM 3.2. The limiting distributions of T(/fz —A,), T(4, — A4,),
VT (i — p), T(Ay — Ay), VT(ji — p) and T**(6 — 6) in the least squares
regressions (8) to (10) can be represented in the form f(P,M(B,), E(I1, B,)),
where

P=By—ZL{oEi'By, M =2A50—AsL7 Ly

and M(-) and E(-,-) are given for each estimator precisely as in Theorems
3.1t03.3 of Part 1.
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All the least squares estimators considered in Theorem 3.2 are consistent
even if ;, # 0, and the stationary regressors are contemporaneously cor-
related with the regression errors. We obviously allow the integrated regres-
sors to be correlated with the errors as well. Note particularly that the rates
of convergence for these estimators are exactly the same as those for the least
squares estimators in regressions with only integrated regressors, as consid-
ered in Part 1. Thus, as far as consistency is concerned, including station-
ary regressors in a regression with integrated variables is innocuous
irrespective of possible correlation with the regression errors.

When I, = 0, we have P = By and II = A,; in Theorem 3.2, and each of
the estimators there has the same limiting distribution as the corresponding
least squares estimator in the same regressions with only integrated regres-
sors. This can be easily seen by comparing Theorem 3.2 with Theorems 3.1~
3.3 of Part 1. More specifically, the least squares estimators of A4,, u, and
6§ in (8) to (10) behave asymptotically, if £, = 0, just as the regression coef-
ficients in

Y= Arxa + i 8)
Yu=p+ /IZXZt + i, 9y
Vie=p+ 0t + Ayxp + (10)’

where y;, = ¥, — A, x;;; the asymptotic results given in Part 1 apply directly
to the estimators in (8)’ to (10)’.

The limiting distributions of the least squares estimators in (11) to (13),
except for those of 4, which are given by Theorem 3.1, can also be repre-
sented simply in terms of the functional /. In the formulae below, these limit-
ing distributions are explicitly given in terms of f( P, N, E) where P(r) is the
n-vector process given in Theorem 3.2 and N = N(B,, B;) is a function of
the two Brownian motions B, and B;.

THEOREM 3.3. We have in regressions (11) 1o (13)
@) T(Ay = A42) = f(RQ,ID), T*(A; — 4;) = f(PQ,,T)
(b) T(/iz — Ay) = f(FQf,10), TZ(/'Is — A3) = f(P,Q3,T")
VT (i — w) = f(P, Py, y1)
©) T(A,— A)) = (RO ), T*A;—A;)=f(RQ*T™)
VT(i — p) = f(P,Py,v2), T*(6 - 6) = f(P,Py,73).
Here

1 1 —~1
01(r) = By (r) — [ [ BZE;( Ji mg) ]Em
0 0
_ 1 1 -1
Q(r) = Bs(r) — [f BsBz'(f Bsz') ]Bz(")
0 1]
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and if we define R(r) by R(r)Y = (Q,(r)’,Bs;(r)’), then

1 1 -1
P(r)y=1- [f R’(f RR’) ]R(r)
0 0

_ 3 1 1 —1
P(ry=1—=>r-— [f R*’(f R*R*’) ]R*(r)

2 0 0
_ 1 1 1 —1
Py(ry=r— - — [[ sR*’(f R*R*’) ]R*(r)

2 0 0

where R*(r) = R(r) — [, R and R*(r) = R(r) — 3rJ sR. Moreover, Q} (r)
is defined from B3(r) = By(r) — [, B, and B3(r) = Bs(r) — [ Bs, and

)**(r) is defined from B3*(r) = B3 (r) — 12rf, sBf and B3*(r) = By (r) —
12rf} sBy* in the same way as Q,(r) for j = 1,2. Also, if we let B;'(r) =
By (r) — 3rf} sB, and B (r) = B;(r) — 3r[; sBs, and define Qf (r) accord-
ingly, then for 11 defined in Theorem 3.2,

e ([ 5) ([ 28] 5 = [ e [a0])
Y2 = —‘/:Qf"<folQ1+Q1+’>—1H, V3 = —fOlSQi“<folQi" 1*’)411-

Finally, T* and T** are defined, respectively, from (Bz*(r),Eé“( r)) and
(B*(r), B3*(r)) in a manner analogous to that of T from (B,,B;).

The above theorem together with Theorem 3.1 completely specifies the
asymptotic behavior of the regression coefficients in (11) to (13). Theorem
3.3 gives asymptotic results for the various least squares estimators in a very
general and simple functional form with differences only in the respective
arguments. Similar representations arose in our results in Part 1, and this
again shows how useful this functional is for the study of asymptotic theory
in regressions with integrated processes. Many of the interesting results that
follow later in the paper can be deduced quite easily from the representations
given in Theorem 3.3.

It is interesting to note that the stochastic processes defined in Theorem
3.3 can be interpreted as the projection residuals in an appropriate Hilbert
space. Thus, treating C[0,1] as a subspace of the Hilbert space L?[0,1]
with inner product fol &, & for square integrable functions g, and g, defined
on [0,1], we find that each element of Q,(r) is just the residual from the
projection of the corresponding element of B,(r) onto the subspace of the
Hilbert space spanned by {B;,}/"3 for a given realization of these stochastic
processes. We may equivalently define Q,(r) to be simply the residual from
the continuous time regression

By(r) = ABs(r) + Qy(r)



REGRESSIONS WITH INTEGRATED PROCESSES, PART 2 105

where A minimizes the continuous time least squares criterion

1
fo (By(ry — AB;(r)) (By(r) — AB;(r))dr.

Thus the projection operation is preserved in a well defined sense under the
asymptotics. All the other stochastic processes that occur in the statement of
Theorem 3.3 can be obtained in a similar fashion.

When the stationary regressors are excluded from regressions (11) to (13)
and if A; = 0in (2), (2)’, and (2)”, the results in Theorem 3.3 remain valid
if we just replace P(r) by By(r), and II by A,,. This can be seen easily from
the proof of the theorem. The limiting distributions of the least squares esti-
mators in this case are therefore only special cases of those given in Theorem
3.3 when L, = 0. Including stationary variables in the regressions thus does
not affect the asymptotics of the least squares estimators as long as they are
not contemporaneously correlated with the regression errors. This parallels
a similar result in Theorem 3.2.

Once again, all the least squares estimators in the regression equations (11)
to (13), except for those of A;, are consistent regardless of the correlation
between regressors and regression errors. The estimators of A, are 0,(7T')-
consistent as in the case of regressions (8) to (10). We can therefore expect
in all of these regressions that consistency of these estimators holds even if
we relax some of our conditions imposed on the underlying models, for
example, the zero mean condition for {u,}. The rate of convergence for the
estimators of Az in (11) to (13) is even faster and is of order 0,(7T%). It
thus seems natural that more aberrant regression errors are permissible for
the consistent estimation of A;. It is easy to show that all three least
squares estimators As, A;, and A; of Aj; are, in fact, consistent even if the
mean of {u,} has a time trend. This, of course, implies that /13 is still con-
sistent if { y,} is generated by (2)”.

The coefficient matrix 4, of stationary variables can be consistently esti-
mated even when L, # 0 and the least squares estimators of A4, in (8) to
(13) are inconsistent. One obvious way to obtain a consistent estimator is to
use instrumental variables in a simple two-step procedure. More precisely,
we first estimate the coefficients of the integrated variables as well as the
constant and the time trend from a least squares regression without the sta-
tionary variables (in (8) to (13)). In the next stage we estimate A; using
appropriate instruments for x,,, as if the estimates for the regression coef-
ficients obtained in the first step were true values. When the instruments
satisfy the same condition as x;,, we can easily show from Theorem 3.2 and
Theorem 3.3 that this substitution of the estimates for the true parameters
in the second stage only affects the asymptotics through terms of 0,(7 )
for all our models.
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Suppose now that {v,} has nonzero mean and we assume, by redefining
{v,}, that (3) is replaced by

X1 = T + Uiys sz, =T, + U4, A2x3, = T3 + U3, (3)/

Then we have:

t
X3, = wal + E Uy = Tyt + xg;
=1

t k

X3; = 7f3t2 + E E Uy, = 7(’3t2 + x:(;),

k=1 =1
ignoring initial conditions (which would determine the constant term in
{x;,} and the linear time trend term in {x;,}, noting that these may be ran-
dom, of course). Now the processes {x,,} and {x;,] are driven by deter-
ministic trends as well as stochastic trends, which we have denoted by {x3;)
and {x{;]. The deterministic component, however, apparently dominates
asymptotic behavior in both processes since the stochastic trends are of lower
order in both instances.

