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ON THE FORMULATION OF WALD TESTS OF
NONLINEAR RESTRICTIONS

BY P. C. B. PHILLIPS AND JOON Y. PARK!

This paper utilizes asymptotic expansions,of the Edgeworth type to investigate alterna-
uve forms of the Wald test of nonlinear restrictions Some formulae for the asymptotic
expansion of the distribution of the Wald/statistic are provided for a general case that
should include most econometric applications. When specialized to the simple cases that
have been studied recently in the literature, these formulae are found to explain rather well
the discrepancies in sampling behavior that have been observed by other authors. It is
further shown how the corrections delivered by Edgeworth expansions may be used to find
transformations of the restricions which accelerate convergence to the asymptotic distribu-
tion.
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product representations, Wald tests.

1. INTRODUCTION

THE NUMERICAL VALUE OF THE WALD TEST depends not only on the restriction to
be tested but also on its algebraic formulation. Under general conditions Wald
statistics which are based upon different but algebraically equivalent forms all
have the same asymptotic distribution under the null hypothesis that the restric-
tion holds. However, numerical outcomes of the tests and their finite sample
distributions can be substantially different for different forms of the same
restrictions. Thus, the adequacy of the usual asymptotic x> approximation may
also vary substantially as we change the algebraic form of the restriction.

Gregory and Veal (1985) recently studied this phenomenon by simulation.
They observed that the distributions of alternative Wald statistics for a simple
nonlinear restriction can be widely divergent in small samples; and they con-
cluded that the algebraic form of the restrictions to be tested is likely to be
important in many different empirical applications of the Wald test. Lafontaine
and White (1986) go further and argue that it is even possible to obtain any value
of the Wald statistic by suitably reformulating the restriction. Breusch and
Schmidt (1985) make a similar point in a closely related paper.

The purpose of the present paper is to study this phenomenon by direct
analytical methods. Our approach is to develop an Edgeworth expansion of the
distribution of the Wald statistic in a form that is sufficiently general to permit
different formulations of the restrictions. Higher order terms in the expansion
then provide a mechanism by which deviations from the common asymptotic
theory may be measured for alternative forms of the Wald test. In this sense the
asymptotic expansion provides more complete distributional information than
crude asymptotic theory and, in general, leads to distinct higher order terms for

1 We are grateful to the referees and Lars Hansen for helpful comments on an earlier version of this
paper Our thanks also go to Glena Ames for her skill and effort in typing the manuscript of this
paper and to the NSF for research support under Grant Number SES 8519595. This paper was
completed while Joon Y Park was an Alfred P. Sloan Doctoral Dissertation Fellow.
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different algebraic representations of the restrictions. As is common in finite
sample theory, these terms involve parametric dependencies, so that the adequacy
of the first order asymptotics in each case will depend on the relevant region of
the parameter space. This information can be used to improve decision making
since it provides advice concerning the behavior of alternative forms of the Wald
test in different regions of the parameter space.

Our results indicate that terms in the asymptotic expansion up to O(T™ 1)
where T is the sample size provide enough additional information to capture the
main distributional effects that are incurred by using alternative forms of the
Wald test. The correction terms may be used to determine which version of a
Wald test has a sampling distribution that is more closely approximated by the
asymptotic. In simple cases the correction terms themselves suggest transforma-
tions of the restrictions which will improve the asymptotic approximation by
eliminating the correction to a certain order and thereby accelerate convergence
to the asymptotic distribution. An example is provided in Section 3. This idea is
inspired by earlier work by Phillips (1979) and Konishi (1981) on the use of
Edgeworth expansions to determine the form of normalizing transformations.

We emphasize that these conclusions are reached without reliance on the
numerical quality of Edgeworth corrections. Edgeworth expansions by no means
always improve the quality of first order asymptotic approximations. Indeed, as
documented in other work (see Phillips (1977a,1984)), they are often of very
uneven quality and their performance is always parameter dependent. It might be
said that Edgeworth expansions behave like the little girl with the curl in the
famous nursery rthyme: when they are good they are very, very good and when
they are bad they are horrid. Moreover, as shown in Phillips (1984), the
corrections tend to work well when the error on the crude asymptotic is small
(when they are least needed) and are poor when that error is large (when they are
most needed). Nevertheless, even though their numerical quality is often unreli-
able, Edgeworth corrections still provide a valuable source of information about
the adequacy of asymptotic theory. This is because they clearly signal those
regions of the parameter space where the corrections are small and those where
the corrections will be large. These, in turn, signal the regions where the crude
asymptotic does well and those where it does poorly. This is precisely the type of
information we seek in the present paper.

Some comments on related work and on our new algebraic approach are in
order. Asymptotic expansions of the Edgeworth type have been extensively
studied in the recent statistical and econometric literature. With respect to
statistical criteria that are asymptotically chi-squared, this work has dealt both
with formal expansions (Peers (1971), Hayakawa (1975,1977), Harris and Peers
(1980), Rothenberg (1984)) and with the theory of validity of these expansions
(Chandra and Ghosh (1979,1980), Sargan (1980), Mauléon (1981)). While much
of the statistical literature (e.g. Hayakawa (1977) and Chandra and Ghosh
(1979,1980)) has emphasized the case of statistics which depend on underlying
independent and identically distributed variates, some papers (e.g. Tamguchi
(1985)) have extended the formal calculations to certain time series settings.



