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REGRESSION THEORY FOR NEAR-INTEGRATED TIME SERIES

By P. C. B. PHILLIPS!

The concept of a near-integrated vector random process is introduced Such processes
help us to work towards a general asymptotic theory of regression for multiple time series
1n which some series may be integrated processes of the ARIMA type, others may be stable
ARMA processes with near unit roots, and yet others may be mildly explosive A hmt
theory for the sample moments of such time series is developed using weak convergence
and is shown to involve simple functionals of a vector diffusion The results suggest finite
sample approximations which in the stationary case correspond to conventional central
limit theory. The theory is applied to the study of vector autoregressions and cointegrating
regressions of the type recently advanced by Engle and Granger (1987). A noncentral
limiting distribution theory is derived for some recently proposed multivariate unit root
tests This yields some interesting insights mnto the asymptotic power properties of the
various tests. Models with dnift and near-integration are also studied The asymptotic
theory 1n this case helps to bridge the gap between the nonnormal asymptotics obtained by
Phillips and Durlauf (1986) for regressions with integrated regressors and the normal
asymptotics that usually apply in regressions with deternmmistic regressors.
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1. INTRODUCTION

MANY OBSERVED TIME SERIES in economics seem to be modeled rather well by
integrated processes. The simplest model generating an integrated process is, of
course, a random walk; and this is a model that has been widely used in financial
and commodity market studies, in theories of rational expectations, and in recent
work with aggregate economic time series. More general models of the ARIMA
type have also been used frequently in econometric work and have been found to
represent very adequately the movements in many different economic series.
Moreover, in a recent study Nelson and Plosser (1982) provide substantial
empirical evidence that a wide selection of macroeconomic time series for the
U.S. are modeled better in terms of integrated processes than as stationary
processes about a deterministic trend. In fact, their findings support autoregres-
sive representations with unit roots for all but one of the historical time series in
their study.

It is also known that the discriminatory power of statistical tests for the
presence of unit roots is generally quite low against the alternative of roots which
are close (but not equal) to unity. This is explained by the fact that the
distributions of the relevant test statistics in finite samples of data are usually
quite similar under the null and the alternative hypotheses in such cases. Thus,
strongly autoregressive processes or even mildly explosive processes must often
be considered as realistic alternatives in many cases where the statistical tests
may actually support the null hypothesis of a unit root.
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Time series which possess an autoregressive component with a root close (but
not necessarily equal) to unity provide an important general class of processes
which we describe as near-integrated. The class may be taken to include sta-
tionary time series with a strongly autoregressive component and nonstationary
time series with a mildly explosive root as well as integrated processes of the
ARIMA type. Thus, the class of near-integrated processes with which this paper
is concerned is rather wide.

The simulation studies of Evans and Savin (1981, 1984) gave rise to the
interesting finding that the coefficient estimator and the ¢ test in a stationary
AR(1) with a root near unity have statistical properties even in moderately large
samples (T = 50,100) that are closer to the asymptotic theory for a random walk
than they seem to be to the classical asymptotic theory that applies for stationary
time series. Similar results also seem to apply when the AR(1) is mildly explosive.
In all cases the approach to the strictly correct asymptotic distribution is very
slow as the sample size T 1 oo. These results suggest that an alternative asymp-
totic theory may be of value, one which takes into account the fact that the time
series under study are near-integrated processes.

The primary object of the present paper is to develop such a theory. We shall
work explicitly with multiple time series in which some series may be integrated
processes of the ARIMA type, others may be stationary ARMA processes with
roots near unity, while yet others may be mildly explosive series. These alterna-
tives are determined by the values assumed by the elements of a certain
noncentrality parameter matrix. This matrix occurs in the formulation of the
near-integrated process model and enables us to assess the impact on the
asymptotic theory of the presence of various forms of near-integration.

The organization of the paper is as follows. Section 2 develops some pre-
liminary notation, assumptions, and theory that are useful throughout the rest of
the paper. The concept of a near-integrated system is introduced and examples
are given illustrating several interesting special cases. Section 3 develops a limit
theory for the sample moments of a near-integrated time series and relates the
results to conventional central limit theory for stationary processes. In Section 4
the theory is applied to the study of vector autoregressions and is extended to
include regressions that involve cointegrated series. A noncentral limiting distri-
bution theory is derived in Section 5 for the multivariate unit root tests that have
been proposed recently by Phillips and Durlauf (1985) and Park and Phillips
(1986). These noncentral distributions help in the analysis of the local asymptotic
power properties of the various tests. Section 6 shows how the theory may be
extended to allow for systems with near unit roots and nonzero drift. The results
of this section help to bring together the apparently divergent theories of
regression with integrated processes (that leads to nonnormal asymptotics) and
regression with deterministic regressors (that leads to conventional normal
asymptotics). Section 7 develops an asymptotic theory for multiple regressions
with near-integrated time series. The results of this section include the spurious
regressions theory given recently by the author (1986a) and a theory for
cointegrating regressions of the type that have been advanced by Engle and
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Granger (1987). Some conclusions are given in Section 8. The Appendix contains
a brief outline of some proofs of results in the text.

