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Abstract: It 1s shown that matrix quotients of submatrices of a spherical matrix are distributed as matrix Cauchy. This
generalizes known results for scalar ratios of independent normal vanates. The derivations are ssmple and make use of the
theory of invariant measures on manifolds.
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1. Spherical matrix distributions

Let X be a random real matrix of dimension n X ¢ (n > g). If the distribution of X is invariant under left
and right orthogonal transformations we say that X is spherical (or spherically symmetric). Such
distributions have been studied extensively in the recent literature. Dawid (1977, 1981), in particular,
provides many useful properties and gives several applications to problems of inference in the multivariate
linear model.

The most prominent member of the spherical family is the matrix normal N, (0, I,,) with density

pdf(X) = (2m) " e r{ - 1XxX'}. (1)
Clearly, (1) is invariant under the transformations
X— H XH,, H €O0(n), H€0(q), )

where O(m)={H(mX m): H'H=1,} is the orthogonal group of order m. Moreover, invariance under

(2) together with the requirement that the components of X be independent actually implies (1) (see

Bartlett (1934), Kac (1939), Hartman and Wintner (1940) and, for a recent proof, Muirhead (1982)).
Other important members of the spherical family are: (i) the matrix ¢ with density

pdf(X) = [x"°L,((n+k~1)/2)] "T,((n+ k + q—1)/2)[det(1 + Xx")] ~"+Hre-7
(3)

where I,(-) denotes the multivariate gamma function and k > 1 is the degrees of freedom parameter; and
(ii) the uniform distribution on the Stiefel manifold V, ,={H(nX q): H’'H=1 o) Wwith density (with
respect to Haar measure):

pdf(X) =[Vol(¥,,)] ' =TI, (n/2) /29", (4)

The uniform distribution on ¥, , is, in fact, uniquely determined by its invariance under the orthogonal
transformations (2) (see James (1954)).
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Some specializations of (1), (3) and (4) are worth mentioning. When ¢=1, (1) is the multivariate
N(, I,), (3) is (proportional to) the multivariate ¢ with degrees of freedom k& and (4) is the uniform
distribution on the unit sphere S, = {h(nX 1)|h’h =1}. When k =1, (3) is the matrix Cauchy distribu-
tion. Moreover, as shown by Dawid (1981), all of these distributions are maintained under marginalization.
In particular, all submatrices of a matrix Cauchy variate are themselves matrix Cauchy.

2. Quotients of spherical distributions

Let X be spherical and partition X as follows:

q
X
X={""].
X, |4

Define the matrix quotient R= X, X; ' and let

- x(x'x)7'*| |k
K=X(X’X) 1/2= 1( )-—1 . _ 1 .
(x| |k,
Since X is spherical we have
XEHIXHZ’ Hleo(n)’ Hzeo(q)’ (5)

—_

where the symbol “ = ” signifies equality in distribution. We find that

H,KH,= H,XH,H}(X'X)"'"H,

= H, XH,(H,X'H{H,XH,) '

=Xx(Xx'X) *=K

in view of (5), so that K is also spherical. But, since K€ V, , and there is a unique invariant measure
(given by the uniform distribution) on the manifold V, ,, we deduce that K has the uniform distribution
on V, . This is true for any choice of the original spherical variate X.

We may write the matrix quotient R in terms of K as

R=K,K;'.

But the distribution of K (and, hence, R) is invariant to the choice of original spherical distribution for X.
We may therefore choose X to be matrix normal as in (1). Since the elements of X are independent we
deduce quite simply that

R=K,K;'=[N, (0, I)][N, (0, I,:)] " = matrix Cauchy. (6)

The final “ = > here generalizes to matrix quotients the well known result for scalar random variables that
a ratio of independent standard normals has a Cauchy distribution.

To prove (6) we proceed as follows. Define S=X,X,, H=X;(X,X;)" /2 and R=X,X;1. We
transform

X— (R, S, H)
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and note that the measure transforms according to
dx=2"9det §)*""? dR(dS)(dH) (7)

where (d H) denotes the unnormalized invariant measure on O(¢q) and (dS) denotes Lebesgue measure on

the space of positive definite matrices. From (1) and (7) we obtain by a simple application of the
multivariate gamma integral

pdf(R) = (2«:)"”"/22—'1[ c tr{—(1/2)(I + R’R)S } (det s)"’“"/z(ds)f (dH)
5 o)
= {@m)™" 27 YL, ((p + 4)/2) det(I + R'R) ™7+ P/t 0ar2)
x {29772 /T,(4/2))

-1 yng —
= [#72L,(4/2)] "'T,((p + 9) /2)[det(1 + R'R)] ~7* 72,
This is seen to be matrix ( p X ¢) Cauchy (as in (3) with k=1 and n = p) by noting that

(e/2) _  L(p/2)
r,((p+9)/2) T,((p+q)/2)°

As observed above, R is matrix Cauchy for any choice of underlying spherical matrix X. In particular,
X itself may be (n X ¢) matrix Cauchy. In this case, the submatrices X; and X, of X are themselves matrix

Cauchy and they are statistically dependent. The quotient R = X; X; ' then has the same matrix Cauchy
distribution as X; itself.
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