Asymptotic results for the least squares estimators in regressions (8) to
(13), when {x,} is driven by (3)’ instead of (3), can be obtained without dif-
ficulty by first considering appropriately transformed models as we do in
Part 1. We will, however, not report the detailed asymptotics here since the
results are too long and also somewhat obvious given the methodology and
the results in Part 1. Instead, we briefly outline below the main effects of
introducing a nonzero mean in {v,} on the asymptotic behavior of the least
squares estimators of A in our regressions.

If m, = 1 in regressions (8) to (10), then (x,,} behaves asymptotically as
if it were =,# and more conventional regression theory applies. It is in fact
easy to show, for example, that

T32(A; — Ay) = NI0,(12/73)V]

where V=0Q¢ — Z{0E7! Q10— QeET Z10 + Lio LT Q1 27! Lo, Which reduces
to Qg if )0 = 0. When =, = 0, then A, satisfies a similar result with covari-
ance matrix (3/72)V. When m, > 1 quite a different picture emerges. Most
interestingly, if =, # 0, VT (A, — A,) is no longer asymptotically normal even
under the ideal condition X,y = 0. This can be clearly seen from the fact that
the limiting distribution vT' (A4, ~ Ap)7, is essentially equivalent to that of
VT(j — p) in Theorem 3.6(a) of Part 1 when I, = 0, and it is nonnormal.
The limiting distribution of T(A, — A,) is also given similarly as Theorem
3.5 or Theorem 3.6 of Part 1, depending on whether =, = 0 or , # 0. If
Lo # 0 and m, > 1, the final expressions involve appropriately redefined
P(r) and II in Theorem 3.2. A similar argument goes through for T'(A4, —
A,), the asymptotics being given by Theorem 3.6 of Part 1. The estimators A
and A are invariant, with respect to 7; and both 7, and =, respectively.



REGRESSIONS WITH INTEGRATED PROCESSES, PART 2 107

Standard regression asymptotics apply to (11) to (13) if m, # 0, =3 # 0,
and m, = my = 1 in which case {x,,} and {x;;} may well be regarded,
respectively, as w,f and 7372 for the purpose of asymptotic theory. Thus
T32(A, — A,) and T%?(A; — A;) both are asymptotically normal with
respective covariance matrices (192/7%)V and (180/x#)V, where V is given
above. The results for A, and A; can be obtained analogously as above.
Once again, if &; # 0, A, is not asymptotically normal unless m, = m; = 1.
Finally, we note that all these estimators are consistent if (3) is replaced by
(3)’ in our models.

THEOREM 3.4. We have in regressions (8) to (10) or in (11) to (13)
(@) £o,Z0,Zq 5L - LieZ1! Lo
Moreover, if (15) holds with £,o = 0 then
() VT(£o ~ L), VT (o — Lo) NT(E — Zo) = N(0, ¥§)
where V{ is a submatrix of V° in (15) as defined previously.

The least squares estimators of £, are inconsistent if L,y # 0, and other-
wise, they are consistent in regressions (8) to (10) or in (11) to (13). Again
correlation between the integrated variables and the regression errors does
not affect consistency. Moreover, if L;q = 0 and (15) holds, the effect on
the estimation of the error covariance matrix of including stationary vari-
ables in the regressions is at most of order 0,(7') in all six regression
equations. The asymptotic normality of these estimators therefore follows
exactly as in Part 1 (Theorem 3.4) where all the regressors are integrated.

4. HYPQTHESIS TESTING

In this section we shall derive asymptotic results for tests of linear hypoth-
eses that involve the regression coefficients in (8) to (13). The main case con-
sidered here is where x;, is contemporaneously uncorrelated with the
regression errors. If £,5 # 0, then estimators of the covariance matrices I,
and Q,, which are based on least squares regression residuals, are inconsis-
tent (due to the inconsistency of estimates of A4,). However, consistent esti-
mators of these covariance matrices can be obtained even in this case from
regression residuals if we consistently estimate the coefficient matrix A4, of
the stationary variables, for example, by the two-step procedure outlined ear-
lier in Section 3. Note that when L, # 0, standard testing procedures for
A, based on the least squares estimators in (8) to (13) make little sense since
these estimators are not consistent. Appropriate tests may be constructed
using the instrumental variable procedure. The usual chi-square test statis-
tic can also be used in this case since substituting estimates for the unknown
coefficients of the integrated regressors (as well as the time trend and the
constant term) in the second step only affects the estimation of A4, at order
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0,(T~!') as mentioned earlier. Moreover, as long as we are interested only
in regression coefficients other than A;, tests can always be based on the
least squares regressions without the stationary regressors, which are, in fact,
the first stage of the two-step procedure for the estimation of A,. The
results for these regressions are given, if we simply redefine the regression
errors {u,}, in Part 1 for models (1), (1)’, and (1)”, and in Theorem 4.2
below for (2), (2)’, and (2)”.

We first look at the regression equations (8) to (10) and consider null
hypotheses of the form

Ry vec A, =r 8)
RyvecA,=r, a9

where R, and r, are known g, X nm,, g, X 1 matrices, respectively, and R,
is of full rank g, for j = 1,2. Other hypotheses of interest are

p=poand § =6,. Q0

We commonly employ the Wald statistic for testing hypotheses (18) to
(20). Denoting by diag(K) the block diagonal entries of a square matrix K,
define

m, my 1 m m
diag(X'X)~' = (M,,, My,), diag(X" X)) = (ma, My, My),

1 1 m m

. 2 @n
diag(X*' X))~ = (m3;, myy, My, Ms,)

where X! and X? are given by (14). We will not need to be specific about
off block diagonal entries in (21). In (8) the Wald statistics for testing (18)
and (19) are given by

Fi(A) =(R,vec A, — 1)’ [R,(£, ® M,,)R;17(R, vec A, —r,)

for j = 1,2. The statistics for the same hypotheses in regressions (9) and (10),
which will be denoted by F; (A ) and Fy (A )y respectlvely, can be con-
structed similarly by substituting A4, or A for A ,, Lo or £, for £y, and
finally M;, or M;, for M, in (22). Also the tests of (20) in (10) can be
based on

Fi() = m3' (& = po) 5" (B — po)s  F1(6) = m53' (6 — 60)' 51 (6 — o)
and F (@) is defined similarly with m,, and £,. Moreover, we ‘may want to
perform joint tests, and we denote, for example, by F,;(A;, 4,) the Wald
statistic for the joint test of (18) and (19) in regression equation (8).

As in Part 1 and following the same general nomenclature therein, we also

define G, -statistics for the tests of (19) and (20) (not for (18)) from the cor-
responding F)-statistics simply by replacing Lo, £o, and £, with ,, a con-
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sistent estimator of €,. Our subsequent theory for tests of hypotheses (19)
and (20) is focused on the G,-statistics rather than the standard Wald statis-
tics. For more discussion on the rationale behind the G,-statistics and for
the consistent estimation of Q,, see Part 1. If {«,} is a white noise, or a
martingale difference sequence, then the two statistics are asymptotically
equivalent.

