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MARTINGALE APPROXIMATIONS

P.C.B. PHILLIPS

Cowles Foundation, Yale University

Under general conditions the sample covariance matrix of a vector martingale
and its differences converges weakly to the matrix stochastic integral fol BdB’,
where B is vector Brownian motion. For strictly stationary and ergodic se-
quences, rather than martingale differences, a similar result obtains. In this
case, the limit is f; BdB’ + A and involves a constant matrix A of bias terms
whose magnitude depends on the serial correlation properties of the sequence.
This note gives a simple proof of the result using martingale approximations.

1. INTRODUCTION

There has recently been a good deal of interest in time-series regressions that
involve integrated processes. The theory makes extensive use of weak con-
vergence methods in general, and multivariate invariance principles in par-
ticular. Some recent papers dealing with this topic are [2,4-18]. Much of the
theory involves weak convergence of sample covariance matrices to matrix
stochastic integrals of the form fol BdB’ + A, where B is vector Brownian
motion and A is a constant matrix of bias terms. The result is of theoreti-
cal interest because it cannot be obtained from a routine application of the
continuous mapping theorem and an invariance principle except in the sca-
lar case [2,7,9]. It also has many useful applications in the theory of regres-
sion with integrated time series. The reader is referred to [13] for a recent
review of the field.
To fix ideas, let {x,}§ be an n-vector time series generated by

Xt = Xp-1 + Uy, t=12,..., @)

where x, is any random vector (including a constant) and {u,}%.. is a zero
mean, strictly stationary, and ergodic sequence with continuous spectral den-
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sity f,u(N). Define X,(r) = T~V2L ™y, Then, as shown in [8,14], under
quite general conditions as 7' — o we have

Xp(r)= B(r) = BM(Q) ¥3]
with

Q=27f,0=L+A+ A,

L =E(uous), A= 2 E(uoui).
k=1

We also have
1
T'27x,_ul = f BdB’ + A. 3)
0

In (2) and (3), we use the symbol “=" to signify weak convergence as T —
o, “=" to signify equality in distribution, and “BM(2)” to denote Brownian
motion with covariance matrix 2.

Proofs of (3) that are presently available [9,17] are lengthy and difficult
to follow. A more direct proof of the result seems desirable. When {u,}
forms a square integrable martingale difference sequence with respect to the
natural filtration of o-fields F, = o(u;,14,_1,...), then A = 0 and (3) has
been proved recently by direct methods in [2]. In particular, we have the fol-
lowing lemma.

LEMMA (Chan and Wei). If {u,,F,} is a martingale difference sequence,
if
E(u/w|F_) <c as. ¢

Jor some constant ¢ > 0, and if (2) holds, then
1
T 'Cx_u/ = f BdB’.
0

The purpose of the present note is to show how (3) may be obtained quite
simply when A # 0 by using this lemma and a martingale approximation to
the process u,. The approach we follow is inspired by the use of martingale
approximations in central-limit theory for stationary processes. The reader
is referred to [3, Chapter 5] for an excellent exposition of the approach.

2. MAIN RESULT AND PROOF

It will be convenient to let i, in (1) be generated by the linear process

-~}

U, = Z Bjet—p Z llBJ" < oo, ®)

J=—00 J=—00
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where the sequence of random vectors {e,}*, is i.i.d.(0,A) with A > 0 and
where | B,| = max,{L;|b,y|} with B, = (b,,). This includes all stationary
and invertible ARMA processes, for instance, and is therefore of wide appli-
cability. The process u, defined by (5) is strictly stationary and ergodic and
has continuous spectral density given by

fuu()\) = (1/27[')(Eije’J)‘)A(EJBjeu)\)*.

For our theory, we need to strengthen the absolute summability requirement
on {B,] in (5). We will use the following condition (based on (5.37) of Hall
and Heyde [3])

-~}

2B,

J=k

+

o <

k=1

2B,
=k

This condition holds for all sequences { B,} that are 1-summable in the sense
of Brillinger [1, equation (2.7.14)]; see also Stock [17, fn. 7]. It is again satis-
fied by all stationary and invertible ARMA models.

Our main result is as follows:

THEOREM. If {x,} is generated by (1) and {u,} satisfies (5) and (6),
then (3) holds.

