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This paper develops a multivariate regression theory for integrated processes
which simplifies and extends much earlier work. Our framework allows for
both stochastic and certain deterministic regressors, vector autoregressions, and
regressors with drift. The main focus of the paper is statistical inference. The
presence of nuisance parameters in the asymptotic distributions of regression
F tests is explored and new transformauons are introduced to deal with these
dependencies. Some specializations of our theory are considered in detail. In
models with strictly exogenous regressors, we demonstrate the validity of con-
ventional asymptotic theory for appropriately constructed Wald tests. These
tests provide a simple and convenient basis for specification robust inferences
in this context. Single equation regression tests are also studied in detail. Here
it is shown that the asymptotic distribution of the Wald test is a mixture of the
chi square of conventional regression theory and the standard unit-root the-
ory. The new result accommodates both extremes and intermediate cases.

1. INTRODUCTION

Recently, there has been growing interest in the theory of regression among
time series that are individually well-explained by models of the ARIMA
type. Such models generate a simple class of nonstationary time series which
we generically describe as integrated processes. More specifically, we call a
time series {X,} an integrated process of order k (in short, an 7(k) process)
if the time series of kth order differences {A*X,] is stationary (an 7(0) pro-
cess). 1(1) processes behave like accumulated sums of stationary innovations
and they possess a single unit root. When we run regressions with such time
series, the asymptotic properties of the regression coefficients, statistical
tests, and regression diagnostics are very different from those of regressions
with stationary time series. Some of these differences have become appar-
ent in recent work by Phillips [15,16], Phillips and Durlauf [19], Phillips and
Ouliaris [20], Stock [23], and Stock and Watson [24].

The aim of the present paper and its sequel (Part 2) is to develop an
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asymptotic theory of sufficient generality to accommodate most regressions
of this type which are important in econometric work. To do so, we use a
framework of multivariate regression that permits regressors which are both
deterministic and stochastic. We allow for vector autoregressions (VAR’s)
and for VAR’s with a fitted constant term, trend, and possibly additional
exogenous regressors. In our general theory, we allow for 7(1) processes with
or without drift as well as cointegrated regressors.

The main focus of this paper is statistical inference in regressions with 7(1)
processes. We develop transformations of conventional tests which, in some
cases, eliminate and, in others, substantially reduce the nuisance-parameter
dependencies which occur in the general asymptotic theory. Certain speciali-
zations of our theory are studied in detail. In models with strictly exogenous
regressors, we show that the conventional asymptotic chi-square theory is
valid for appropriately constructed Wald tests. The construction simply
requires that the usual error-variance matrix estimate be replaced by a con-
sistent estimate of the (scaled) spectral density matrix of the errors at the zero
frequency. The resulting estimate is then consistent for a wide class of sta-
tionary error processes in the regression equation, and the inferences drawn
from the associated Wald test are specification robust in the same sense as
those of White [28] and White and Domowitz [29]. This construction then
offers a substantial simplification of the White and Domowitz procedure for
the case of regressions with integrated regressors.

We also examine multivariate tests for unit roots and provide a simple
characterization of the asymptotic distribution theory in this case. The results
generalize the unit-root theory in earlier work by Dickey and Fuller [5,6], Phil-
lips [16], and Phillips and Perron [22]. After our work was completed, we
learnt of some related research by Tsay and Tiao [26] who studied multivar-
iate tests in a similar context allowing also for complex roots.

Single-equation regression tests are also studied in detail. Here we show
how the parameter dependencies of the general asymptotic theory become
one dimensional, reducing to a single parameter which effectively measures
the time-series correlation between the innovations that drive the regressors
and the errors on the regression equation. In this case, the limit distribution
of the Wald test is simply a mixture of the chi square of conventional asymp-
totic theory and a multivariate version of the standard unit-root theory. The
chi square and the standard unit-root theory then become polar cases
included within this more general framework at the limits of the domain of
the correlation coefficient.

The plan of the paper is as follows. The models and some preliminary the-
ory are discussed in Section 2. Section 3 provides a development of the nec-
essary asymptotics for least-squares regression statistics. Hypothesis testing
is studied in detail in Section 4, and various specializations of our theory are
examined in Section 5. Some concluding remarks are made in Section 6.
Proofs are given in the Appendix.
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2. THE MODELS AND PRELIMINARY THEORY
Let {y,]7 be an n-dimensional multiple time series generated by
Ye=Ax, + uy, 8))

where A is an n X m coefficient matrix and where the m-vector process
{x,)5 satisfies

X, =X_, + v, : 2)

Our results do not depend on the initialization of (2) and we therefore allow
Xo to be any random variable including, of course, a constant. As direct
extensions of (1), we shall also consider time series { y,} that are generated
by

Yi=u+Ax, + u, )y
and
Yi=u+0t+ Ax, + u,. 1)”

We define w/ = (#/,v/), and we require that the partial sum process S, =
Ziw, constructed from the innovation sequence { w,}{" satisfies a multivar-
iate invariance principle. More specifically, if for r € [0,1] we define

Xr(r) = T_I/ZS[Tr]’
then we require
Xr(r) = B(r), as 7T — oo, 3)

Here, T denotes the sample size, the symbol “=" signifies weak convergence

R m
of the associated probability measures, and B(r)’ = (Bl(r)’,Bz(r)’) is
(n + m)-vector Brownian motion with covariance matrix

91 Qé] n
Q= ,
[921 Qz m

= lim T7'E(S7S7),

T—ooo
A C))
where
= E; gzl}; = lim TETE(w,w/) 5
and
A= tx tz] 1:11 = lim TELESE (w, /). ©
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The notation introduced in (3)-(6) will be used repeatedly throughout the
paper. In particular, B, (r) and B,(r) denote, unless otherwise stated, two
vector Brownian motions which are, respectively, n and m dimensional with
covariance matrices 2, and {,, which we assume to be positive definite. It
will often be convenient to write these and other stochastic processes on [0,1]
without the argument. Thus, we shall frequently use B, B;, and B, in place
of B(r), B,(r), and B,(r).

Multivariate invariance principles such as (3) have recently been proved by
Eberlain [8] and Phillips and Durlauf [19]. They apply for a very wide class
of innovation sequences [w,} that are weakly dependent and possibly het-
erogeneously distributed. Following Hall and Heyde [11, p. 146], they may
also be shown to apply to a large class of linear processes including those
generated by all stationary and invertible ARMA models.

In addition to the multivariate invariance principle (3), our asymptotic
theory of regression relies upon the weak convergence of certain sample
covariance matrices to matrix stochastic integrals of the form [ BdB’.
More specifically,

1
T27S,_ w/ = f BdB’ + A. Q)Y
0
This type of weak convergence has recently been shown by Phillips [17,18]
to hold for time series generated by linear processes and by Strasser [25]
and Chan and Wei [4] for martingale difference sequences. For the purposes
of this paper, it will be convenient to assume that both (3) and (3)’ hold
and that {w,} is strictly stationary and ergodic with finite fourth-order mo-
ments, although we add that many of our results continue to hold for more
general weakly dependent time series. Note that the time series {x;} is then
integrated of order one in the terminology of Box and Jenkins [3]. With the
assumption of stationarity, (5) and (6) reduce to

L=E(ww])
and
A=XFE(w;w).