The following theorem summarizes the asymptotic results for these
statistics:

THEOREM 4.1. Suppose L., = 0 in regressions (8) to (10).
(a) If (15) holds with the covariance matrix given by (17), then
Fl(Al)v F](Al)’ Fl(jl) = X;l-

(b) The limiting distributions of the G,-statistics for testing (19) or (20) are
identical to those of the corresponding G-statistics defined in Part 1.
(c) Given part (a) above, the conventional Wald tests on A, are asymptoti-
cally independent of the G, (and F,)-statistics for testing (19) or (20).

Parts (a) and (b) of the above theorem are what we would expect from
Theorems 3.1 and 3.2. Theorem 3.1 shows that the least squares estimators
of A, in (8) 1o (10) behave asymptotically exactly as if there were no inte-
grated regressors in either models (1) to (1)” or the fitted regressions (8) to
(10). Theorem 4.1(a) just confirms that this is also true for the Wald statis-
tics, which have limiting chi-square distributions under ideal conditions. This
observation also makes it plain that other testing procedures are possible for
the hypothesis (18) and remain valid for the more general case considered
here, since the problem is equivalent asymptotically to hypothesis testing in
the standard regression model. For a detailed treatment of this subject, see
White [13].

Given (15) and ¥, = 0 (as is often assumed in standard regression theory)
a test of hypothesis (18), for example from regression (8), can be based on
the (asymptotic chi-squared) statistic

(Ryvec A) — 1) [RUR@ ETHPHU® ETR' TR, vec A, — 1))

where £, = T-'ZTx,,x;, and V¥ is a consistent estimate of V. If V?° is
given by (16), then the consistent estimation of this covariance matrix is
essentially equivalent to that of 2,4 and may be conducted in the usual way
(see Part 1).

Theorem 4.1(b) similarly implies that including stationary variables in the
regressions, as long as they are contemporaneously uncorrelated with the
regression errors, does not affect the limiting distributions of the Wald statis-
tics as well as those of the least squares estimators. Thus, the tests of (19)
and (20) in regressions (8) to (10) are asymptotically equivalent to the cor-
responding tests in (8)’ to (10)°, the asymptotic results for which are given
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in Theorem 4.1 of Part 1. Now it is obvious that the transformations intro-
duced in Part 1 to eliminate or reduce the nuisance parameter dependencies
remain valid (with only trivial change in notation), and that the limiting dis-
tributions of the (so transformed) H-statistics are as given by Theorem 4.2
of Part 1.

Finally, in view of Lemma A.l in Part 1, which shows that the Wald
statistics for the joint tests can be written simply as the sum of the two Wald
statistics for each individual test, Theorem 4.1(c) completely specifies the
limitjng gistributions of the test statistics for the joint tests, for example
Fi(A;, A,).

We now consider in the regression equations (11) to (13) the tests for the
null hypotheses (18) to (20) and

Ryvec A;=n (22)

where R; and r; are defined as their counterparts in (18) and (19). As in (21)
we also define

m my;  mg
diag(X'X)™' = (My;, My, My,),

1 m, my ms
diag( XV X)"' = (my, My, My, My,),

1 1 m, my nms

. o 23)
diag(X¥ X% ™' = (myy, msy, My, My, My)

where X' and X? are given in (14). Again, it will not be necessary to spec-
ify off block diagonal entries in (23). The notation given in (23) replaces that
used earlier and should not be a source of confusion. The Wald statistics for
testing (18) to (20) and (22) are then constructed in an analogous fashion as
for (8) to (10). We denote these new Wald statistics, based on the least
squares regressions (11) to (13), by F>(-). We also define corresponding
G,-statistics for tests of (19), (20), and (22) again by replacing Lo, Lo, and
£, with @, as before.

In the following theorem, the limiting distributions of the G,-statistics
for testing hypotheses (19), (20), and (22) are presented in terms of the func-
tional

gx(B,N,E) = (j;ldB®N+ e)'[l@ (folNN')—l]R'
e o) el ([ o

where e = vec E’ and Q is the covariance matrix of the vector Brownian
motion B. The functional g; was introduced in Part 1, and the only differ-
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ence here is that N is now a function of two Brownian motions, i.e. N =
N(B,,B;), as in Theorem 3.3. We also define g(B,N,E) = g;,(B,N,E).
We have

THEOREM 4.2. Let ¥,y = 0 and consider regressions (11)-(13). First,
(a) If (15) holds with covariance matrix given by (17), then
R(A),F(A).F(4) = X,

Also, for the other tests,

() G2(A;) = gr,(Bo, Q1:4%), G1(A3) = g, (Bo, Q5,To)

(©) G2(A;) = gr,(Bo, OF,Az0), G2(A3) = gg,(Bo, 05,T)
G (i) = g(Bo, Py, 7v1)

(d) G:(A2) = gr,(Bo, Of*,A2), G:(As) = gr,(Bo, 03, TF")
Ga(ji) = g(Bo, P2,73),  G1(8) = g(Bo, P3,v3)

where notation is defined in Theorem 3.3, except for Ty, 'y, and T'§* which
are defined analogously to T, T*, and T** but with A,y replacing Il in these
definitions. Additionally,

(e) Given part (a) the conventional Wald tests on A, are asymptotically
independent of the G, (and F,)-statistics in (b)-(d).

Part (a) of the above theorem is entirely analogous to that of Theorem
4.1(a). It implies that hypothesis testing on the coefficients of the stationary
regressors in (11)-(13) reduces, at least in terms of the relevant asymptotics,
to testing in a regression with only stationary variables. Now one can expect
this to be true in general for regressions that involve both stationary variables
and integrated processes. In fact, it is not difficult to show that the same
result holds in regressions with higher order integrated regressors. Again,
other procedures for testing (18) are possible using appropriately constructed
(asymptotically) chi-square statistics, as suggested previously.

The limiting distributions of the G,-statistics for testing (19), (20), and
(22) are explicitly given in (b)-(d) for regressions (11)-(13). The results for
the case where there are no stationary variables in the regressions are easily
obtained from Theorem 4.2(b)-(d) just by taking L, = 0. Moreover, by vir-
tue of Lemma A.1 of Part 1, the limiting distributions of the G,-statistics
for the joint tests of (19), (20), and (22) can also be easily deduced from The-
orem 4.2(b)-(d). For example, assuming R, = [ in (20) to avoid unnecessary
complications, we have

Gy (A, A;3) = g(By, Q1. M%) + gr,(Bo. B3,0)
G,(A,,As) = g(Bo, QF ,Ax) + &r,(Bo, B3 ,0)
GZ(A.'Z:A-Zi) = g(BOv T*vAZO) + gR3(BOa§;*’O)
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where notation is defined in Theorem 3.3. The limiting distributions of other
joint test statistics can be represented similarly and will not be reported here.
Finally, Theorem 4.2(e) again completely specifies the asymptotic results for
joint tests which also include the hypothesis (18).

We are now in a position to define the transformations which give rise to
the H,-statistics. These statistics are analogous to the H-statistics developed
in Part 1. In particular, the motivations are identical and the limiting distri-
butions of the H,-statistics for the simple null hypotheses of the form R, =
Iand R; = I do not depend on A,y. The nuisance parameter dependency of
the asymptotic distributions is therefore concentrated in the covariance
matrix of the Brownian motions, and this dependency disappears or reduces
to a parsimoniously tractable form in some special cases that we will consider
in Section 5. For further discussion on this point, see Part 1.