2 PRELIMINARY THEORY AND DISCUSSION

Let {u,}§ be a weakly stationary sequence of random n-vectors. We introduce
the vector of partial sums S,=Y’_ju, and set S,= 0. Throughout the paper we
assume that {u,}g satisfies the following conditions:

(A)  E(u)=0,
(B) E|jug||f**< 0 forsome B> 2,

(©) {u,}q isstrong mixing with mixing numbers a,, that satisfy
i al-2/B<,
1

These conditions allow for many weakly dependent time series and include a
broad class of data generating mechanisms such as finite order ARMA models
under very general conditions (see Withers (1981)). Note that (B) and (C) imply
that

Q= lim TE(S;S;)=E(uqut)+ Y, E(uquj+ uup)
T—o00 k=1
(Ibragimov and Linnik (1971, Theorem 18.5.3)). Moreover, since this series is
absolutely convergent, the spectral density matrix f,,(A) of {u,} exists, is
continuous, and Q= 2xf,,(0). Except where explicitly noted, we shall further
require:

(D) 0 is positive definite.
From the partial sum process {S,} we construct
X (r)=T'V87,=T7V%,_, ((—-1)/T<r<j/T; j=1,...,T),

where [Tr] denotes the integer part of Tr. Under the conditions given above a
functional central limit theory holds for the random element X (r) as T 1 0. In
particular, we have:

(1) Xr(r)= B(r)
where B(r) is n-vector Brownian motion with covariance matrix 2. In (1) and
elsewhere in the paper, the symbol “= " signifies weak convergence of the
associated probability measures and the limit is taken as the sample size T 1 o0.
Multivariate invariance principles such as (1) above have recently been given by
Eberlain (1986), Phillips and Durlauf (1986), and Phillips (1987c). The reader is
referred to these papers for further discussion.

Our main concern will be with multiple time series that are generated by the
following model:

(2) ye=Ay,_+uy, (t=1,2...)
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with
(3) A=exp(T™'C).

In (3) C is a fixed, real n X rn matrix. Formally we should write 4 = 4,
signifying explicitly the dependence of the coefficient matrix on 7. Strictly
speaking, time series generated by (2) constitute a triangular array of the type
{{»,r}-1}%_1. However, this formality is not critical to our development and in
order not to overburden notation we simply refer to time series generated by (2)
as { y,}¢. Initial conditions are set at =0 and y, may be any random variable
(including a constant) whose distribution is fixed and independent of T.

We call time series that are generated by (2) and (3) near-integrated. This
follows the terminology introduced in Phillips (1987b) for univariate processes.
The matrix C in (3) may be interpreted as a noncentrality parameter matrix. It
may be used to measure deviations from the following null hypothesis

Hy: A=1

which applies when C = 0. In this case { y,} is a vector integrated process of order
one (an I(1) process) in the sense that its first differences are stationary (or 1(0)).

When C# 0, (3) represents a local alternative to Hy. As T T of course
A — I,. However, the rate of approach to I, is not so fast that the alternative
hypothesis represented by (3) has no impact on the limiting distribution theory
that we shall develop. In fact, the rate of approach is controlled so that the effect
of the alternative hypothesis (3) on the limiting distribution of statistics based on
data generated by (2) is well defined and directly measurable in terms of the
noncentrality parameter matrix C. Note that an alternate and asymptotically
equivalent approach would have been to replace the matrix exponential represen-
tation of A in (3) by deviations from I, of the form: 4 =1 + T~!C. With this
formulation the approach would be analogous to that which is conventionally
employed in the statistical analysis of asymptotic power under local alternatives.
This alternate approach is used by Chan and Wei (1987) in the scalar case and
for innovations that are martingale differences. Their results come within the
framework of the theory developed in Phillips (1987b) for univariate processes.

Near-integrated systems such as (2) and (3) accommodate many interesting
possibilities. For example, when C=diag(c,,...,¢,), {y,} is a multiple time
series in which some series may be I(1) processes of the ARIMA type (corre-
sponding to components with ¢, = 0), some may be stable ARMA processes with
near unit roots (¢, < 0), and yet others may be mildly explosive (¢, > 0). More-
over, if C has nonzero off-diagonal elements the system allows for series which
may be near-integrated of different orders. Thus, when » =2 and

_10 ¢
C"[o 0]’
we have

_11 a : —
A—[O 1] with a=c¢/T.
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In this case { y,,} is an I(1) process but { y;,} behaves like an I(2) process in finite
samples of data since a # 0 when ¢ # 0. Note that in this case y,, and y,, may be
regarded as being nearly cointegrated because the linear combination which
selects y,, reduces the order of integration from (nearly) I(2) to I(1). This is an
example of trivial cointegration.

A less trivial example is the following, Let C= —bb’ for some nonzero
n-vector b. Define f= b’b and write b = hf'/?> where h = b/(b'b)!/%. Note that

(4) Ah=e/Th
so that 4 is an eigenvector of 4. Note also that
(5) Wy, =e/Th'y_,+h'u,

and since f> 0 we deduce that the series 4’y, is nearly stationary. It follows that
the time series { y,} is nearly cointegrated in the sense that the linear combination
h’y, is nearly stationary or I(0), as distinct from I(1). Moreover, linear regressions
which relate the components of y, fall in the usunal category of spurious regres-
sions (Granger and Newbold (1974), Phillips (1986a); but when (4) and (5) apply
they may be interpreted as regressions for nearly cointegrated series. The asymp-
totic theory we develop therefore applies to cointegrating regressions and delivers
asymptotic local power functions for regression based cointegration tests. Finally,
in a sequence of models with increasing f we may regard cointegration as the
natural limit of a spurious regression as f 1 0.

3. SAMPLE MOMENTS OF NEAR-INTEGRATED TIME SERIES

Let {»}¥ be a near-integrated time series generated by (2) and (3). In
developing an asymptotic theory of regression for y, we make extensive use of the
following functional:

Kq(r)= fore("‘)ch(s)

where B(s) is vector Brownian motion with covariance matrix £2. K(r) is a
vector diffusion process and satisfies the stochastic differential equation system:
(6) dK (r)=CK.(r) dr+dB(r); K-(0)=0.