Also, if the series defining A is absolutely convergent then {w,} has a con-
tinuous spectral density matrix f,,,,(\) and (4) may be written simply in the
form

Q =27/, (0).

Our model (1) may be regarded as a multivariate equation system in which
the regressors x, are driven by a quite general integrated process of order
one, such as a vector ARIMA model. We presume none of the common
exogeneity conditions and allow for contemporaneous correlation of the
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form Ex,u; # 0. The model for which {x,} is strictly exogenous will be con-
sidered as a special case later in the paper.

The model defined by (1) and (2) clearly implies that the time series {x;}
and {y,} are cointegrated in the sense of Engle and Granger [9]. The non-
singularity requirement for @, and Q, in (4), however, prevents {x;} or { y,}
from being individually cointegrated, as shown in Phillips [15]. Our theory
therefore does not apply, for example, to VAR systems with unit roots which
include many lags. But it should be noted that our model does not assume
invertibility of Q@ and does include first-order VAR systems with simple unit
roots.

The following result is very useful in our subsequent theory. Here and else-
where in the paper, all limits apply as T — co. Integrals (such as fol B) are
understood to be taken with respect to Lebesgue measure (that is, fol B(r)dr)
when otherwise unspecified. These economies substantially simplify some of
our subsequent formulae.

LEMMA 2.1.

1
(a) T‘3/2>31Txt=f B,,
0

1
(b) T‘S/ZEITtx,=/ rB,,
0
1
(©) T_ZE{x,xt’af B, B3,
0
1
(d) T‘mEthu,:f rdB;,
0

1
(e) T_IETX,U,' :/ Bdell + AZ]’
0

where
Ay =Ly + Ay

Joint weak convergence of (a) through (e) also applies.

3. LEAST-SQUARES ESTIMATION

We shall consider three multiple least-squares regressions which correspond,
respectively, to (1), (1)’, and (1)”.

¥e = Ax, + iy, @)
Ve=p+ Ax, + @, ®
v, = b+ 0t + Ax, + a,. )
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The inclusion of the constant term and the time trend in (8) and (9), of
course, are also equivalent to demeaning and detrending the series {x,} and
{y,] prior to regression (7) in their effect on estimation of the coefficient
matrix A. We should also note that the coefficient matrix A in (9) (and also
ji) is invariant with respect to the introduction of a nonzero drift in the pro-
cess generating the time series {x,}, i.e., they do not depend on = in

X;=m+x_1+ v, 2y
when (2) is replaced by (2)’. This is especially important in our mulitiple
regression context since under (2)’

T3ETx,x/ D (1/3) 77, (10)

which is singular if 7 > 1. This complicates the limiting distribution theory
of A and will be discussed in detail below.
Let

A= (p,A), A= (0,4 an
in (8) and (9) with analogous definitions of 4, and A4,. Define x}" = (1,x/),
x? = (1,t,x/) and, given a sample of size T, define

X' = (X15...,X7), X! = (xl,...,x}), X3 =(x, ..., x3). 12)
We have
A=YX(X'X)], A =YX (X{X), /Tz =YX, (X3X,)" L.

The least-squares estimator of the covariance matrix is given for each regres-
sion equation by

W1 . 1 - 1,
Bi= 2 V(X=PoY, L=V (U-PyY, E=_YU-PpY,

where P, = D(D’D)~'D’ for any matrix D of full column rank (with prob-
ability one, if it is random).

The following theorems characterize the asymptotic behavior of the least-
squares estimators in regression equations (7)-(9). To represent the asymp-
totics concisely, we first define a functional

1 —_—
S(B,M,E) = (/IdBM’ +E’) (/ MM') l, (13)
0 0

where B is a vector Brownian motion. M is a stochastic process of continu-
ous sample paths such that fO‘ MM’ > 0 a.s., and E is a matrix (which may
be random) of conformable dimension. Especially, we will consider func-
tionals of the form f(B;,M(B,),E), where M is a function of B,. Such
functionals are important since the limiting distributions of all of the least-
squares estimators in (7)-(9) can be represented in this form.



474 JOON Y. PARK AND PETER C.B. PHILLIPS

THEOREM 3.1
T(A — A) = f(B},By,A3).
THEOREM 3.2.
(@) T(A— A)= f(By,B5,An),
(b) VT( — p) = f(By,Py,8),

where
1
B3 (r) = By(r) —f B,, (14)
0
1 1 -1
P(r)=1- [f B; (f Bsz') }Bz(r), a1s)
0 0
and
1 1 -1
61 = _[f le('[ B2B2/) :|A21.
0 0
THEOREM 3.3.

@ T(A - A)=f(B),B:" Ay),
(b) VT(i — p) = f(By,Ps,5,),
() T¥*f —8) = f(B,P;,53),

where

1 1 1 1
B;*(r) =B2(r) _4(/ Bz_ (3/2)'[ SBz) +6r(/ 32—2/ SBz),
0 0 0 0

(16)

3 1 3 1 1 1 1 —1
Pz(r)=1——r~—[(f Bz’——/sBz’)(/ Bsz'—sf sBzf sBz’) J
2 0 2 0 0 0 0
1
-[Bz(r)—3r f sBzJ, a7
0
1 1 1 1 1 1 1 —1
i ([ ) s )
2 0 2 0 0 0 0
1
~(Bz<r>— f Bz), as)
0
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and

1 3 1 1 1 1 -1
62 = —[(/ le - 5'[0 SBZI) ([ BzBZI - 3'/(; SBZ'/(; Sle) :IAZI,
0 0
1 1 1 1 1 1 —1
oo o[ ([om -3 [ ) ([ ot [ ) o
0 0 0 0 0

The results in Theorems 3.1 and 3.2 were earlier obtained by Phillips and
Durlauf [19], although their expressions for the limiting distributions are
slightly different from those given here. The advantage of the present for-
mulation is that it demonstrates how all of these cases including those of
Theorem 3.3 fall simply within the same overall framework.

Theorems 3.1-3.3 give explicit asymptotic results for the least-squares esti-
mators in (7)-(9). The limiting distributions are expressed in terms of a sim-
ple but rather general functional that is easy to analyze and extremely useful
for our study. In fact, many of the results in this paper can be deduced quite
easily from this representation, which will become more apparent as we
proceed.