For tests involving regression coefficients from (11) we define:

Hy(A4;) = Gy(4,) — 2T tr 05" Ay (A, — Ay)
+ T tr g ' A5 [ X3( — Px,) X317 Age
= G,(A,) + a, say
Hy(43) = Gy(4A3) — 2T tr Q5 'T{(4; - A5)
+ T%tr O 'T1X35(I — Py ) X5]17'T
Hy(A,,A3) = G, (A3, A4;) + a.
For (12) with the constant term, we set:
Hy(A;) = Gy(Ay) — 2T tr Q57 Ayo(A; — Ay)
+ T? tr Q5" Ay [ X3'(1 — Px3) X317 Ay
= G,(A,) + b, say
Hy(A3) = Gy(A;3) — 2T2 tr Q5 'T5( A5 — A3)
+ T4 tr Qg T3 X3' (1 - Pys) X317'T,
Hy(8) = Go(p) = 2T Q7' (& — w) + T7: Qg '3/ RSS!
Hy(A3,A3) = Gy(A,.4;) + b,
Hy(ji, Ay, A3) = Gy(, A3, A3) + b.
Similarly, for regression (13) with the time trend we define:
Hy(A2) = Gy(Ay) — 2T tr 05 ' Ao (A, ~ 4;)
+ T2 tr Q5 ' A [X3* (1 — Pxs+) X3*]1 Ay
= G,(4,) + ¢, say
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Hy(A43) = Gy(A;) — 2T tr 05 'T45(A; — A3)

+ T4 tr Q5 T4 X3 (1 — Pxs=) X3*17'T,
Hy(5) = Gy (&) — 2VT: 00" (i — ) + T42Q67' 73 RSS5 !
Hy(0) = G,(8) — 27238516 — 0) + T°4: 05 '9; RSS5!
Hy(A,,A3) = Gy(A4,,43) + ¢,
Hy(3,0,4,,45) = Gy(,0,45,43) + c.

Here A, is a consistent estimate of A,y which can be obtained as in Part
1, X* and X** are matrices, the 7-th rows of which are, respectively, devi-
ations of x, from the sample mean and the fitted time trend. Also, we
define for computational convenience the least squares regression equations

() x5, =1, %2 + &1,
(i) x3, = o + Uy x5, + €2
(iii) X3 = f + 0t + T3, + &3,

for a sample of size T, and let f‘, = T“ﬁjlzo (j = 1,2,3). Similarly, in the
regressions

() 1=x3,8, +x5,8, + ey,

(i) 1 = 0t + X}, + x3,8, + ey,
(i) £ = 4+ %385 + x§, 03 + &5,
we let RSS, be the residual sum of squares from the j-th regression (j = 1,
2,3)and let 4, = —=T'V2(3/ Ay (j =1, 2) and 73 = =T V25 Ay.

If Ayp =0, then Ty =0 and v, = 0 for all j = 1, 2, 3. Therefore, if the
X,/’s are strictly exogenous or lagged variables whose innovations are only
contemporaneously correlated with the regression errors, then the above
transformations are unnecessary and the H,- and G,-statistics are asymptot-
ically equivalent. Note that we do not need a correction for possible serial
correlation between the regression errors and the innovations of {x3,}. Fi-

nally, we conclude this section by presenting the limiting distributions of the
H,-statistics in terms of a functional A, which is given by

h(B:N) = g(B;N’O) = gI(BvN:O)
as in Part 1.

THEOREM 4.3. Let Lo = 0. Then for the regression equations (11)-(13)
we have

(@) Hy(Ay) = h(Bo,Qy), Hy(A3) = h(By,Qs),
Hy(Ay, As) = h(Bo, Q1) + h(Bo,By)
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(b) Hy(A;) = h(Bo, QF), Hy(A3) = h(Bo, Q7)
H, () = h(Bo, Py)
H;(A,,A;) = h(Bo,Q}) + h(By, B)
H,(fi, A2, A3) = h(Bo,1) + h(By, Q) + h(Bo, B3)
(©) Hy(A;) = h(Bo,QT"), H;(As3) = h(By, 05")
H,(fi) = h(Bo,P;), Hy(6) = h(B,,P;)
H,(A3,A3) = h(Bo, Q) + h(Bo,B3™)
H, (5,0, A, A3) = h(Bo,1) + h(Bo,r*) + h(Bo, Qi*) + h(Bo,B3*)

where r* = r — } and other notation is defined in Theorem 3.3.

5. SPECIALIZATIONS
5.1. Regressions with Strictly Exogenous Integrated Regressors

In view of Theorem 3.2 and Theorem 4.1, it is easy to see that when Z,; =0
Theorem 5.2 and Theorem 5.4 of Part 1 apply to the regression coefficients
of the integrated variables as well as the constant and the time trends in (8)-
(10), since they are asymptotically equivalent, both for estimation and
hypothesis testing, to regressions (8)'-(10)’. Hence all the theory in Section
5.1 of Part 1 remains valid.

We can, of course, expect similar results for regression equations (11)-
(13). More explicitly, we assume that the integrated regressors in these regres-
sions are strictly exogenous or, in other words, that the processes {v,,} and
{vs,}, which drive {x,,} and {x;,}, are generated independently from the
regression error process {,}. It follows then that both B, and B; in the re-
sults of Theorem 3.3 become independent of B, since £, = 235 = 0.

The following theorem, which is parallel to Theorem 5.2 of Part 1, charac-
terizes the asymptotic behavior of the least squares estimators in (11)-(13)
when the integrated regressors are strictly exogenous. It can be easily de-
duced from Lemma 5.1 of Part 1.

THEOREM 35.1. Suppose L5 =0, Q0 = Ay = 0, and Q30 = 0. Then we
have in regressions (11)-(13)

(@) (Ay — A) MR, (A — A))M52, (A, — A)MZ? = N(0,Q ® I,,)
(b) (A; — A)M3V2, (A5 — A)M5Y2,(As — A)M3572 = N(0,Q0 ® 1,,)
© (& — wyma"2, (5 — wm3"%, (6 — 0)m3"2 = N(0,Q)

where notation is defined in (23).
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Theorem 5.1 once again confirms that upon appropriate standardization
the conventional asymptotic theory applies to regressions with strictly ex-
ogenously integrated regressors. It seems almost trivial to extend this result
to the case of higher order integrated processes. We can write the results
given in Theorem 5.1 heuristically in a form which is more compatible with
classical regression theory, as in Part 1. For example, we have

Ay~ A; ~ N(0,Q ® (X351 = Px,)X2)™")
and
Ay — A; ~ N(0,Q ® (X5(I — Px,)X3)™")

conditionally on a realization of {x,] and {x;,} for z = 1,..., T. Similar
expressions are, of course, possible for the other estimators.

The next result also follows from our previous theory and Corollary 5.3
of Part 1.

THEOREM 5.2. Suppose L5 = 0, Qy = Ay = 0, and Q4 = 0. Then in

the regression equations (11)-(13):

(@) The limiting distributions of the G,-statistics for the hypotheses, possi-
bly joint, of (19), (20), and (22) are chi-square, with degrees of freedom
given by the number of restrictions for each test; and

(b) If @ = X and (15) holds with covariance matrix given by (17), then the
Fy- (and G,)-statistics for the joint hypothesis of (18) with any of (19),
(20), and (22) are also asymptotically chi-square.

Theorem 5.2(a) is just a natural extension of Theorem 5.4 in Part 1, and
(b) is an immediate consequence of Theorem 4.2(c). Thus, (b) also applies
to the F;- (and G,)-statistics in regressions (8)-(10) in view of Theorem
4.1(c). Notice that we do not impose any restriction on {,; in either the
above theorem or Theorem 5.1. We therefore allow {x,,} and {x;,] to be
driven by the processes that are both serially and contemporaneously inter-
correlated as long as the invariance principle (4) holds. Also, if the innova-
tion {w,} is a square integrable martingale difference sequence and @ = L as
in Theorem 5.2(b), then £, = 0, £, = 0, L5, = 0 is sufficient to ensure that
the above two theorems hold.

It may be worth noting that Theorems 5.1 and 5.2 are valid when in addi-
tion to our underlying assumptions

E(u/|F,_,) =0 and E(wu/|F_) =1L,

where F,_; = o(xy,...,X:V,—1), a o-field representing the information accu-
mulated up to time ¢ — 1 (i.e., including x, which is assumed to be predeter-
mined here). The standard statistical procedure for the linear regression is,
of course, not legitimate if the above conditions are violated and the model
is misspecified. Our results developed in previous sections are intended to
apply in quite general situations which allow for misspecificafion in this
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sense. By their very nature they therefore include correctly specified models
in which orthogonality and homoskedasticity conditions obtain. Under these
conditions, the classical regression theory is fully applicable as is implied by
Theorems 5.1 and 5.2.