We may also write

r
K-(r)=B(r)+ Cf e""ICB(s) ds,
0
and in this representation the effect of the noncentrality matrix C is more

evident. K.(r) is a Gaussian process and for fixed r the finite dimensional
distribution

(7) K.(r)=N(0,0), 0= f’e(r—s)ch(r_s)c/ ds
0

is easy to obtain. In this expression and elsewhere in the paper, we use the
symbol “ =" to represent equality in distribution.
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Using an approach developed in earlier work (Phillips (1987a, 1987b)) it is easy
to study the asymptotic behavior of sample moments of y,. The main results we
need are collected together in the following lemma. Here and elsewhere in the
paper all asymptotic results apply as T 1 oo; and to achieve notational economy
we frequently eliminate function arguments and write, for example, K in place
of K.(r) and [JK. in place of [§K(r) dr.

LEMma 3.1:
(2) T- 1/2)’[Tr] =Kc;
L 1
6  TLy= [k
1 0
L 1
©  TLyy= [ KcKE
1 0
-2 d = 5Y 1 ’ 1 1 ’
(d) T E()’z—)’)()’z_,") ="chKc_chf K¢;
1 0 0 0
L 1
@ Ty = [Kedm oy
1 0
where
2,= E E(“o“;c)-
k=1

This Lemma gives an asymptotic theory for the sample moments of a near-
integrated vector process. As in the case of an integrated process, these sample
moments (when appropriately standardized) converge weakly to random matrices
rather than constants as T 1oo. The limiting distributions of these sample
moments are characterized as functionals of the vector diffusion K.. When
C=0, K.= B, and the results specialize to those given in earlier work (Phillips
and Durlauf (1986)) for 1(1) processes. Note that in the case of (a) and (b) we
have linear functionals of K, so that the asymptotic distributions are Gaussian.
The first of these is already given in (7). The second is found by a simple
calculation to be

(8) fo 'K.=N(0,V)
with
(9) V=folfolfompexp{(r—s)C}Qexp{(p—s)C’}dsdpdr.

In the scalar case (set n=1, V=0, 2= w?, C=c) the limiting variance is:
(10) v=0?/c?+ (w?/2c%)(e? — dec + 3).
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Note that for particular cases of (2) in which A is assigned a value in the
vicinity of I, the results of the Lemma may be used to suggest simple asymptotic
approximations to the distributions of the sample moments. Thus, if n =1 and
A =a is close, but not equal, to unity we have a=e°7 so that c=Tlna and
then

w? w?
v= 7+
(Tlha)” 2ATha)
is an approximation to the variance of T~3/2LTy, In the stationary case (a <1)
this suggests that T~ Y2XTy, is approximately N(0, v;) where

(11) 2 2

713 —4a"+a*7]

w
T (Ina)? N 2T(Ina)
The leading term here may be approximated as
(12) v,= w2/(Ina)’ + O(T 1)
~w?/(1-a)’

when a is close to unity.
Interestingly, the approximation (12) gives the exact asymptotic variance in the
stationary case for all values of a (|a| < 1). Indeed, we know that in this case

S[3-4a7+a7].

T
T~12Y y,= N(0,27f,(0)) as T 1toeo
1

(see, for instance, Hall and Heyde (1980), p. 135), where f,(A) is the spectral
density of the stationary process { y,}§. Here y, is generated by the stable AR(1)
¥, = ay,_, + u, with stationary errors u, and fixed autoregressive coefficient |a| < 1.
The spectral density of y, is given by:

£,(A) = 1-ae™ 74, (N)

where f,(A) is the spectral density of the error process { u,}. Moreover,

£,0)=0-a)*f(0)=(1-a) *(w*/27)

where

W?=E{ud)+2Y E(uguy).
k=1
Thus, 27f,(0) = @?/(1 — a)? and so the approximation (12) yields the correct
asymptotic variance of T-*2YTy, in the stationary case.
This rather remarkable deduction from the simple approximation (12) extends
to the general case of vector processes. Here we find that when (2) is stationary
and we set (using the principal value of the logarithm)

C=ThA~T(4-1),
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the analogue of (11) is:

(13) Vp=T*¥=T>C'QC" '+ 0(T™)
=(I-4)'Q(I-4)"'+0(T™).

Part (b) of Lemma 3.1 and (8), (9), and (13) now suggest the approximation

(14) T—l/lf,y, ~N(0,(1-4)"'2(1 - 4") ") = N(0,27f, (0))

where f, (A) = (I —Ae™)"Y, (A1 — A’e"**)~1 is the spectral density matrix of
¥, and £, () is the spectral density matrix of u,. Thus, (14) gives for all (stable)
A the well known asymptotic result from the theory of stationary processes (see,
for example, Hannan (1970, Theorem 11, p. 221)).

4 VECTOR AUTOREGRESSIONS WITH NEAR-INTEGRATED PROCESSES
Consider the least squares vector autoregression
(15) »=Ay,_,+1, (t=1,...,7)
where
7 -1
A = YlY—l(YLIY—l) ’ YI = [yI’ ey yT]’ Yil = [yO’ LR ] yT—l]'
The associated error covariance matrix estimator is:
A — =iy 1_
Q=T 'Y'(I-Py )Y,

where P, = D(D’D) D’ for any matrix D of full column rank. The following
theorem provides the asymptotic distribution theory for these least squares
regression estimates when the time series is a near-integrated process.