Inclusion of a constant term or a time trend in regressions such as (1) does
affect the limiting distribution of the least-squares estimator of 4. Similarly,
demeaning or detrending prior to regression also changes the asymptotic
behavior of the estimator. This has been widely recognized in the literature,
especially in autoregressive models with unit roots. It is interesting to observe
from our own theory that the resulting change in the asymptotics involves
simply the replacement of B, with By or B>* for M in the functional fin
(13), where By and B;* are “demeaned” and “detrended” Brownian
motions. Explicitly, B} and B>* are simply the residuals from the continu-
ous-time regressions

B,(r) = &9 + B3(r),
B,(r) = & + &1 + B3*(r),

where &, and (&g, &;) minimize the (continuous time) least-squares criteria

1
f | B2 (r) — «|?*dr,
0

1
f | B2(r) — g — r||?dr,
0

respectively. Thus, the effect of demeaning or detrending in regressions with
integrated processes carries through in exactly the same fashion to the
asymptotics.
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All of the least-squares estimators of the regression equations {7)-(9) are
consistent. There is no bias resulting from the correlation between regressors
and regression errors, such as the simultaneous equations and measurement
error bias, See Phillips and Durlauf [19] for a detailed discussion of this
point. Especially, the least-squares estimators of A, the parameter matrix of
main interest, converges at the rate of O,(7~!) in all three regressions.
Therefore, the demeaning or detrending implied by (8) or (9) does not affect
consistency. This implies, of course, that Andrews’ [1] consistency result for
A in (7) with more aberrant regression errors is extended and also holds for
A and A4.

THEOREM 3.4.
(a) ilyz—:lsil_p_)zb

Moreover, if we let &, =u, @ u, — E(u, ® u,) and assume {£,}7 is a weakly
stationary process for which the invariance principle (3) holds, then

®) VT(£, = L)VT(E, - E)WT(E, - £1) = N(O, V),
where

V = Pp(E¢=o¥4) Pp,

Yo = E(u,u/ @ u,u/) — vec(L)vec(Z,)’,

¥, = &, + ¥y, (k=12,...),

@ = E(u iy @ fy) — vec(Ly)vec(L,)’,

and D 1s the n? X n(n + 1)/2 duplication matrix for which vec S = Ds for
any symmetric matrix S with s denoting the vector of its nonredundant ele-
ments.

Theorem 3.4 generalizes the results in Phillips and Durlauf [19, Theorem 4.2
and Theorem 6.1(g)], to regressions with a time trend. Consistency of £,
£, and £,, each of which is obtained from the corresponding regression
equation in (7)-(9), is a natural consequence of that of the least-squares esti-
mators given in Theorems 3.1-3.3. The limiting distributions of these esti-
mators of L, are normal with an identical covariance matrix that depends
on the fourth-order cumulant sequence of the innovation sequence {u,].
We will show in the proof that the effect of demeaning or detrending on the
estimation of error covariance matrix is, in fact, at most of order O,(T™")
asymptotically.

We now consider the case where some of the regressors have nonzero
drifts, i.e., that {x,} is driven instead by (2)’ with = # 0. In the VAR system
where x; = y,., this is obviously equivalent to the introduction of a non-
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zero intercept in the regression equation. It is useful in this case to write (2)’
as

x, = 7t + x2,

where x{ = T{v, + xo is a driftless random walk with initial condition Xo.
Now the process [x,] is driven by two components, one involving a deter-
ministic linear trend and the other a stochastic trend. The deterministic
component of {x,} apparently dominates asymptotic behavior since the
stochastic trend is of order O, (#'/?). Thus, {x,} behaves asymptotically as
if it were «¢ and this gives the result stated earlier in (10). The limiting sin-
gularity of the sample moment matrix of x, when m > 1 is due to the fact
that the leading time trend term fails to introduce sufficient asymptotic var-
iation across the component variables. The situation here is closely related
to the concept of cointegration. Note, in particular, that any vector « that
is orthogonal to 7 annihilates the deterministic trend in x, leaving o'x, =
a’x?, which behaves like a random walk without drift. Thus, « takes on the
role of a cointegrating vector reducing by an order of magnitude, namely,
Op(tl/ 2), the variability of x,. The effects of this apparent degeneracy are
also similar to those that occur in the case of cointegration among processes
which are integrated of order one.

To develop a complete asymptotic theory in this case, we first transform
the regression equations (7) and (8) as

yo=62y+ Cazo + iy, ay
V=p+az, + Gz + 4y, @®)

where z;, = hix, for h, = (x'w)"?w, 2o, = H}x,, and H = (h,,H,) is an
orthogonal matrix of order 7. Upon transformation, the deterministic trend
of {x,} is now concentrated in {z,,}, while {z,,} embodies the stochastic
trend and is a driftless random walk of dimension (m — 1).

The asymptotic results for the least-squares estimators of the parameters
in (7)’ and (8)’ can be obtained analogously with Theorems 3.1-3.3. The next
two theorems characterize the limiting distributions of these estimators and
the corresponding estimators of A in terms of the functional fin (13) and
B = (B,,B), an n + (m — 1)-vector Brownian motion with covariance
matrix

Q, 05 H, n
HZIQZI HéQsz m — 1.

THEOREM 3.5.
(@) T3/2(7F'7F)1/2(51 —¢1) = f(By, Py, 84),
(b) T(éz_ ) =f(31,§§,é21),
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where
Ay = H2'A21 s

1

B3 (r) = By(r) — 3rf sB;,
0

I 1 -1
P(ry=r—- [[ SBé(f _32_35) }Bz(r),
0 0
1 1 -
04 = —[f S_Bé<f _Bzﬁé) }ézl,
0 0

© T(A~A)=f(Bi,Bf,Ax)H;.
THEOREM 3.6.

@ T~ p)=f(B,P,0),

(b) T**(x'm)"*(¢ — ¢;) = f(By, Py, 83),

(©) T(C,— C2) = f(By,B3*, Ay,

where Ay = H3 A, and B3, P,, Ps,8, and 6, are defined from B, and Ay,
Just as their counterparts in Theorem 3.3.

(d) T(/I —A) =f(31,§;*,é21)H2'-

Theorems 3.5 and 3.6 provide explicit asymptotic results for regressions
(7)’, (8)’, and, hence, (7) and (8). The limiting distributions are not normal
if m > 1, and are somewhat similar to the previous case of driftless regres-
sors with the extra time trend in the regression equation (see Theorem 3.3).

Interestingly, both estimators A and A4 are O,(T ") consistent even when
{x,] has a nonzero drift and its sample moment matrix becomes singular
asymptotically. This parallels our previous consistency result when {x;} is
driftless. Thus, as far as consistency is concerned, the presence of a drift in
regressors is innocuous. All linear combinations of A and A are O,(T™)
consistent other than Ax and Ax which are O,(T~3/2) consistent.