5.2. Regressions with Cointegrated Regressors
We shall consider the n-variate linear model
yl‘ = AZ, + u, (24)

where the m-vector process {z,} is cointegrated in the sense of Engle and
Granger {2]; that is, the regressors are integrated individually, but there are
certain linear combinations (or cointegrating vectors) which lower their order
of integration. The regression theory for the above model when {z,} is I(1)
is considered in Part 1. These results, however, do not apply to the above
model as was mentioned in Part 1, since the covariance matrix of the Brow-
nian motion which asymptotically represents {z,] becomes singular (see
Phillips [8] and Phillips and Quliaris [10]).

In the following, we show how the general regression theory for (24) can
be readily deduced from our previous results. Now we assume in (24) that
the vector process {z,} is cointegrated, while each variable is either I(1) or
1(2), though it is not difficult to extend the subsequent theory to the case of
higher order integrated processes. First transform (24) as:

Y= A Xy + Axxy + Asxs, + U, (25)

where x, = H/z,, A, = AH, (j = 1,2,3), and H = (H,,H,,H;) is an
orthogonal matrix with the convention that x;, = 0 if {z,] is I(1). It is
assumed that the above transformed model satisfies the conditions underly-
ing (1) or (2) introduced in Section 2.

The asymptotic theory developed in Section 3 and Section 4 is directly
applicable to the least squares regression corresponding to (25). The asymp-
totic results for certain linear combinations of the regression coefficients A
of the original model (24), viz. /iHJ (/ = 1,2,3), are given by the theorems
in previous sections. We can, of course, consider extensions of (24) to regres-
sions with a constant or a time trend in a similar way.

In particular, each column # of the matrix H, is a cointegrating vector of
{z;} such that {h’z,} is stationary. We have assumed in (25) that the col-
umns of H; are a set of orthonormal vectors. Being specific about the
matrix constructed from such cointegrating vectors, however, may require
unnecessary effort in getting the explicit limiting distribution of A for a spe-
cific model such as a VAR with unit roots. Thus, let C be any matrix (of full
column rank) such that R(C) = R(H,) where R(K) denotes the linear
space spanned by the column vectors of the matrix K; and set x;, = C’z, in
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(25) with a conformable definition for 4,. We denote by R(K)* the or-
thogonal complement of R(K).

We assumed that (15) holds, and hence VT(A; — A}) has a limiting nor-
mal distribution with covariance matrix V = (J; ® J,)V°(J{ ® J;), as given
in Theorem 3.1. Our next result now follows:

THEOREM 5.3.
@ VT(A - A*) = NO,J R C)VUIR® C'))

where A* = A + L,L7'C’. Moreover, if V is positive definite, R(R’) N
R(I® C)* = ¢, and R vec A* =r for a given g x nm matrix R of rank q,
then

(b) (Rvec A —r)[RU® C)V(IQ C)R' 1" (Rvec A —r) = x2.

The above theorem is a direct consequence of Theorem 3.1, It is easy to
show that the results are also valid for models which extend (24) by includ-
ing a constant or a time trend term. The asymptotic normality of A with a
singular covariance matrix was earlier found by Sims {11] in some special
cases. Theorem 5.3(a) implies that for any vector 6 & R(C)*,

VT(A — A*)6 = N(0,(I Q@ §'CYV(I ® C'5)).

If 6 € R(C)*, then the limiting distribution of (A — A*)6 = (A — A)éb is,
upon restandardization, easily obtained from Theorem 3.2 or Theorem 3.4
and is nonnormal.

In the simple case where £, = 0 and V', is given by (17), we have V =
Zo ® Z7! and the limiting covariance matrix of VT (A — A) in Theorem
5.3(a) reduces to L, @ CI7'C’. Further, by Theorem 3.4, the least squares
estimator L, of I, from (24) is consistent. Hence, the covariance matrix can
be consistently estimated by

r -1
£ ® C[C’[—ZTZJC} C’ (26)

if all the cointegrating vectors are known. However, this is not true in many
interesting cases and the following result should then be useful.

Proposition 5.4:

2] ~ce[z2]q e o).

Proposition 5.4, of course, implies that if V' = L, ® I7’, then the limit-
ing covariance matrix of VT(4 — A) can be consistently estimated by £, ®
(T~'Z'Z)7", instead of (26) which is parallel to the classical regression the-
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ory. Finally, observe that the following standard Wald statistic for testing
R vec A =r, where R is given as in Theorem 5.3(b),

(Rvec A —r){RI[E,® (Z'Z) IR’} (R vec A — 1)

has a limiting chi-squared distribution that is exactly the same as in the clas-
sical regression theory. All of the above results obviously hold for regressions
with a constant or a time trend as well.

5.3. VAR Systems with Exogenous Variables

As mentioned earlier, our theory also applies to first order VAR systems with
exogenous variables when the roots are unity. We explicitly write the mod-
els as:

Y=AXxy+ Ay +u, Ay=1 7
and
Yi= Ay X+ Axxyy + Ay tuy, Az =1 28)

where {x),} and [x;,} are generated by (3). Notice that models (27) and (28)
correspond, respectively, to (1) and (2) introduced in Section 2. We call x,
“exogenous” simply because it is generated by a mechanism distinct from
{u,}. We do not presume that any conventional exogeneity condition
applies to {x,]. A special case of the above models (viz, that for which 7 =
m; = my =1 and [x;,} and {x,,} are strictly exogenous) was studied in
Nankervis and Savin [6] using Monte Carlo methods.

In the VAR system (27) with stationary exogenous variables, it is easy to
see that A, reduces to A Ay + Ap, Az to AjA; + Ay; and B, = A B, +
By. If the matrix

QO Q1,0:|
29)
[910 U

is positive definite, then so is the covariance matrix of B,, and therefore the
asymptotic results for the least squares regressions (8)-(10) for x,; = y,_ are
given by Theorems 3.1 and 3.2 with the substitutions indicated above. Of
course, we set u = 6 = 0 here. It may be worth noting that Theorem 3.1
implies that the regression coefficient of x;, aysmptotically behaves exactly
as if the existence of the unit roots were known.

Moreover, when L, = 0, the limiting distributions of the G-statistics are
easily deduced. Contrary to the VAR system considered in Part 1, the asymp-
totic distributions of the transformed H-statistics, however, are dependent
upon A; and the parameters in (29). It is interesting to recall that this
parameter dependency becomes one dimensional when # = 1 as shown in
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Section 5.3 of Part 1. More specifically, the distributions of the various H-
statistics asymptotically depend on the composite parameter

w§ + ajwio
- 2 2 ’ /Q 1/2
wolws + 2ajwe + a[Q o)

where (and henceforth) we use lower case letters to denote scalars and vec-
tors. Thus, if £,y = 0, the existence of a unit root can be tested by first esti-
mating p and using the table (for m = 1) provided at the end of Part 1,
although the test based on a regression of y, on y,_; yields a much simpler
procedure. Finally, if x,, is a set of differenced y,’s and is not “exogenous,”
then the matrix (29) is singular. This case will be considered in Section 5.4.

In (28), the exogenous variables are integrated of order one and {y,} is
effectively driven by {x;,} which dominates lower order terms. The asymp-
totic theory for regressions (11)-(13) with x;, = y,_; (and 6 = 0) is thus
given by Theorem 3.1 and Theorem 3.3 with the replacement of B; by
Ay B,, if A, is of full row rank and 4,2, A5 is positive definite. Deficiency
in the row rank of A, implies the existence of cointegration in { y,}, and this
case can be analyzed as in the previous section. It also follows that the strict
exogeneity of {x,,}) together with I,, = 0 is sufficient for Theorem 5.1 and
Theorem 5.2 to hold for the model (28).