THEOREM 4.1:
. -1
(a) T(A—1)=~C+[fldBKé+9{Hf1KcKé] :
0 0
(b) Ad-1,  Qy-Q,=E(ugu);
P P
(c) if condition ( B) is strengthened to (B)' E||uy||*# < oo for some B> 2,

then VT (2, — 2,) = N(0, W) where

W=PD( E \I’k)PD’
k=0

Yo =E(u,u; ® uu,) — vec(2,) vec(£2,)’,
‘I’k=¢k+¢//( (k=1,2...),
D, = E(uuf,, ®uu,,)— vec(2,)vec (),

and D is the n* X n(n +1)/2 duplication matrix.
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Theorem 4.1 extends to near-integrated time series the theory developed in
Phillips and Durlauf (1986) for integrated processes. In particular, when C =0,
part (a) of Theorem 4.1 gives the main distributional result of their Theorem 3.2.
When C # 0 part (a) of Theorem 4.1 shows the effect of near-integration on the
asymptotic distribution of the regression coefficients. We see that this entails a
shift in the location as well as the shape of the limiting distribution. We also note
from part (b) of Theorem 4.1 that simple least squares regression continues to
provide consistent estimates of I, (and hence the asymptotic unit roots of the
model) in the presence of serially correlated innovations even when the time
series are near-integrated. Part (c) gives the asymptotic distribution of the error
covariance matrix estimator {2,. We observe that this distribution is independent
of C and is the same for integrated and near-integrated processes. This is
explained by the fact that in both cases 4 — 4 — 0 so that the residuals &, from
the regression (16) are asymptotically weakly dependent and consistently esti-
mate the innovation process u,. Conventional normal asymptotics therefore apply
in this case, as we would expect for stationary processes.

The above results may be extended to apply to vector autoregressions in the
presence of cointegration. In such cases we need to relax condition (D) above and
allow 2 to be singular (see Phillips (1986)). To fix ideas let J, be an n X k matrix
of orthonormal cointegrating vectors. We shall suppose that C is symmetric (cf.
the final example of Section 2) and CJ, = 0. Then

Ly, =yt Ly,

and since J,'y, is stationary we necessarily have 2J,= 0. Let J; be an n X (n— k)
matrix for which P =[J;, J,] is orthogonal. Defining x,= P’y, we find that x,

satisfies:
[xlz]= Jl"AJl 0 [x11—1]+[wlt]
X2y 0 0lL%2:-1 Wo,
or

(16) X, =GyXy_ 1+ Gyxppy + W,

where
x. = -xlt- = Jl’yt
f X _J?.’yz
and
w = [ wy,] - —Jf“z
f W _Jz')’z '

We deduce that
(17) y,=J1x1‘+J2W21

and x,, is a near-integrated time series of dimension r - k. Thus, (17) decom-
poses y, into a stationary component of dimension & and near-integrated process
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of dimension n — k. This generalizes the common trend decomposition of Stock
and Watson (1986).

THEOREM 4.2: If {w,}§ s strictly stationary and ergodic with nonsingular
covariance matrix E(wyw{) and satisfies conditions (A), (B)', (C), and (D), then
(18) 4d- P[ I"O"‘ - G,|P'=4, say,

P .

_— _ -1
(19)  T(d-A)J, =-J1C+P{Ef1dBKé+ F}{flKEKé} :
0 0

(20) VT (A—A)J,=N(0,(P®I)Q(P’'®I)),
(1)  VT(4-4)=N(0,(P®})0(P' 8 J))),

where B(r)=(B,(r)'By(r)’)’ is n-vector Brownian motion with covariance matrix
2=2xf,,.(0), Ks(r) is an (n— k)-vector diffusion defined by

Ke(r) = fo'e“-sfdﬁl(s), C=JCl,

and E, F, and Q are constant matrices defined by (A3)-(A5) in the Appendix and
~ ’ ’ -1
Gz__'E(wszz—l){E(wzthz)} .

We see from (19) and (20) that some linear combinations of the columns of A
are O(YT)-consistent and have an asymptotic normal distribution while others
are O(T)-consistent and have a nonnormal limit distribution. The results closely
parallel those obtained in Phillips and Ouliaris (1986) for the case where 4 = I in
(2). In particular, we observe from (21) that A hasa singular asymptotic normal
distribution in the limit (since Q is singular) and this distribution does not
depend on the noncentrality matrix C. In fact, the limiting distribution of

T(A — A) given by (21) is the same for all C and thus the presence of
cointegration in a system such as (2) eliminates the differences between integrated
and near-integrated processes. This is because cointegration in the regressors
induces O(YT )-consistency as we have seen and the effects of near-integration
are of a smaller order (by construction).

5 POWER FUNCTIONS FOR UNIT ROOT TESTS

The theory of the preceding section may be used to derive asymptotic power
functions for regression based tests for unit roots. To illustrate what is involved
we use the framework developed recently by Park and Phillips (1986). This
framework allows for multivariate regressions with deterministic regressors as
well as I(1) processes and it also accommodates I(1) processes with drift. Park
and Phillips propose a general class of statistics (called H-statistics) which in the
present context are useful for testing the null hypothesis Hy: A =1 in (2). More
specifically, from the vector autoregression (15) the suggested statistic (given by
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equation (38) of Park and Phillips (1986)) is:
22)  H(A)=u{@ W A-T)M(A-1)}-2Tu{@(4d-1))}
+T?tr (320, M1 2,)

where £ and £, are consistent estimates of £ and £, respectively and M, =
Y’,Y_,. Under the null hypothesis H, we have

(23)  H(A) =folfoldB(r)'SZ’ldB(s)B(r)'(folBB’)—lB(s)
= folfoldW(r)’dW(s)W(r)'(fDlWW’)—IW(s)

where W(r) is n-vector standard Brownian motion. When n =1 (23) reduces to

([waw) (w1

b e

which is the square of the limiting distribution of the ¢ ratio statistic in an AR(1)
with a single unit root and with iid (0, w?) errors. The latter distribution is
tabulated in Fuller (1976). Note also that in this scalar case Hi (A) in (22) reduces
to the square of the statistic Z, (the modified t-ratio statistic) introduced in
Phillips (1987a). .