More importantly, we observe that the limiting distributions of 7(4 — A)
and T(A — A) are singular and non-normal. The singularity of the limit dis-
tribution when m > 1 arises because of the singularity of the limit of the
sample moment matrix (10). In addition to (10), we also have

1

—1
TZ(ETxtxt’)_l = Hz(f _BZBZI) H;,
0

whose rank is m — 1. Since

T(A — A) = (T ETux, (T2LTx,x/) 7!,
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this explains why the support of the limit distribution of T (A — A) is the
range of I, ® H,, a proper subspace of R™. Similar considerations apply
in the case of T(A — A4). Results (c) and (d) of Theorems 3.5 and 3.6, re-
spectively, give the asymptotic theory for all linear combinations of the
matrices T(A — A) and T(4 — A). Note that only T(4 — A)x and T(A4 ~
A)r are degenerate in the limit and the asymptotic theory for these vectors
is given in part (b) of Theorems 3.5 and 3.6 upon restandardization.

These results should help to clarify the effects on the asymptotic theory
of the presence of a drift in the regressor process. As stated earlier when
m > 1, the limiting distributions of the coefficient estimates are all non-nor-
mal. When m = 1, as is well-known, both of T>2(A4 — A) and T%?(A ~
A) are asymptotically normal. The limiting distributions are easily obtained
from Theorem 3.5(a) and Theorem 3.6(b) with the convention B, = 0. We
have Py(r) =r, 6, =0, and

1 -
T32(A-A)= ((1/7r)f rB,) (fer) ;
0 0

EN(O,% Ql).

g
Similarly, P;(r) =r — 1/2, 3 = 0, and

T34 - A) > N(O,l—zz Ql).
iy

Notice that €, not I;, appears in the covariance matrices since we allow
the u,’s to be serially correlated. These results provide a substantial gener-
alization of recent work by West [27]. West studied the case of a single non-
stationary regressor (m = 1) with nonzero drift and argued that conventional
normal asymptotics applied. Our theory demonstrates how specialized his
results really are.

The estimators i and 4 are invariant with respect to 7 in (2)’, and the
asymptotic results for these estimators given in Theorem 3.3 remain valid
with the introduction of a nonzero drift in the time series {x,}. The estima-
tor §, however, does depend on 7. In fact, it is easy to show that

(6—0) =—(A— Ay + O,(T%),

and the limiting distribution of T(# — ) can be readily deduced from The-
orem 3.3(a). Once again, the limiting distributions are non-normal.

4. HYPOTHESIS TESTING

We shall consider linear hypotheses that involve coefficients in the multiple
regression equations (7)-(9) when the data are generated by (1), (1)’, (1)”,
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and (2). Our approach follows the constructions in Phillips [16] but is com-
plicated by the presence of nuisance-parameter matrices, rather than scalars
as in [16]. These matrices arise naturally in the general multivariate setting
studied here. Later, in Section 5, we show how earlier results follow as sim-
ple specializations of our formulae.

The null hypothesis for the coefficient matrix 4, which is of primary
interest, is written explicitly as

RvecAd =r, (19)

where R and r are known g X nm, g X 1 matrices, respectively, and R is of
full rank g. other hypotheses of interest are

H = po (20
and
0 = 00. (21)
We commonly employ the Wald test for the hypotheses (19)-(21). Let
(X/X)—l — MO: (22)
m 11
X/X —~1 — M = 11 , 23
(X{Xy) 1 [ My, | m 23)
) my, 1
m 1
X X)) ' =M, = | = 1 24
(X3X5) 2 [ My | m+1 my, 24)
My | m

where X, and X, are given by (12). We will not need to be specific about
off-block diagonal entries in (23) and (24). In (7), the Wald statistic to test
(19) is

F(Ay=(Rvec A —r)[R(£,Q M))R' ] (R vec A —r). (25)

To test (19) and (20) in regression equation (8), the corresponding statis-
tics are given by

F(A) = (Rvec A —r)[R(E,® M,)R'I"'(Rvec A —r) (26)
and

F(z) = mi' (B — po) £71 (B — o). )]
Similarly, the tests of (19)-(21) in (9) can be based on

F(A) =(Rvec A —rY [R(E, ® My)R'] (R vec A — r), (28)
F(R) = my (& — mo) £ (i — po), 9)

F(8) = mz (8 — 8,)'E7"( — 6,). (30)
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Moreover, we may want to perform joint tests and we accordingly define

F=(R,vec A, — )[R (E, ® M)R;] (R, vec A} — ry), 31
F= (Ryvec A, — 1) [Ry(£, ® My)R5]1"H(R, vec Ay — ry), 32
where

1, "
R, = i RKnm]K(m-H)n’ ry= [ ro]’

_ Ho

L,

,

Here, K,,,, denotes the commutation matrix of order mn X mn, and A, and
A, are defined in (11). Finally, it may be of some interest to consider the
joint test of (19) and (21) in (9). The Wald statistic for this test is given as

F, = (R, vec Ay — r3) [R{(£; ® My)R{17' (R, vec A3 — r3), (33)

where 4, = (8,A4) and r; = (6,r").

Although the “F” statistics studied above are constructed in the standard
fashion, their construction is not the most appropriate in our time-series
setup. We allow for serially correlated innovations {u,} and the use of esti-
mators of I, in the tests only accounts for contributions from the variance
of u, and does not generally allow for its serial covariance properties. One
way of reducing unnecessary dependencies on nuisance parameters in the
limit distributions of the tests is to properly allow for this serial correlation.

We are thus led to modify the Wald statistics by replacing consistent esti-
mators of L; with consistent estimators of ;. Such variance estimators
seem much more natural in our setup where weakly dependent innovations
play an important role in the generality of the theory. We denote by

G(A4),G(A),G(n),G,G(A),G(p),G(6),G, G, (34)

the new statistics, each of which is obtained from the corresponding “F”
statistic in (25)-(33) by the replacement of £,, £,, or £, with Q,, a consis-
tent estimator of ©,. Consistent estimation of Q; is discussed in Phillips and
Durlauf [19].

Our subsequent theory centers on these G statistics rather than the stan-
dard Wald statistics. The corresponding theory for the “F” statistics is eas-
ily obtained in the same way but will be omitted since these statistics are less
useful. However, if {u,] is a white noise, or a martingale difference
sequence, the two statistics are asymptotically equivalent, and in this sense
the G statistics are more robust in their construction to assumptions about
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the innovation sequence. Also observe that if n = 1 then the statistics are
simply proportional and G = (o{/w?)F asymptotically.

Before presenting our main result on the asymptotic behavior of the G
statistics, we introduce a functional g defined by

s [ o [ ) o
{efs ([ o) o] s )
([ o),

1 -1 -1
= vec(f(B,M,E))’R,{R[Q &® (f MM’) ]R,}
0

-Rvec(f(B,M,E)), 35)

where B, M, and E are as specified for the functional fin (13), e = vec E’,
Q is the covariance matrix of B, and R is a constant matrix of an appropri-
ate dimension so that (35) is well-defined. We also set g(B,M,E) =
&r(B,M,E).