This confirms some of the conjectures made by Nankervis and Savin [6]
based on their extensive Monte Carlo study. They found, for example, that
the standard ¢-statistic for testing a unit root in (28) with a; = 0 is asymp-
totically normal if a, # 0. The same result obviously does not hold in (27).
One might expect, however, the limiting distribution of the ¢-statistic for the
null hypothesis a, = 1 in (27) can be well approximated by normal if {x;,}
is “nearly” integrated and strictly exogenous, and if a; # 0. This explains
how Nankervis and Savin [6] mistakenly concluded that the statistic has a
limiting normal distribution in such a case.

More precisely, the asymptotic distribution of the ¢-statistic is given, in this
simple setup, by

1
f VidWw,
0

where V; = a;0, W) + woW, and, W, and W, are two independent Brownian
motions with unit variance. It is now clear that the normal approximation
of (30) becomes more satisfactory as a; or w; gets large relative to w, (see
Lemma 5.1 of Part 1), which is likely to occur if {x,} is an autoregres-
sive process with a coefficient near to unity. In fact, it is easy to see that
Nankervis and Savin [6] set w] = 25w}3 in their experiment. When a; = 0,

(30)
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then (30) reduces to the limiting distribution of Dickey and Fuller’s 7 statistic,
as we would expect.

When 7 = m, =1 and £}y = 0 in (28) we can easily deduce from Theorem
4.3 that the limiting distributions of the various H,-statistics depend only
O p = wyo/ (wew,), which is parallel to Lemma 5.6 of Part 1. The asymp-
totic distributions of some of the H,-statistics in the case of p = 1 are tabu-
lated in Hasza and Fuller [4], where they considered a (scalar) stochastic
difference equation with a double unit root when the innovations are inde-
pendently generated. A generalization of their model to the multivariate case
with possibly serially dependent innovations will be explored in the next
section.

5.4. General VAR System with Unit Roots

Based upon our previous results, a very general theory for VAR systems with
unit roots and with lags of an arbitrary order can now be established. We
first consider a VAR with simple unit roots which is appropriately trans-
formed and written as:

Ve=Aui1 —y2) +.. .+ Ap(Ye—p — Yeep—1) + A2y +u,. an

Here A, = I and all the roots of the determinantal equation det A4,(z) =0,
where A;(z) = I — I!_,A,,z/, are assumed to lie outside the unit circle. We
write Ay = (A1, -5 A1p)s X1t = (Viet = Yi2s oo 3 Vip = Yi—p—1) and xp, =
Ji—1, and assume (31) in this notation satisfies the conditions introduced for
(1) in Section 2.

With this formulation (31) would seem to fali in the framework of (27),
except that the included stationary variables are not “exogenous” and the
covariance matrix given by (29) is in general singular. The results for (27)
therefore do not apply. In fact, if we assume {u,} is a weakly stationary
process which has a spectral density matrix, and (5)’ holds, then the follow-
ing relationship is satisfied by the submatrices of (29):

Q=0,,Q092, @ =JQ%J

Q10 =lp ® JQo

where ¢, is the p-vector of ones and J = A4, (1)~!. It is now not difficult to
show that

B, =, & JBya.s.

and

B, =A,B, + By =JBya.s.

since the Brownian motions are of almost surely continuous sample paths.
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The asymptotic theory for the regressions (8)-(10) when the data are gen-
erated by (31) now can be easily deduced from Theorems 3.1 and 3.2 with
these substitutions. The true parameter values for x and 6 are, of course,
assumed to be zero. From the viewpoint of statistical inference on A4, the
regressions {8)~-(10) for the model (31) are thus asymptotically equivalent to
the VAR using differenced data. This is common in practice when the roots
are believed to be unity. The asympiotic theory for stationary VAR’s, which
is well developed in the literature (e.g. Hannan [3]), may therefore be applied
for inference on A;.

When the lagged differences in (31) are uncorrelated with the regression
errors, as is conventionally assumed in empirical VAR models, our covari-
ance matrix estimates are consistent. The functional gg (By, M(B,),E) in
Theorem 4.1, which represents the limiting distributions of the G, -statistics
for regressions (8)-(10), reduces in this case to gg(By, M(JB;),E). Also,
the asymptotic distributions of the transformed H-statistics can be rep-
resented as h(By, M(JB,)) with various functionals M (-) introduced in
Part 1. It can now be easily shown for these M(-) that

h(Boy, M(JBy)) = h(W,M(W)) (32)

where W denotes n-vector standard Brownian motion with covariance matrix
I,. (32) is paraliel to the result of Lemma 5.5 in Part 1, and implies that the
tests for unit roots and other tests, which may include the constant term and
the coefficient of the time trend, in (31) are asymptotically equivalent to the
corresponging tests in the first order VAR system with unit roots considered
in Part 1. The condition I, = 0 imposed here, is often violated. It may also
be worth noting that this condition seems likely to imply A,; = A,y = 0in
many cases of practical interest (although not necessarily). To the extent that
these conditions are satisfied, however, the motivation for the transforma-
tions to construct the H-statistics decreases accordingly.

Secondly, we consider VAR’s with double unit roots which we transform
as:

V=AnAY, .+ ApAY, ,+ AAy + Asyis + U, (33)

where A, = A; = I and the same condition as in (31) is satisfied for A,,,
J =1,...,p. By appropriately defining x,,, x»,, and x;,, we suppose the
conditions assumed for (2) hold for the above model. The univariate version
of (33) with independent errors was studied by Hasza and Fuller [4].

It follows from Theorem 3.1 that statistical inference on 4, in (33) based
upon regressions (11)-(13) (again with u = 6 = 0) is asymptotically equiva-
Ient to that based on the stationary VAR using second differenced data. If
the second differenced stationary component in (33) is either uncorrelated
with the innovation sequence {4,]}, or is excluded from the regression, the
hypothesis of unit roots can be tesied using our H,-statistics. The limiting
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distributions of these statistics can be easily obtained from Theorem 4.3 by
substituting B; = B, = JB,, where J = A,(1)7! as defined earlier for (31).
We also have

LEMMA 5.5. For the various functionals N(-,-) introduced in Theorem
3.3,

h(Bo,N(JBy,JBy)) = h(W,N(W, W))

where W denotes n-vector standard Brownian motion (i.e., Brownian motion
with covariance matrix = I,,).

Lemma 5.5 implies that the null distributions of the H,-statistics for the
unit root tests and other tests including the constant term and the time trend
coefficients are asymptotically invariant within a wide class of {«,}, which
is aliowed to be weakly dependent and possibly heterogeneous. No transfor-
mation is needed if the innovations are martingale differences. When n =1,
the limiting distributions of some of the H,-statistics, viz. Hy(A,, A3),
Hz(/iz,/i:;), Hz(ﬁ,/iz,/i:;), Hz(/‘iz,A‘.:;), and Hz(ﬁ,, 6,/112,/'1.3), are tabu-
lated in Hasza and Fuller [4]. Similarly, as in the case of single unit roots,
spurious demeaning, and detrending seem to yield statistics whose limiting
distributions have thicker tails. The direction of the bias in size resulting
from the tests based nominally on chi-square tables, however, is not certain.
Interestingly, their table shows that all the statistics considered there, except
H,(A,,A;) would lead us to under-rejection of the null hypotheses if the
decision were based on the chi-square table. This is in sharp contrast to the
simple test of a single unit root.

For a VAR with unit roots but not transformed as in (31) or (33), the re-
sults of Section 5.2 apply and correspond to those given above for the
appropriately transformed models. From the practical point of view, the
asymptotic normality given in Theorem 5.3 becomes more important as we
have more lags and less unit roots, because then the limiting covariance
matrix, roughly speaking, becomes less singular and the overall asymptotic
behavior of A is mainly determined by the contribution from the stationary
part. In the context of the VAR system considered here, the matrix C defined
in Section 5.2 takes the form 7, ® C,. for the p-th order VAR with simple
unit roots, for example, C, is given by

1
-1 1 0
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and therefore Theorem 5.3(b) holds for any matrix R except for R of the
form R, & , where 1, is as before the p-vector of ones. Similarly, where
there are double unit roots, R(C;)* is two dimensional and is spanned by
tp and 7,, where 7, = (1,2,...,p)".