Under the alternative hypothesis given by (3) the limiting distribution of H(4)
may be obtained from the results of Theorem 4.1. We find:

(24)  H(A)= tr{ﬂ‘lC(fochKé)C’} + 2tr{sr1c(f011<c dB,)}

_Hr{9—1(1[)1@1(5)([011((:1(5)_l(fochdB')}

- tr{sz—l(c+ $)(f01KcKé)(C+ g)’}

where
-1

([ oone) e

Now consider the case where the innovation sequence {u,} is iid (0, £,). In
this case £, =0 and @ = 2,. The conventional Wald statistic for testing H, is:

F=tu{QWA-T)M (A-1)}.

Once again we find that

F= tr{ﬂ—l(C+$)(fochKé)(C+$)'}.
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Thus, there is no loss in asymptotic local power from the use of H(A) even
though this statistic is applicable for a wide range of possible innovation
processes. Similar results hold for tests of a single unit root (see Phillips (1987b)
and Phillips and Perron (1986)).

Phillips and Durlauf (1986, equation (32)) suggested an alternative test of H,
in the multivariate case based on the statistic:

G=T"u{(A-I)(A-1)}+T Y@ Y,

where @ is a consistent estimate of £. Under the null G= x2 so that tests based
on G have the advantage of relying only on conventional tables of the chi
squared distribution. Under the local alternative hypothesis (3) we now find that

(25)  G=K(1)27K(1)

which is a quadratic form in the normal vector
K.(1)= N(O, fle““)cﬂe(l‘”c' ds|.
0

It is interesting to compare the asymptotic behavior of H(A) and G under
local alternatives. Note first that K (1) has zero mean so that the limiting
distribution of G is a weighted sum of independent central x? variates. The
limiting distribution of H(A), on the other hand, is a random quadratic form in
the elements of the matrix C + £. The distribution of this matrix involves a shift
in location under the alternative hypothesis that is directly related to the
magnitude of the noncentrality matrix C. From these observations we may expect
the asymptotic local power of H(A) to be superior to that of G.

The poor power properties of the G test are confirmed by closer examination
of the scalar case. Here (25) becomes (setting C = ¢):

G= {(e**-1)/2c}x}

which for small ¢ behaves like (1 + ¢)x?. Thus, against stationary local alterna-
tives (with ¢ < 0) G has asymptotic local power less than the size of the test (the
latter being delivered by x? under the null). Moreover, ¢ | — oo we see that

{(e2¢=1)/2¢}x3 0.
F4

Thus, asymptotic local power tends to zero as ¢ | — oo for the G test.
By contrast, in the scalar case (24) reduces to

1 1/2 1 -1/2 4 2
26 c( J}) +( Jz) J dW)
o) (o foe) ([
where J(r) = [Je""* dW(s) and W(s) is standard Brownian motion. By Lemma
2 of Phillips (1987b) we have

(=20) [U2=1, (=20)"*[J.aw=N(0,1)
0 14 0

as ¢| — co. We deduce that (26) diverges to + 0 as ¢} — . Thus, asymptotic
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local power tends to unity as ¢ | — oo for the H test.

6. EXTENSIONS TO MODELS WITH DRIFT

The theory developed in earlier sections may be extended to allow for models
with near unit roots and nonzero drift. In this case we replace (2) by

(2)l Yi=p+Ay_,+u,

When 4 =1 in (2)’ the asymptotic theory has been fully developed recently by
Park and Phillips (1986). Note that in this special case of (2)’ we may write

27 y=pt+)y?

where y? is a (driftless) I(1) process satisfying (2) with 4 =1I. Under (27) y,
behaves asymptotically as if it were ut and we therefore find asymptotic behavior
rather different from that which obtains for y°. In particular, we find that:

T
(28) T Yy, ” (1/3)ew,
1

so that the second moment matrix converges in probability to a constant matrix,
in contrast to Lemma 3.1(c). Note also that the standardization in (28) is T3
(rather than T~ 2) and the limit matrix is singular when n > 1.

For near-integrated time series two major cases can be distinguished. In the
first, we replace (3) by

(3) A=exp(T%*C)~I1+T**C

where the local alternatives are O(7~3/2), a choice inspired by the standardiza-
tion factor 772 in (28). In place of Lemma 3.1(a-c) we now find:

(29) T ly[Tr] _p’ s
T

(30)  TEy- (/2K
1

T
(31)  TYny " (1/3)pp’.
1

The asymptotic regression theory is complicated by the singularity of the limiting
sample second moment matrix (31). Park and Phillips (1986) show how to deal
with this complication and their results apply directly in the present case. In
particular, let @ and A be the least squares regression coefficients from (2)’.
Define h, = p/(w'p)*/? and let H=[hy, H,] be an orthogonal matrix of dimen-
sion n X n. We further define B= HJB and £, = H;2, and we use the following
functional introduced by Park and Phillips (1986):

7(B, M, E)= (fOldBM'+E’)(f01MM’)_1
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where B is vector Brownian motion, M is a process with continuous sample
paths such that [JMM’'>0 as., and E is a (possibly random) matrix of
conformable dimension. As in Theorem 3.6 of Park and Phillips (1986) we find
that:

(32) T(A—-A)=f(B,B* 2,)H],
(33) T3> (A4 - A)hy = (wp)"*f(B, P, ).