We now have

THEOREM 4.1.
@ G(A) = gr(By,By,a),
(b) G(A) = gr(By,B3,Ay), G(p) = g(By, P1,6y),
G = gr(Bi,By,Ay) + g(B1, Py, 3)),
© G(A) = gr(B1,B}"Az),  G(i) = g(B1.P,.5,),
G(9) = g(Bi,Ps,53),
G = gr(By,By, Ay) + g(B1, Py, d1) + g(B1, P, 3),
Gy = gr(B1,B},A5) + g(By, P, 83),
where notation for the arguments in these functionals is defined in (14)-(18).

The limiting distributions of the “F” and G statistics depend, in general,
on the nuisance parameters in quite a complicated manner. This parameter
dependency is, in some sense, intrinsic to the theory of regression with inte-
grated processes and is “the rule rather than the exception” similar to finite-
sample distribution theory, as noted earlier by Phillips and Durlauf [19].

More specifically, Theorem 4.1 shows that the limiting distributions of our
test statistics depend not only on the covariance structure of the Brownian
motion B but also on the nuisance-parameter matrix A,;. Between these
two, the latter is the more problematic from the practical point of view and
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makes standard testing procedures virtually inapplicable in a regression with
integrated processes as considered in this paper. In some special but most
interesting cases that we shall explore in Section 35, the dependency of the
asymptotics on the covariance matrix of the limiting Brownian motion either
disappears or reduces to a parsimonious and manageable form.

In general, however, it is necessary to construct new statistics whose limit-
ing distributions are not dependent on A,,. Accordingly, we now consider
some transformations of the G statistics for testing simple null hypotheses
of the form (19) with R = I. In what follows, we shall use {}, to denote a
member of the class of consistent positive semidefinite estimates of Q; con-
structed, of course, from the least-squares residuals from regressions (7)-(9).
Consistent estimates of A,; can be obtained in a way similar to those of Q;
and we shall simply use A,; to denote a consistent estimate of A,;.

We now define

H(A) = G(A) = 2T tr 071 (A — A)A,, + T2tr Q7 A5 (ZTx,x/ ) 'Ayy,
(36)

and for (8) with the constant term

H(A) = G(A) = 2T tr Q7 (A — A)Ayy + T?tr Q7 Ay (ETx %) 1A,

= G(A) + qa, (say), 37
H(p) = G(i) — 2VT8, 97 (5 ~ p) + 75,8716 RSST, (38)
H=G+a. 39)

Similarly, for the regression (9) with the time trend, we define

H(A.') = G(/I) —27tr ﬁl—l(j _A)&Zl + T2tr Qfl&ﬂ(Elx,**x,**')_lﬁm,

=G(A)+b, (say), (40)
H(j) = G(ji) — 2T8,07" (i ~— p) + T8,Q7"65RSS; 1)
H0) = G(0) —2T%25,07 (6 — 0) + T36:07'65RSS; Y, 42)
H=G+b, (43)
H, =G, +b. 44)

Here x; and x;** are, respectively, deviations of x, from the sample mean
and the fitted time trend analogous to the demeaned and detrended Brow-
nian motions B* and B**. Also, for computational convenience we define
the least squares regression equations

@ 1 =xt/31 + e,
() 1=0t+x/8,+e,

(i) t=p+xB;+e,
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for a sample of size 7. We let RSS, be the residual sum of squares from
the jth regression (j = 1,2,3) and let §, = —TV2B/A,, (j = 1,2) and §; =
—~T-'23;A,,. This notation is used in (37)-(42) and will be used frequently
in what follows.

The limiting distributions of the H statistics, by construction, do not
depend on A,; (and hence, of course, on the §,’s). They can be conveniently
represented in terms of a functional A defined from g in (35) by

h(B,M) = g(B,M,0) = g;(B,M,0). (45)
We thus have
THEOREM 4.2.
(@) H(A) = h(B,B,),
(b) H(A)= h(B,,B5), H(p) = h(B,,P),
H = h(B;,1) + h(B,,B3),
) H(A)= h(B,,B*),  H(i)=h(B,Py), H(6) = h(B,,Ps),
H = h(By,1) + h(By,r*) + h(By,B*),
H, = h(B,,r*) + h(B,,B3"),

where r* = r — 1/2 and other notation is defined in (14)-(18). Moreover,
the results in (c), except for H(8), remain valid if {x,} is generated by (2)’.

If A, =0, then the untransformed G statistics have the same limiting dis-
tributions as the corresponding transformed H statistics. This would clearly
occur when the regressors are strictly exogenous and their driving process is
generated independently of the regression errors. It may be worth noting that
strict exogeneity, however, is not required. We also have asymptotic equiva-
lence of the H and G statistics when the regressors are lagged integrated vari-
ables whose driving process is only contemporaneously correlated with the
regression errors. The VAR system driven by a white noise innovation is one
such model.

5. SPECIALIZATIONS
5.1. Multiple Regressions with Strictly Exogenous Regressors

We now consider the regression models (7)-(9) when the regressors are
strictly exogenous; that is, when {x,} is driven by a process {v,} which is
generated independently from the regression error process {u,}. If {x,]} is
strictly exogenous, then the nuisance parameter A,, vanishes (and, hence, so
do all §,’s) and B, becomes independent of B, (and also, of course, By,
B>*, and P; through P;) since Q,; = 0. Notice that in our formulation this
never occurs in VAR systems, where Q,; = 9,.
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Define a functional k by

1 1 —1/2
k(B.M) = f dBM’( f MM’) , (46)
0 0

where B and M are specified as for the functional fin (13) and observe the
following lemma:

LEMMA 5.1. If B is a Brownian motion with covariance matrix Q and M
is a p-vector process independent of B, then

k(BM) =N(©0,Q®I,).

The following theorem, which characterizes the asymptotic behavior of the
least-squares estimators when the regressors are strictly exogenous, is an
immediate consequence of the above lemma.

THEOREM 5.2. If @y, = Ay, = 0in (4) and (6), then
@) (A - M52, (A — MG (A — AAMZ5 = N0, @ L),
(b) (5 — wmi?, (5~ wmz2,(8 — 0)mz? = N(0,2,),
where the notation is defined in (22)-(24).

Theorem 5.2 shows, in fact, that upon appropriate standardization the
conventional asymptotic theory applies to regressions with integrated regres-
sors which are strictly exogenous. The asymptotic normality given in the
above theorem has been discovered earlier by Kramer [12] for a special case
where {x,} is a scalar ARIMA (p,1,q) process and {#,} is an AR process
with a finite order. The strict exogeneity condition is somewhat stronger than
the usual condition that is imposed in the stationary and ergodic case, i.e.,
no contemporaneots correlation between the regressors and the regression
errors. If, however, both {u,} and {v,} are square integrable martingale dif-
ferences and Q = L, then it is rather obvious that E(u,v/) =00r X, =0is
sufficient to ensure that Theorem 5.2 holds.