We have assumed so far that Q, is positive definite and { y,]} is itself not
cointegrated. If this is not true and there exists a matrix C; such that { C{y,}
is stationary, then each column of C; ® 1, is a cointegrating vector for the
p-th order VAR. Combining this with the above results, one can easily
deduce the theory for the general VAR system. Finally notice that if the inno-
vation sequence {#,} is i.i.d. or a martingale difference sequence as is in the
standard VAR system, Proposition 5.4 implies that the usual Wald statistic
has a limiting chi-square distribution as long as the restriction matrix R satis-
fies the condition given in Theorem 5.3. Our results here therefore give a
rather complete answer to Sims’s [11] problem concerning asymptotic nor-
mality of the regression coefficients in a VAR with unit roots, which has
recently been explored in Sims, Stock, and Watson [12].

6. CONCLUSIONS

The central purpose of this paper and its companion, Part 1, has been to
achieve a simple and unifying asymptotic dnalysis of multivariate regressions
with integrated processes. The framework of analysis we have developed is
a general one but it has a common architecture that helps to simplify and
codify what would otherwise be a myriad of isolated results. The models we
have looked at in detail show well the scope of the underlying theory. They
have been deliberately selected with two objectives in mind: (i) to help pro-
vide an overall picture of how additional complications, such as multiple
lags, cointegrated regressors, and regressors with drift, may be comfortably
accommodated within the theory; and (ii) to provide explicit results for mod-
els of obvious empirical relevance such as VAR’s with some unit roots and
some cointegrated variates. It is our hope that the framework we have devel-
oped will provide a useful conduit for further research in this field as well.
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MATHEMATICAL APPENDIX

1. Proof of Lemma 2.1. The initial values of {x;} do not affect our asymptotic

results and are set to be zero with no loss of generality. To prove (a)(i), (b)(i), and
(c)(D)—(ii), we first notice for r € [(¢t — 1)/T,¢/T] that

r t
T2x;, =f Xar(s)ds + T7283, + T"‘/Z(; - r)Sm_l) (AD
0

using an obvious subscript notation for components of X and S,. It follows from
(A1) that

T r 1
T572x,, =f f X,yr(s)dsdr + T328,, + 5 T‘S/ZSMH)
{ 0

t-1)/T

forall ¢t =1,...,T and, since L]S, = O,(T%'?)

1 r
T_S/ZE{X3t = f f X3T(S)dsdr + Op(l)
0 JO

1 r 1
=f fB3(s)dsdr=f B,
o Jo 0

by the continuous mapping theorem. This proves (a)(i). By the same token (Al)
yields:

r t t :
T_5/2IX3t — rfo X5 (s)ds + T—S/Z(; _ r) ):tl_ISSj — T—l/Z(;w — r) S3¢-1y

4
+ T—S/ZtS:;t + T_3/2 (} —_ r) tSS(t—l)
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and

T r 1
T77?1x3, =f rf Xsr(s)dsdr + - T772L71S,,
-1/ Jo 2

1 _ _ |
- g T 7/283(1‘—1) + T 7/2tS3t + 5 T 7/2tS3(t_1).

Notice (a)(i) and that 725, = 0,(T°2) to get
1 r
T 725 tx;, =/ rf Xsr(s)dsdr + 0,(1)
0 0

1
= f rE3
0

as stated in (b)(i). The proof of (c)(i) is also immediate from (A1), i.e.,

1 r r ’
T““erx3,x§,=f U X3T(s)ds] U X3T(s)ds] dr
0 0 0

+ T*ETI(Z17"S5,) 85, + S5,(Z17'S3)']

1
+ 3 TETUE83,)S5¢—1) + S3¢—1) (E17'83,)’]

1
3 T *ETS3¢-1)S3(r—1)

1 r r ’
=/ [f X3T(s)ds] [f X3T(s)ds] dr + o,(1)
0 0 0
1 — —
=>/ B;B;.
0

125

Here we use the fact that LT (Z47'S,)S/ = O,(T3). This can be easily seen from

(c)(ii), which will be proved next. We have

T~"2xy = Xor(r) + T™ 0y,

for r € [(t — 1)/T,t/T) and therefore,

1 r
T_321Tx3txﬁt=f0 I:(fo Xsr(s)dS)er(")']d"

1
+ T3L{(E7'Sy,)v3, + 5 T 3L Ss(0-1) S3e—1y + T L1835,

1 r
=/ I:(f X3T(S)dS)X2T(r)’:|dr+ Op(l)
0 4]
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1
0

since EIT():{‘ISJ)v,’ = O,,(Tz) as is easily seen again from what follows. For (c)(iv),
we have

T—ZEITx3,x{, = T_z):lr(zi_lsh)vl’t + T_zzlrsstv{t
= T72L185,(Sir — S1,) + 0,(1)
= (T2E(S)(T728,7)" — T72ET8,, 81, + 0,(1)

1 1
= [f B3(r)dr]Bl(1)’ —f By (r)B,(r)'dr
0 0

1
4]

by integration by parts. The proof of (c)(v) is entirely analogous and is omitted. For
the remaining results, see Part 1.

2. Proof of Theorem 3.1. In the regression equation (8), we have

A=A+ U (1= Pe,) X, [ X{(I — Py,) X;]7"
U’X,) (X,’Xl

=A1+ (_
T T

-1
) + 0, (T
55 A4, + T{oL!

and given (15),

. U'X\ { XX\
AI—A’f:( ‘)(#) — LI + 0,(T7Y)

T T
U'X, X{X,)—l (X{X,)"(X{Xl )
= - X - X — _¥ Z_l
( T 10)( T 10 T T 1f&1
+0,(T™")

X{X ,
=|{— —Lo)Ir' - I 2*1( —2)2—1+ T-Y2).
( T 10) 1 to &1 T 1) Ei 0, ( )
It follows from (15) that

T2(A, — A}) = J (T V25T (w,w/ — INJ3 + 0,(1)
= (J; ® L)N(0,V°) = N(0, V)

as required. The results for other regressions can be deduced similarly.
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3. Proof of Theorem 3.2. Write the least squares regression equations (8)-(10) as

7 = A, %5+ O
V' =pi'+ A, %5+ U

V' =pi + 07 + A, X+ U

where « = (l,},;. S, r=(,2,...,TY,and i = (I — Py ), 7= (I — Px))7, )?2 =
(I — Px)X;, Y = (I — Px,)Y. We have from Lemma 2.1

ui ! U ! U'X !
—L=>fdP, T;=frdR 2=>fdPBZ’+II’. (A2)
T 0 T i) T 0

Moreover, it 18 easy to see that

i'c 1 77T 1 XX, X3X, 1
?=I+Op}, —3‘=—3+0p"‘, =——=—+0,l =},

T Y T T
UF T 1 X, VX, 1 X X 1
Fomrolz) pi-prraly) F-mrols)
(A3)

Now the stated result follows easily from the proofs of Theorem 3.1-Theorem 3.3
in Part 1.

4, Proof of Theorem 3.3. In notation similar to that above, we rewrite regressions
(11)-(13) as

Y’ = Aziz’ + A3X§ + 0/

’

G

V' =pi' + 4, %5 + A X} +
V=g + 07 + A, X3+ A, %5+ U,

Notice that

UXx !
== f dPBj (Ad)
T 0

and

X vX 0(1) 7'X3_T'X3+O(l) )?2’)?3_X2’X3+0(1)
P ’ 14 ’ - P ’

T3/2 ~ 572 T T7/2 . T2 T T3 T3 T
XX, XiX, 1
o = p +0, 7) (A5)

The stated results are immediate from (A2)-(AS) and Lemma 2.1. Notice also that

[r([ ) e [ ([ 58 5e [ o [0

because fo‘ B;Q{ =0a.s.
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5. Proof of Theorem 3.4. It can be easily shown that in regressions (8)-(10) or in

(11D-(12)

U'U (U (XX N\ XU 1
I e - + Op -
T T T T T T T T

P —
— Lo — L{oZ7" Lio.