Here B* and P may be interpreted as Hilbert space projections. Specifically, let
m=n—1 and consider the Hilbert space L,[0,1]™ of m-vector valued, continu-
ous, square integrable functions on the [0,1] interval with inner product [jgig,
for gy, 8, € L,[0,1]™. Define the functions 1(r)=1, 2(r) =r for r €[0,1]. Then
B* is the projection of B onto the orthogonal complement of the subspace
spanned by [1(r)],,2«r)],]. Similarly, P is the projection of 2(r) on the
orthogonal complement of the subspace of L,[0,1] that is spanned by
[1(r), B’(r)). Finally 8 in (33) is defined by

o=-|( -1 [#) [or - [2]2) o

as in Park and Phillips (1986, Theorems 3.3 and 3.6).

We see from (32) that the limiting distribution of T(A4 — 4) is degenerate and
its support in R is the range space of I, ® H,. The degenerate linear combina-
tion of 4 — A at O(T) scaling involves the vector (4 — A)h,. From (3)’ and (33)
we have:

T(A~1)hy= Chy+ (we)"*f(B, B,8);
whereas from (3)’ and (32) we obtain:

Thus, the noncentralities induced by the specification (3)’ influence only those
linear combinations of A, viz. Ah,, which are O(T~3/?) consistent. All other
linear combinations of 4 have limiting distributions which are invariant to the
noncentrality matrix C.

The situation is substantially different when alternatives to 4 = I take the form
given in (3) rather than (3)’. This is the second major case of interest for
near-integrated processes. In place of Lemma 3.1(a)—(c) and (29)-(31) we now
find:

(34) T‘ly[m _p’ Le(r)ps
LA 1

(35)  TYy- (f Lc)u;
1 14 0

T
1 4
(36)  TOTy = [Le(mwLe(rY dr=2(C,p), say,
1
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where
Lc(r) =r] + (1/2!)r2C+ (1/3;),3(:2_'_ e

The limiting sample second moment matrix 2(C, ) may have rank equal to any
integer from zero to n. Let M be the subspace of R” spanned by the vectors
{Cku: k=0,1,2,...) and set / = dim m. Then 0 </<n and rank { 2(C, p)} =/,
as in the proof of Theorem 1 of Phillips (1974). Let H; be an n X I matrix of
orthonormal vectors of M and let H =[H,, H,] be an orthogonal matrix. Define
the /-vector of continuous functions g(r) by the equation

Lc(’)l‘:ng(r)
and set
KC(")=H2'KC(")’ &, = H;$,.

The least squares regression coefficient matrix in (2)’ now has limiting distribu-
tions given by:

(37)  T(4-4)=f(B, K., @)H;;
(38)  T*(4A-A)H,=f(B, P*,§").

It is again convenient to interpret K* and P* in these functionals as Hilbert
space projections. Thus, K* is the projection of K. onto the orthogonal
complement in L,[0,1]""/ of the subspace spanned by the functions
((r)I,_,I,_,®g(r)’]; and P* is the projection of g(r) onto the orthogonal
complement in L,[0,1) of the subspace spanned by [1(r)I, I,;® K/]. 8* in (38)
is defined by

8= - [( [eke- ['s[Ke)( [Kcke ['Kef ‘Kc)]g

From (37) we see that the limiting distribution of T(A — 4) is again degenerate
in R™, with support equal to the range of I ® H,. The degenerate elements of
A — A at O(T) scaling now involve the / vectors of (4 — A)H,. In contrast to
(32), we observe that the limiting distribution of T(A4 — 4) does depend on the
noncentrality matrix. This is to be expected since the alternatives given by (3)
involve O(T™!) departures from the null. Indeed

(39)  T(A-I)=C+f(B. K& &)H;

and this provides a generalization of Theorem 4.1(a) to models with drift. Note,
in particular, that when p=0 we have /=0, H,=1,, £,=8,, K=K,
KX =K.~ [}K_. and (39) extends Theorem 4.1(a) to the special case of fitted
drift with u = 0.

At the other extreme, when g+ 0 and /=n, we have H,=1,, K-=0, 2,=0,
8t=0, and P* is the projection of g(r) on the orthogonal complement of i(r)I,
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in L,[0,1]". Thus P*=g— ()¢ and (38) yields

@) 1A~ 4)=1(8,2%0)=(['are~)( [2or")”

oo [~ [s[s))

=N

Note that in this case
1
2(C,p)= ’
(Con) fo g8

is positive definite, since /= n and, consequently, M = R". Thus, from (36), the
sample moment matrix T-3Y”,Y_, has a constant, positive definite probability
limit and, as we might have expected in such a case, the limiting distribution is
normal. Note also that there are no degeneracies in the limiting distribution (40).
This extreme case with g # 0 and [/ =n therefore represents a return to conven-
tional normal asymptotics. The result is explained by the fact that the behavior of
», is dominated by deterministic components (viz. Tg(¢/T)) which induce
sufficient asymptotic variation over component variates to ensure that the limit of
the sample moment matrix of the regressors in (2)’ is constant and nonsingular.

The general case given in (37) and (38) admits the two extremes we have just
discussed as well as intermediate cases in which both normal and nonnormal
asymptotics apply. These results therefore help to bridge the apparent gap
between the nonnormal asymptotics explored in Phillips (1987a), Phillips and
Durlauf (1986), and Park and Phillips (1986) and the normal asymptotics
obtained in Kramer (1984) and West (1986), the latter for the special case of a
single nonstationary regressor with drift.

7 MULTIPLE REGRESSION WITH NEAR-INTEGRATED TIME SERIES

The theory developed in Sections 3 and 6 may be applied to multiple (least
squares) regressions of the form

(41) x,=a&+p’z,+0,

where x, (a scalar) and z, (an m-vector) are quite general near-integrated
processes. For our analysis it will be convenient to set n=m+1, to define
¥/ =(x,z]), and to assume, at first, that the multiple time series {y,}¥ is
generated by (2) and (3) with innovations {u,}§ that satisfy Conditions (A)—(D).
Under this set up, some elements of y, may be I(1) processes, others may be
near-integrated; the innovations u, that drive (2) may be quite general weakly
dependent time series; and x, and z, may be both contemporaneously and
serially correlated.