The results given in Theorem 5.2 can, of course, be written in a form
which is more compatible with classical regression theory. For example, we
have

A—-A4~N©O0,2®XX)"

conditionally on a realization of x; (¢ = 1,..., T'). Similar results hold for
the other estimators. Here, X' X = O,,(Tz) and 72X’X converges (weakly)
to a stochastic matrix, in contrast to the standard case where 771X’ X con-
verges (or is assumed to converge) 10 a constant matrix as 7 tends to infinity.
Given the above conditional normality, however, it is not difficult to see that
a quadratic form in an appropriate metric yields asymptotic chi-squared cri-
teria, just as in the classical regression theory.
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To study the asymptotic behavior of the G statistics in this case, it is con-
venient to define the following functional Ay, which generalizes /4 in (45):

hr(B,M) = gr(B,M,0),

where g is given by (35). The following corollary is now easily deduced
from Lemma 5.1.

COROLLARY 5.3. Let M, be independent of B and rank R, = q,. Then
(@ th(B’Ml) = X;l.

Moreover, if M, is also independent of B, if

1
f MM, =0 a.s.,
0

and if rank R, = q-, then
() g, (B,M,) + hg,(B,M) = X3 44,
The following important results follow directly from this corollary.

THEOREM 5.4. If Q5 = Ay = 0, then the limiting distributions of the
G statistics are chi-square, with degrees of freedom given by the number of
restrictions for each test.

The above theorem obviously holds for the H statistics, and also for the
“F” statistics if the regression errors are martingale differences. A major
application of Theorem 5.4 is to specification robust inferences. Observe that
the construction of the G statistics, as earlier discussed, not only accounts
for contributions from the variance of the equation error but also for its
serial covariance properties in general. In fact, these statistics make a non-
parametric serial correlation error correction through the estimation of Q;
rather than Z,. That is, they account for serial correlation in the errors
without being specific about its precise form. However, as shown in The-
orem 5.4, the resulting G statistics all have asymptotic chi-square distribu-
tions, just as if there were no serial correlation in the regression errors.
Moreover, the limit distributions are identical to those of the conventional
regression F statistics when there are serially independent errors. In this
sense, the G statistics enable us to make inferences that are robust to the
specification of the regression errors. Note that they play precisely the same
role as the statistics introduced by White and Domowitz [29]. However, in
our case with integrated regressors, it is no longer necessary to estimate
weighted-moment matrices (such as X 'VX/7, where V is the covariance
matrix of T consecutive regression errors) as in the White and Domowitz
approach. In fact, as shown by Phillips and Park [21], weighted-moment
matrices such as X’ V.X/T behave asymptotically like 02X’ X/T (taking the
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case of a scalar regression) and consistent estimation of the asymptotic
covariance matrix in this case simply requires a consistent estimate of o7
(the scaled spectrum of the regression errors). This provides an important
simplification of the form of specification robust test statistics such as the
G statistics. In effect, the robust statistics are identical in form to the con-
ventional Wald tests and involve only the replacement of conventional error
variance matrix estimates by (zero frequency) spectral estimates which
account for possible serial correlation.

Another interesting application of Theorem 5.4 is to the distribution of
tests in the presence of spurious detrending (see Durlauf and Phillips [7] for
a discussion of relevant empirical examples). Theorem 5.4 shows that spu-
rious detrending does not affect, at least asymptotically, the nominal size of
a test as long as the regressors are strictly exogenous. But spurious detrend-
ing does affect the size of tests based on an asymptotic chi-squared criterion
when the regressors and the regression errors are correlated (Q,, # 0). In
fact, as we show below, the magnitude of the bias that results from detrend-
ing depends critically on the extent of the correlation between {u,} and

{ve]).

5.2. First-Order VAR System with Simple Unit Roots

As noted earlier, our previous results in Sections 3 and 4 are directly appli-
cable to the first-order VAR system where each component time series in the
system has a single unit root. We now suppose the n-vector process {y,}&
is generated recursively from the (possibly random) initial condition y, by

Ve = Vi1 + U,

and we consider the least-squares regressions (7)-(9) with x, = y,_,. The true
parameter values for p and 8 are assumed to be zero. If { y,} is driven with
a nonzero drift, the results in Theorems 3.4-3.5 apply. In this section, we
unify and extend the results obtained in earlier work (including those in the
papers by Phillips [16], Phillips and Durlauf [19], and Phillips and Perron
[22]) using our general results on regressions with integrated processes.

In the VAR system above, it is easy to see that B, reduces to B, and A,
to A, in our earlier asymptotic theory. Hence, the limiting distributions of
the least-squares estimators and the “F” and G statistics in this system are
readily obtained from Theorems 3.1-3.3 and Theorem 4.1 simply by replac-
ing B, with B; and A,; with A,. For the test of unit roots, we set R = I and
r=vecIin (19).

When {u,]} is a martingale difference sequence, A; = 0 and the limiting
distributions of the “F” and G statistics are given by Theorem 4.2 with
B, = B,. These asymptotic distributions are free of nuisance parameters, as
is easily seen from the following lemma:
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LEMMA 5.5. For M(B,) = B, and for the various functionals M(-)
introduced in (14)-(18),

h(B;,M(B,)) = h(W,M(W)),

where W dentoes n-vector standard Brownian motion (i.e., Brownian motion
with covariance matrix = I,).

The “F” and G statistics are not useful for hypotheses testing in the gen-
eral case where {u,} is serially correlated and A; # 0, since the asymptotic
distributions of these statistics depend on A,. In this case, the transforma-
tions given in (36)-(44) come into play. This type of transformation was first
introduced by Phillips [16] for testing the presence of a unit root in scalar
time series; it was extended to VAR models by Phillips and Durlauf [19]; and
Phillips and Perron [22] also use the technique in regressions with a constant
term and time trend for univariate models.

Theorem 4.2 together with Lemma 5.5 shows that the H statistics are
asymptotically invariant within a very wide class of weakly dependent and
possibly heterogeneously distributed innovation {u«,}. The transformed H
statistics thus provide robust tests for the existence of unit roots as well as
other, possibly joint, tests that may include the constant term and the coef-
ficient of the time trend. Note that these tests include regression-based tests
for cointegration, as discussed in Phillips and Ouliaris [20]. It is also worth
noting that the H statistics from the regression (9), with the exception of
H(#), are all invariant with respect to the introduction of a nonzero drift in
PR

The distribution of A(W,M(W)) for M(W) = W and for the various
functionals M (-) in (14)-(18) are completely specified by n, the number
of variables in the VAR system. For n < 15, some of these distributions
(approximations with 7 = 500) are tabulated in Ouliaris [14]. When n = 1,
h(W, W), h(W,W*), and h(W, W**) are, respectively, the limiting distri-
butions of the squares of Dickey and Fuller’s 7, 7,, and 7, statistics, which
are tabulated in Fuller [10, p. 373}. Finally, the tails of the distributions get
thicker, regardless of n, as we move from A(W, W) to h(W,W?™) to
h(W, W**). This implies that spurious demeaning and detrending would
lead to progressively greater overrejection of the null hypothesis of unit
roots, if the decision were based on the chi-square table (rather than the
Dickey-Fuller or Ouliaris tables).