Proof: Under the stated conditions, we note first that the multivariate
invariance principle (2) applies. When n = 1, this follows directly from The-
orem 5.5 of Hall and Heyde [3, p. 141 and p. 146]. For n > 1, the result may
again be deduced from this theorem by applying the argument of Theorem
2.1 of [8].

The remainder of the theorem is based on a martingale approximation of
u,. The construction is achieved in Theorems 5.4 and 5.5 of Hall and Heyde
[31. We let M, = oe,,j < k} and define

I=—o00 l=—o00

Yo = Z [E(u,lMo)—E(u,|M_1)] =< Z Bl>€o,

-1

Zo=k§)E(uk|M-1)— Z {ue — E(up| M_y)}.

Kk=—o0

Setting Y, = U*Y, and Z, = U*Z,, where U is the temporal displacement
operator, we observe that {Y;, M,} is a martingale difference sequence
whose differences Y, are strictly stationary, ergodic, and square integrable
with covariance matrix @ = (L, B,)A(L, B/) = 27f,,(0). The process {Z,} is
also strictly stationary, ergodic, and square integrable. With this construc-
tion, we have u, = Yy + Z, — Z, and thus

u=Y+27Z ~24.
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Note that x, = Liu, + Xy, and writing P, = £¥Y,, we obtain
Tl = TT'E{(Peoy + Zy — Zi + %0) (Yie + Z — Zir)',
=T 'LTP_ Y, + T'E1(Z, — Z,)Y},
+ TSP (Zi = Zier)’ |
+ T7LN(Zy ~ ZiN(Zi — Ziewr)' + 0,(1).
Now by ergodicity, we have
T7'27Z,Y, -0 a.s.
TY1Z, Y - E(Z,Y}) a.s.
TTENZ, — ZiNZy — Ziyy)' ~ —E(Zo(Zo — Z1)')  as.
and
T'C{Pi(Zk — Zi1) = TT'ZTP1 24
= [T7'CPZyy — TT'E Ya Zi ]
=T7PZ — T 'PrZy,
+ TE]Y, Z ) > E(Y,Z]) a.s.
Moreover, by the lemma
T-'2TP_ Y. = ‘/:BdB’,
where B(r) = BM(2). We deduce that
T2 x_yul = ‘/;1 BdB’ + K,
where
K =E(YoZi) — E(Zy(Zy - Z,)") — E(Z,Y}),
=E(YoZ() — E(Zyug).
Now
Z, = éE(umﬂMo) - kZl}m (Uies1 — E(Upy 1| My))

and

-1 %

E(YoZ{) = — 3} E(Youis1) + 2 E{YoE(upy, | M)},

k=—o0 Kk=—o0

= 2 E(Youiyy),
k=0
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since Y, is My-measurable. Next

) o

E(Zoug) = — 23 E(ueus) + 25 E(E(ue|M_)ug},

k=—o00 k=—o0

—kZE(uoué)+ 2 E(E(w|M_))ug}.
=1 k=—00

Hence,

K=A+ 3 Eouber) — 3} E(E(ue| M_)ug),

k=0 k=—oc0
=A+ N E(Y,,u) — Y EE(u|M_)u5). ®)
J=1 k=—o00

Now

Y, = > {E(u,|M_,) — E(u|M_,_,))}

l=—o0

and

LEY u) = X {Z LE{E(w|M_))ug} — E{E(u|M_,_))ug 1},

J=1 l=—0 \ y=1
= 21 E(E(w|M_))us}, ()
|=—o0

since E(u;|M_,) = 0 a.s. We deduce from (8) and (9) that X = A and (3)
follows immediately.

3. SOME REMARKS ON APPLICATIONS

Limit theorems involving stochastic integrals such as (3) seem to be of wide-
spread importance. They have many applications in econometrics and arise
frequently in time-series regressions with integrated processes and autoregres-
sions with unit roots. Many examples are provided in the papers [3-6,12-15].
In addition, as indicated in other recent work [11], it seems likely that a gen-
eral asymptotic theory for optimization estimators can be developed that uses
limit theorems such as (3). With some extensions, this theory can accommo-
date limits to stochastic integrals that are taken with respect to more general
continuous parameter martingales. Some of the interesting possibilities for
such extensions are explored in Section 4 of [11].
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