The following result provides an asymptotic theory for the least squares
regression (41). It is a simple consequence of earlier results in Section 3. In the
statement of the Theorem we use F; to represent the customary regression F
statistic for testing the significance of B in (41); 7, denotes the conventional ¢
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statistic for assessing the significance of 8,; R? is the coefficient of determination
in the regression; and DW is the Durbin-Watson statistic.

THEOREM 7.1:
(a) :é = Gz_zlgzﬁ
(b) T V=b;

() R*= g5,G5'8n/8n;
(d) T— IF‘B = (1/m)g£1G2_21821/( gll '—géle_zlg21)"
~ ) — _ -1/2, _ _
(e) T l/ztﬁ, = {(gu “gzlezlgn){Gzzl],,} (Gn gn),,
(f) T(DW) ="7'3'20"7/(811 - gﬁle—zlgzl);
where
1 m . .
’ 1
(42) G=|81 8&n 1=_[KcKé"'(f Kc)(fKé)§
g8n Gp|m 0 0 Y
1
b=_/[;KC;

7 = (1, ~g4G5').

Theorem 7.1 generalizes to near-integrated processes the regression theory
derived in Phillips (1986) for spurious regressions with I(1) processes. All of the
main qualitative resulis of the regression theory of the latter paper also apply in
the context of near-integrated processes. Thus, unlike the theory of regression for
stationary processes, the regression coefficients @ and S do not converge to
constants as T 7oo; £ has a nondegenerate limiting distribution; and the
distribution of & diverges as T 1 co. Similarly, R? has a nondegenerate limiting
distribution. On the other hand, the distributions of the test statistics F and Ig
both diverge as T' 1 oo and DW — 0 as T 1 c0.

Equation (41) may be regarded as a cointegrating regression of the type
recently considered by Engle and Granger (1987). In the work of these authors,
the null hypothesis in the regression is that of no cointegration (i.e. no linear
combination of x, and z, is stationary). Their maintained hypothesis is that ail of
the variables in the regression (here, x, and z,) are integrated processes. When
C =0, Theorem 7.1 gives the asymptotic theory for the regression coefficients,
conventional significance tests, and regression diagnostics under the Granger-
Engle null hypothesis in such a cointegrating regression. When C # 0 the theorem
delivers the relevant asymptotic theory for the wider class of near-integrated
processes. That is, the asymptotic theory is established for a more general
maintained hypothesis under which some variables in the regression may be I(1)
processes, others may be nearly explosive, while yet others may be nearly
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stationary. The effects of these extensions are measured through the noncentrality
matrix C.

Under the alternative hypothesis that the variables in the regression are
cointegrated a different asymptotic theory applies. Phillips and Durlauf (1986)
developed the relevant asymptotic theory for regressions such as (41) when z, is
an I(1) process and (x,, z;) are cointegrated. This theory is easily extended to the
case where z, is near-integrated. Specifically, suppose {x,} is generated by:

(43) x,=B’z,+v,

where
1
(44) z,=Fz,_;+w, F=exp(—]:R).

Let u; = (v,, w’) and assume that {u,}7 satisfies conditions (A)—(D). Then, in
place of Theorem 6.1(a) we find 8 rs B as T 1o and

(45) T(ﬁ—B):(f;KRK,g)_I(fOlKR dB+}\)
where

KR=_/(;e(’_S)RdB2(S), A=Y (wp,), and

B(r) = [Ba(r). By (r)']

is n-vector Brownian motion. (45) extends Theorem 4.1(a) of Phillips and
Durlauf (1986). The two results are very similar and they differ only by the
presence of the diffusion process K rather than vector Brownian motion in the
limiting distribution.

The asymptotic theory of cointegrating regressions may be further extended to
cases which allow for drift as well as near integration. This leads to new and
rather different results which make use of the theory developed in Section 6.
Suppose that the regressors in (43) are generated by

1
44y  z,=m+Fz,_;+w, F=exp(?R)
in place of (44). As in (36) we now find that
T
T3y 2,2} —> flLR(r)mm’LR(r)' dr=2(R, m).
1 P2 Y0

Let M, be the subspace of R™ spanned by {R*: k=0,1,2,...,m} and set
I = dim ( MR). Then, as before, 0 < /< m and rank { 2(R, m)} = /. Once again, let
H, be an m X | matrix of orthonormal vectors of My and let H=[H,, H,] be
orthogonal. We define the I-vector g(r) by Lg(r)m = H,g(r) and write K=
HJKz, A= HJA. The least squares regression coefficient B from the cointegrating
regression (43) now has asymptotic distributions which we characterize as fol-
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lows:

(46)  T(B-B)=H,f(B, K. }\),

(47) T3/2H1'(/§—.3) ""’f(Blang’AJr)l-

Here K2 is the projection of K onto the orthogonal complement in L,[0,1]"~'

of the subspace spanned by I,,_,® g(r)’; g* is the projection of g onto the
orthogonal complement in L,[0, 1]’ of the space spanned by I,® K4(r); and

A= —(ngzk)(f;&ﬁ)ﬂ

Note that when m =0 (and hence /=0) H,=1,, K =Kr=Kz, A=A, and
(46) reduces to the earlier result (45). At the other extreme, when m # 0 and I=n
we have:

737(f-8)=(['s )‘lfolgdBl

(0 wu(f g8 ) I)

III

where

o0
“’%1=E(03) +2 Z E(Uovk)
k=1

is the variance of the Brownian motion B;.