5.3. Hypothesis Testing in a Single Equation

In the case of general linear restrictions, the asymptotic distributions of the
transformed H statistics are still dependent upon the nuisance parameters
determined by the covariance matrix . The multidimensionality of Q would
seem to make it virtually impossible to use the H statistics in practice. How-
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ever, the following lemma shows that in the important special case of a
single-equation regression (where n = 1), the parameter dependency becomes
one dimensional. The result is also very helpful for understanding the nature
of the limiting distributions of the H statistics.

We set Ql = w% and 921 = Wjy.

LEMMA 5.6. When n = 1, the distribution of h(B,,M) for M = B, (or
any functional of B, given in (14)-(18)) depends only on m and

p? = wh Q3 wy /i,
Moreover,
h(B,M(By)) = (W, Wp,0){ (W, W>,0)’, (C2))

1
where W = (W}, Imez) is (m + 1)-vector standard Brownian motion. Here [ is
defined by

LW, Wa,0) = (1= p) 2k (Wi, M(W3)) + ok (W, M(W,)), 48)

where k is the functional given in (46) and
— 1 m
u/Z(r) = ﬁ E_[:l%_[(r)'

Lemma 5.6 shows that the distribution of A(B,,M(B,)) is a mixture
of that of h(Wy,M(W,)) and h(W,, M(W,)), where the weights are deter-
mined by p, the multiple correlation coefficient of B, and B,. Interest-
ingly, when p = 0, it then follows from (47) and (48) that A(B;,M(B,)) =
h (W, M(W,)) = x2, corresponding to our strictly exogenous regressors case.
On the other hand, when p = 1, we have h(B;,M(B,)) = h(W,, M(W,)), as
in the case of Lemma 5.5. When p =1 and m = 1, this reduces to the limit
distribution of the square of the t-ratio statistic in the random-walk model.

The above observations make it plain that the special cases that we have
considered in this section comprise two polar cases, one involving the chi-
square distribution of conventional regression theory and the other a mul-
tivariate generalization of standard unit-root theory. We see from Lemma
5.6 that the general theory may be regarded as a simple mixture of these two
extremes.

It is also interesting to note that the representation (47) provides a defini-
tive answer to the effect of spurious demeaning or detrending on the true size
of testing procedure based (nominally) on chi-square tables. As p* — 1, the
distributions of A (B, B,), A(B;, Bs), and A(B,, B3*) involve mixtures that
attach less weight to the chi-square distribution (that delivers the nominal size
of the test) and more weight to the unit-root distribution.

The implications of Lemma 5.6 have as much practical importance as they
do theoretical. In particular, the asymptotic distributions of the H statistics
are completely specified, for a given number of regressors, by the limiting
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multiple correlation coefficient p between the processes driving the regres-
sors and the regression errors. These distributions are invariant up to p for
a wide class of regression models within integrated regressors and they may
be used in such models as a basis for statistical inference.

6. CONCLUDING REMARKS

The framework of analysis developed in Section 3 of this paper helps to sim-
plify and extend a good deal of earlier work in this field. A key element in
this simplification is the functional defined in (13). Through the use of this
functional, it is possible to represent all the major asymptotic distributions
of interest in the same form. Differences in these distributions then arise sim-
ply as a consequence of differences in the arguments of the functional. As
is clear from the examples of Section 3, these arguments are themselves
readily interpreted in terms of the underlying regression equation. Thus,
when the regressors include a constant and a time trend, the argument of the
functional corresponding to the regressor is simply a detrended Brownian
motion.

The results of Section 3 also provide a fairly general asymptotic theory for
cases where there is a drift in a VAR or a drift in the regressor variable. In
such cases, the limiting distribution theory is, in general, degenerate. How-
ever, contrary to the conclusion of West [27], it is also generally non-normal.
Only when there is a single nonstationary regressor with nonzero drift do the
usual normal asymptotics that are associated with deterministic trends apply.
Our theory includes the latter situation as a special case of more generally
applicable results.
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APPENDIX: MATHEMATICAL PROOFS

Proof of Lemma 2.1: Proofs of (a), (c), and () can be found in Phillips and

Durlauf [19]. The remaining parts (b) and (d) are trivial extensions of results in Phil-
lips and Perron [22] to the multivanate case. Note that joint weak convergence of
(a)-(e) may also be established by writing the vector of sample moments as a func-
tional of X7(r) up to an error of O,(T~12). .

Proof of Theorem 3.1: See Theorem 4.1 of Phillips and Durlauf [19]. u
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Proof of Theorem 3.2: Part (a) is easily deduced from Theorem 4.1(a) and The-
orem 6.1(a) of Phillips and Durlauf [19]. To prove (b), we first write

TV2( — p) = (T~2Zu, — (T7'Tu, %) (T~2Lxx)) (T Ex)

Al = (T332 (T 2Lx,x ) T 3722x,))

Now Lemma 2.1 and the continuous mapping theorem (Billingsley [2], Corollary 1,
p- 31) yield (b). Notice also that

1 1 1 —1 1
[rie- Lol f o) [ o
0 0 0 0

as is required for the stated formula. n

Proof of Theorem 3.3: The stated results are obtained as in the proof of Theorem
3.2 by using Lemma 2.1 and the continuous mapping theorem. [ |

Proof of Theorem 3.4: See Phillips and Durlauf [19]: the result for L, is their
Theorem 4.2 and the proofs for £, and Z, are entirely analogous to their Theorem
6.1(g). n

Proof of Theorem 3.5: Since
2= (7'Mt + hix,
= HZ/xth

we have, as in Lemma 2.1,

1
T"3/221T22t=’f By,
0

1
T_S/ZE{ZItZZt = (71'/71')1/2[ B,,
0

1
T-25T 25128 = f B.BS,
0

1
T332z, = (71"71')1/2[ tdBy,
0

1
T 2 zpu/ =’f B,dB{ + Ay,
0

where the notation is defined in the text. The stated results now follow 1n a straight-
forward manner from the regression representations of 73/2(¢, — ¢;) and T(C, —
G). [ |

Proof of Theorem 3.6: The proof of (a), (b), and (¢) is entirely analogous to that
of Theorem 3.2. Part (d) follows as in the proof of Theorem 3.5. [ |
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Proof of Theorem 4.1: The limiting null distributions of the G statistics for a single
set of hypotheses in (19)-(21) are easily deduced from the following results and The-
orems 3.1--3.3 by application of the continuous mapping theorem. Note that when-
ever necessary, joint weak convergence of the relevant quantities may be established
simply by writing these quantities as a continuous functional of the random element
Xr(r) up to an error of O,(1). It is simple to show that

1 1
T°M, = <f Bsz'> ,
0
1 -1
T°M,; = (f B;Bf'> )
0
1 -1
T°My = (f 32**35"> ,
0
1 =l
Tmll = (f P%) ’
0
1 \~I
Tmy = (f P%) s
0

1 -1
T3,y = ( f p;) . A1)
0

To prove the stated results for G, G, and G,, we use the following lemma where
the notation is not relevant to that of the remainder of the paper.