Q\)
Q)
ql
C
Q\r
[t

Moreover, if I;o = 0 and (15) holds, then 772U’ X, = O,(1) and
Uv 0o 0 uvu (1)

, , — +0
AT

T T T T
from which the stated results follow immediately.

6. Proof of Theorem 4.1. If £,y = 0, it follows from Theorem 3.4(a) that £,,%,.
£,-5 £,. Therefore, by Theorem 3.1 it suffices to that
M, 5!, i=1,23

for part (a). Also, if £,y = 0, P(r), and II in (A2)-(A4) reduce, respectively, to
By (r) and A,,. Part (b) is now immediate in light of (A3). Finally, the limiting var-
iate Z (say) in (15) depends on a quadratic function of the elements of w,, whereas
B(r) depends on partial sums which are linear in w,’s. Hence Z and B(r) are uncor-
related and, being Gaussian, are therefore independent. The independence, of course,
carries over to any two statistics whose limiting distributions are, respectively, rep-
resented by functionals of Z and B(r), as in our case. This proves part (c).

7. Proof of Theorem 4.2. The proofs of part (a) and (e) are entirely analogous,
respectively, to those of parts (a) and (c) of Theorem 4.1. For (b)-(d), notice that

1 -1 1 -1
T2M12 = (./0 QIQII) s T3M13 = (fo QzQz')
1 -1 1 -1
T2M22 = (./0 or f”) s T3M23 = (/ QfQi“)
0
1 -1 1 -1
T°M;, = (./o o T*') , T’Msy = (./0 Qz**Qf*')

1 \-1 o \-1 T \~1
Tmy, = (/ ﬁf) s Tmsy = (f Pzz) , TPmy = (f p32) . (A6)
o 0 0

The stated results are immediate from the above results, and those of Theorem 3.3.
Recall that if £,y = 0, then II reduces to Ayg.

8. Proof of Theorem 4.3. We have

1 1 -1
f‘x = (/ Bsle) (f Bsz') Ay
0 0
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. 1 _ 1 —1
L= (f B;B;')(f BZ*B;') Az
0 0
~ 1 t -1
F3 = (/ B;*B;*’) (/ BZ**BZ**’) Azo.
0 0

Also,

¥ = —fol Ql'(fol QIQI/)-IAZO
== [lor([ 0o,
7= - [ sor ([ eror) ax

and RSS;! = my,;, RSS;! = my;, and RSS;! = my,. Now all the stated results for
the statistics for testing single hypotheses follow immediately from the above results,
(A6), Theorem 3.3, and Theorem 4.2(b)-(d). For the joint tests, apply Lemma A.1
in Part 1. Thus, for example, in the case of R, = I and R; = 1,

G,(A,,A3) = g(By, Q1,A2) + h(Boy,By)

and the stated result for H, (A4,, A;) follows easily from the fact that
a= h(By, Q) — 2(By, Q1,A2),

which may be deduced from the earlier result for H,(A,). The proofs for the other
joint test statistics are analogous and are omitted.

9. Proof of Theorem 5.1. To facilitate the proofs, we define a functional k by

1 1 ~1/2
k(B,N) =f dBN'(/ NN’)
0 0

as in Part 1. It is easy to see from Theorem 3.3 and (A9)-(A12) that the limiting dis-
tributions of the given statistics can be represented in the generic form k(By, N(B,,
B;)) where the function N(-,-) of B, and B; is given for each estimator in The-
orem 3.3. Since 9y, = 0 and Q37 = 0, and B(r) is Gaussian, B, is independent of
both B, and B;, and, hence, any function of B, and B;, including N = N(B,, B;).
All the stated results are now simple consequences of Lemma 5.1 in Part 1.

10. Proof of Theorem 5.2. When I,y = 0 and A,y = 0, the limiting distribu-
tions of the G,-statistics in Theorem 4.2 become of the form hg(By, N), where
hgr(-,-) = ggr(-,-,0) as in part 1, and N is a function of B, and B, appropriately
defined for each test. If 0,y = 0 and @3, = 0, then N = N(B,, B;) is independent of
By and the results for the statistics for the single hypothesis follow easily from
Corollary 5.3(a) in Part 1. For the tests of joint hypotheses among (19), (20), and
(22), we assume momentarily that (19) and (22) are of simple form and that R, = I
and R, = I. Now, by virtue of Lemma A.1 of Part 1, all the G,-statistics for the
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joint tests can simply be written as sums of the statistics for the individual null
hypotheses. Therefore, if A,y = 0, we have for example

G,(A,,As) = h(By, Q1) + h(By,B;).

Now notice that

1
f QB =0a.s.
0

and apply Corollary 5.3(b) of Part 1 to get the desired result. The proofs for the other
joint tests, and for the tests of subsets of parameters are entirely analogous. The latter
case obviously extends our proof to the general case where R, and R; are arbitrary
matrices of full row rank, which can be easily seen by appropriate transformation
of the models where necessary. This proves part (a). For (b), we assume R, = . It is
easy to see that this causes no loss of generality. Then again by Lemma A.1 in Part 1,
we can write, for example,

Fy(A,, Ay, A3) = F(A)) + F(A4,, 4;)

where F~2(142,143) is the Wald statistic for the joint test of (19) and (22) based on
regressions with no stationary variables. We have, however, seen that F~2(142,143) is
asymptotically equivalent to F, (/12,143), the Wald statistic constructed from regres-
sion (11). Now the stated result for F,(A,,A,,A,) follows from Theorem 4.2(a), (¢),
and part (a) above. The proofs for the other Wald statistics for the joint tests of (18)-
(20) and (22) are analogous and are therefore omitted. Finally, notice that, under the
given conditions, @ = I and the F,- and G,-statistics have the same asymptotic dis-
tributions.

11. Proof of Theorem 5.3. To prove part (a), we first let C = H,. Then we have

N R 1 "
VT(A — A*) = JT(4, - ?)Hf"'\/—T[T(Az_Az)Hz']
1 .
R [T?(A; — A3)H3]

= VT(A, — AT)H| + 0,(1).

Notice that A*H = (A7,0,0). Now the result follows directly from Theorem 3.1(b).
If Cis a matrix such that R(C) = R(H,), then there exists an invertible matrix L
such that H, = CL. The stated result in (a) therefore follows easily by redefining V°,
L,, and I,, appropriately. For part (b), simply note that, under the given conditions,
R(I® C) is of full row rank, and so R(J® C)V(I ® C’)R’ is invertible.

12. Proof of Proposition 5.4. We assume w.l.o.g. that C = H,. It is easy to show

(7)== (%) xivo3)
T TN AN o
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where K| = (I, 0) , which is immediate from Lemma 2.1 by inverting a
partitioned matrix. Now, notice that

(Z’Z)—1 (X’X)—1
=H H'
T T

NZ'Z -1 , 1
= H, Hl‘?Hl H1+Op?.

to get the stated result.

13. Proof of Lemma 5.5. Write
1 1 —1 1
h(By,N) = tr{ﬂo‘mf dBoN'(f NN’) f NdB(;QO‘VZ}
0 [i] 4]
and notice that

1 ~1
N(JBo,JBo)'(f N(JBo,JBo)N(JBo,JBo)') N(JBy, JB,)
0

1 -1
=N(BO,BO)'( f N(BO,BO)N(BO,BO)') N(Bo, Bo)
4]

1 -1
=N(W,W)’(f N(W,W)N(W,W)’) NW, W)
0

upon the transformation B, — Q¢ /2B, = W for the various functions N(-,-) intro-
duced in Theorem 3.3.