8 CONCLUSION

This paper develops a general asymptotic theory of regression for multiple time
series which may be individually characterized as either integrated or near-
integrated processes. The limiting distribution theory that we have derived covers
vector autoregressions and cointegrating regressions with near-integrated
processes. In both cases the asymptotic theory presents some important general
departures from conventional theory based on stationary processes. The new
asymptotic theory is helpful in characterizing large sample behavior in such
regressions whether there are unit roots or near-unit roots in the underlying data
generating mechanisms.

The theory we have developed has been applied to analyze the noncentral
distributions of certain multivariate tests for unit roots. The results provide some
helpful asymptotic local power comparisons among the tests. In particular, they
indicate that the H tests introduced by Park and Phillips (1986) involve no loss in
asympiotic power over more conventional Wald tests, in spite of the fact that the
new tests allow for a wide class of weakly dependent innovation processes,
whereas the Wald tests apply strictly for iid innovations only.

Our regression theory includes cases of vector autoregressions with cointegrated
regressors. We have also studied cases where the generating mechanism allows for
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drift as well as near integration. Both these cases lead, in general, to degeneracies
in the asymptotic distribution theory. The case of drift and near-integration is
particularly interesting because the extent of the degeneracy is contingent on the
noncentrality matrix and the drift coefficient. The results in this case provide a
bridge between the nonnormal asymptotic theory developed in Phillips and
Durlauf (1986) for integrated regressors and more conventional normal asymp-
totics for regressions with deterministic regressors.

Department of Economics, Yale University, New Haven, CT 06520, U.S.A.
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APPENDIX

PrROOF OF LEMMA 31: The proofs of (a)-(d) follow lines developed earlier in Phullips (1987a,
1987b). To illustrate we outline here the arguments leading to part (b). From (2) and (3) we deduce
the representation:

—1

(A1) y,=kz exp {(k/T)C}u,_,+exp{(1/T)C}y

= Zlexp{((t—j)/T)C}u/+exp{(t/T)C}yo
Thus,

T T 1 T
(A2) T332 5 =T32% 3 exp {((: -1)/T)CYu, + T2 Y exp {(1/T)C}
1 =1

=1 ;=1

T
=71 e = 1,2 {1/T (s ~1/2
L Lew (oMYA dir(s) + 0,1

T 1
- ,2 [ 7 e (0 =0)/T)C YR dxe (5)
+0,(T7172).

Now (1~1)/T<r<y/T and (- 1)/T<s5</t, so that

exp {((:—1)/T)C} =exp {(r—5)C}[1+0(T7")]
and (A2) becomes:

T
[ e ((r=9)C) 32 Xy (5) + 0,(T72)
=/01dr/0’exp{(r—s)C}El/deT(s) +0,(T"17?)

= folKC(r) dr

by the continuous mapping theorem (since exp {(— s)C} is continuous) and (1), proving (b). The
proofs of (a), (c), and (d) are enurely analogous Part (e) 1s proved 1n Phdlips (1986c¢)
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PrOOF OF THEOREM 4.1: Define U’ ={u,,..., ur) and then from (2)
A=A+ Uy (Y7 )"
so that
T(A-4)=(T 0y, ) (T2r 7))

Now A =exp {(1/T)C}=1I,+ (1/T)C+ O(T~?) and from Lemma 3 1 and the continuous mapping
theorem we deduce that as T T oo:

-1
T(A-I)=C+ 1dBK’+S2’ 1K K/
o e ), Refe

as required for part (a) of the Theorem. The first part of (b) follows directly. To prove the second part
of (b) we now show that as T oo

Ro=T WU-TWY_ (YY) 'Y U2
F4

as requured, since the second term in the above expression 1s OP(T‘l) and the first term converges to
2, almost surely as T T oo by the McLeish strong law for dependent sequences. The proof of part (c)
is identical to the proof of Theorem 3.3 of Phillips and Durlauf (1986)

PROOF OF THEOREM 4.2: Let G, and G, be the least squares regression coefficients from (16)
Using Lemma 3.1 we find that

-1
(¢, - G) = {EfoldEKéJr F}{j:KgKé} ,

ﬁ((fz— 52) =N(0,Q), where
_ (_n—'k) —(k)
B(r)=(B{(r), Bi(r))

1s n-vector Brownian motion with covanance matrx £ = 2#f,,,(0) and

(A3) Kz(r)= fo "er=9C 4B (s), T=JCh,

E=1I,- EF[0, 1],

E,= E(“)lwil—l)’
Fy= E(w2tw2’t)!

(1
(a8 F- ;;,.]—E.F;lszaz»,
912
(n—k) (k)

0 .
20 =Y E(ww)= (=0 | 2P 9 |,
k=1 T om
(k)

(A3) 0=HO.H',
H=[I®F ' EF'®FR],

Qu = Mp(27f (0)) Mp,
I, 0 Jan=1 1y
MD—[O PD]’ P,=D(D'D)'D",

w, ® w;, — vec ( Fy)

£ = [Wzng—l”"ec(Et)]

and D 1s the duphcauon matnx of order n° X n(n+1)/2
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Now y, = Px, so that A= PGP’ and we deduce that

. ~ T -
A - P[G,,G,]P =P _6_-62 P'=PGP’'=A, say
N :

Noting that

A=JJ{ + PG, J3,
we see that

T(A-A)J=P{T(G-G)} P

=P{T(6,-G,)}

and (19) follows directly Similarly,

VT (A-A)L=P{VT(G-G)} P},

—P{/T(6-5))

and we have (20) Finally, wnting { = N(0,(P ® I)O(P’ ® I)) we obtan

VT (A-2)P=[0,¢],
and thus

VT (A-A)=[0,¢1P'=N(0,(P&L)0(P’' ® 1))
as required for (21)
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