LEMMA A.1. Consider the classical linear regression models:
O y=X8+ X328, + u,
and
(D »=XB+u yi=y - X289,

with a known covariance matrix for u. We assume without loss of generality (by
transforming the models if necessary), that Euu’ = I.
Let Fy, F,, and F be the Wald statistics for the following hypotheses:

Fi:RBY=r in (1),

Fy: By =33 in (D,

F:RB°=r and B, =38Yin (D).

Then under the null hypothesis 8, = 32,

F=F, +F,. (A2)

Proof of Lemma A.1: Define the f~ol]owing least-squares estimators: 3,5, 8, in
(II), unrestricted and restricted to Rf3,; = r, respectively; and 3,: 8, in (I). We also
let X = (X,,X;).
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It is well-known that
F =288, - S8§,

where SS;; and SS are, respectively, the restricted and unrestricted sum of squares
from regression (I). Similarly, we have for (II):

Fy = (y; = X1B1)' (31 — X, 1) — w' (I — Py,)u.
However, if 8, = 82, y, =y — X»89, and
SSu=(y = XiBi — Xa8:)" (y — X181 — X2 89),

= = X.B)' I — X8,

=F +u'(I - Py)u,
whereas
SS =u’ (I — Py)u.
Finally, notice that under the null hypothesis of 3, = 39,
Fy= (B, — B2) [ X' (I = Px)X17(B; — 8Y),

= u’ (Pxy — Px,)U,

which completes the proof of Lemma A.1. n

It can be easily seen that the above result is valid also for the standard multivari-
ate system by vectorization. If the covariance matrix is not known and has to be esti-
mated, (A2) is not strictly true, but the equality continues to hold as long as we use
a common estimate for the covariance martrix. Further, (A2) holds asymprortically,
in general, if the estimated covariances from (I) and (II) have a common limit in
probabulity.

The result for G can now be easily obtained from a trivial application of Lemma
A.1t0o G(A) and G( i). Moreover, it is not difficult to see that (A2) remains true
when there are additional variables in the regressions, the coefficients of which are
unrestricted. This implies that G, is just the sum of G(A) and G(9), as is stated.
For G, we only need 1o compare the regression equations (8) and (9) 1o get G =
G + G(f), which yields the stated result. ]

Proof of Theorem 4.2: All the stated results follow directly by applymg the con-
tinuous mapping theorem. In particular,

1 —1 1
T2, - ( f BZBZ') f B,
0 0
. 1 1 1 -1 1 3 1
T1/2l32 = (f BZBZ/ - 3[ SBzf SBé) (f Bz —_ —f SBZ>9
0 o 0 0 2Jo
. 1 1 1 \-1 1 il
e ([ e o ) ([ 5)
o 0 0 0 2 Jo
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and therefore, 51 = §, for y = 1,2, 3. For the joint tests, again apply Lemma A.1 and
notice that 1n this case with R = I, we have

G = g(Bhl’O) + g(BI!B;’AZI)’
G = g(By,1,0) + g(By,r*,0) + g(B;,By*,A2),
G = g(B,.r*.0) + g(B;,B3*,A5). =

Proof of Lemma 5.1: In what follows, we use the symbol “.|,,” to signify the con-
ditional distribution given a realization of M(r). Write

1 ~-1/2y p1
vec(k(B,M)) = {I@ (f MM’) }f dB® M,
0 0

and recall that
E(dBdB’) = Qdr,

where dr is Lebesgue measure on R. Since B is Gaussian and independent of M, we
have

1 1
f dB®M|MEN(0,Q®f MM’)
0 0

and
kK(BM)lyy=N0O0Q® 1,).

However, since the latter distribution does not depend on realizations of M(r), it is
also the unconditional distribution, giving the result as stated. ]

Proof of Theorem 5.2: If A,, = 0, it is easily deduced from (A1) and the contin-
uous mapping theorem that the limiting distribution of each of the given statistics can
be written 1n terms of k(B;, M), where M is B, or a function of B, explicitly given
in (14)-(18) for each statistic. Since B = (B, B,) is Gaussian, 2,; = 0 implies that
B, is independent of B,, and therefore of any functional of B,. Now a direct appli-
cation of Lemma 5.1 yields the stated asymptotic normality. [ |

Proof of Corollary 5.3: By the argument used in the proof of Lemma 5.1, we
deduce that

s ([ s ol ()} o

= N(0,1,,)
leading directly to part (a). For (b), note that

([ wemn) ([ oo )

where M = (M, M,). The stated result now follows immediately. n

1
MI =Q®f M\ M; =0,
0
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Proof of Theorem 5.4: When A,; = 0, the limiting distributions of the G statistics
in Theorem 4.1 become of the form Az (B,;, M), where M is B, or a function of B,
given correspondingly for each test. Since B = (B,, B,) is Gaussian, {,; = 0 implies
that B, is independent of B, and, hence, of any function of B,. The results for the
G statistics which test a single set of hypotheses now follow immediately from Corol-

lary 5.3(a). To get the stated result for the joint test case, we simply apply part (b)
of the corollary, making use of the fact that

1
f Bsz = 0, (] = 1,273)1
0

1
f B;P3=0,
0

and

1
f P1P3 =0.
[}

Proof of Lemma 5.5: Write
1 1 —1 1

h(B,M) = tr[ﬂf‘/zf dB\M’ (f MM’) f MdB{Q,“/ZI . (A3)

0 0 0
Now transform B, — Q;'/2B,, and notice that

1 -1 1 -1
Mww([Mwmm&ﬁ Mwn=MMWQ[MWMﬂWO MW)
0 0

for M (B,) = B, or the various functionals of B; in (14)-(18). n
Proof of Lemma 5.6: Let

By =w (1 — p?) W, + r'Wy), r=05"2w, /v,

B, = Q*w,.

We have from (A3) that
1
h(B,, M(By) = f (1 = p2)\2dW, + r'dWy)M(W,) (Ad)
0

1 -1 pl
(f M(Wz)M(Wz)’> f MWo)((1 ~ p*)2dW, + r'dW).
0 0

To show that the distribution of A (B,;, M(B,)) depends only on p and not on r, sup-
pose that we have two sets of parameters (p,r;) and (p,7,). Then by the Vinograd
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theorem (Muirhead [13], Theorem A.9.5, p. 589), there exists an orthogonal matrix
H such that

r2=Hr1.

It is, however, not difficult to check that the expression in (A4) is invariant with
respect to the transformation

W, — H'W,

for M(W,) = W, and all functionals M(-) implied by (14)-(18). This proves the
assertion. To get the expression given in Lemma 5.6, we simply take

(1,...,1). "]

g