FORMULATION OF WALD TESTS 1067

Work in econometrics by Sargan (1976), Phillips (1977b) and Mauléon (1981)
and Sargan and Satchell (1986) made general extensions of the validity theory to
encompass time series applications. Our approach in the present paper is to
provide formal calculations of the asymptotic expansions which in the general
case have a similar range of applications.

The algebraic method that we adopt is different from that of earlier work,
which has almost invariably used tensor notation. The latter is certainly the
simplest and most economical for expansions to an arbitrary order. However, in
the case of expansions to O(T!) many of the formulae can be derived and
represented in matrix form. Our approach illustrates this new format which, in
our view, helps to simplify the algebraic structure of Edgeworth expansions.
En route, we provide some new general formulae for the matrix of sixth moments
of the multivariate normal distribution.

The paper is organized as follows. Section 2 develops formulae for the
asymptotic expansion of the distribution of the Wald test in a general setting.
These formulae are specialized in Section 3 to study the examples given recently
by other authors and to examine transformations which accelerate convergence.
Some brief conclusions are given in Section 4. Proofs are provided in Appendix
A. Appendix B details some useful additional formulae for the Edgeworth
expansion of the Wald test which should be general enough to cover most major
econometric applications.

2. EDGEWORTH EXPANSION IN A GENERAL CASE

We start by assuming that the data generating mechanism depends on a set of
parameters represented by the p X 1 vector 8 whose true value we denote by B°.
The hypothesis to be tested takes the form

(1) Hy: g(B%) =0

where g: R?—> R’, r<p, is a vector valued function that is cqntinuously
differentiable at least to the third order. Given a sample of size T, let 8 denote an
estimator of B° and define g=f— B° and 7=VTq.

Under general conditions we can expect that

2) g=N(0.2)

as T 1 co, where the symbol “ = ™ represents weak convergence of the associated
probability measures and {2 is some positive semi-definite matrix, possibly
dependent on B.

The vector § may be regarded as being composed of low order sample
moments of the underlying data or simple functions (often rational functions, as
in the case of instrumental variables estimation) of such sample moments. As
shown in Phillips (1977) and Sargan and Satchell (1986) the distribution of g will
admit a valid asymptotic expansion under very general conditions. Details of
conditions which are sufficient to ensure the existence of a valid expansion are
given in these articles and a constructive process by which the expansion may be
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obtained is detailed in Phillips (1982). The asymptotic expansion of the density of
g has the form:

(3) pdf(7) = (27) " *(det @) exp { - (1) 7277}

-[1 LY (T

J=1

+ O(T~¢+D2)

where P (g) is a real polynomial in the elements of g of degree 3/ and where we
have assumed that § is positive definite. The coefficients in the polynomials P, in
(3) are determined by the cumulants of the underlying sample moments upon
which § depends and the derivatives of the functions which define that depen-
dence, both to a sufficiently high order that is determined in turn by the order, »,
of the expansion. P, is an odd (respectively, even) function when the index j is
odd (even).

For the main purpose of this paper we shall be working at a sufficient level of
generality if we require that standardizing transformations have been carried out
which ensure that £ =1, and that, instead of (3), we have quite simply:

(4) g=N(0,1)

where the symbol “ =" signifies equality in distribution. Our results may be
extended to the fully general case of (3) by transformation and by carrying the
additional terms induced by (3) in our subsequent computations of the asymp-
totic expansion of the Wald test. Since the calculations are much heavier in this
case, the formulae that apply are derived in Appendix B. They should be useful
in many additional contexts.

We now define G = dg/dB’ and use carets over such functions of 8 to signify
their evaluation at g, so that G = G(B) whereas G = G(B°). In what follows we
assume that G (respectively, G) is of full rank 7 (with probability one).

The Wald statistic for testing (1) now has the form

(5) W=Tg(GG") ¢
and as T T o0
(6) W= x2

under the stated conditions. To refine (6) we first develop the following Taylor
representations of yT§ and ¥~ =(GG")™! = (§**). Thus, to 0,(T~") we have
(using the tensor summation convention of a repeated suffix):

1 1
ﬁgx = gquj + ﬁngkqjqk + Hgljqujqkql-*_ Op(T_3/2)’

A

1 1
= U b+ O, (T77).

Here subscripts j, k,/ of g and m, n of ¢ imply differentiation with respect to
the corresponding components of B. Using these expansions in (5) and collecting
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terms up to O,(T~') we obtain:

1a - = 1 1a a JE
W=2,4"%.)3,3 + ﬁ(g.,¢mgab + 8, m¥'*8ab) 4,3

1

+ ? [(%)gu 'r:tlngab + gt,m‘l/nagab

+ (%)ngm‘,/mgabn + (%)gtjmn‘l/mgab] qjqquqn
-3/2
+0,(T7?)
(7) =7G(GG")'Gq + T™Vu(g) + T w(3) + 0,(T~37), say.
We rewrite u(q) and v(g) as:
u(g) =vec(J)(7©7®7),
v(g) =u{L(37' ®47)},
where J is the p? X p matrix which stacks the p X p matrices
(8) G'(6G')i) G+ G/, (GG")'G (i=1,...,p),
vec(J) stacks rows of J, and L is the p? X p? matrix whose (i, j)th p X p block
is given by
(9) (1)6'(66")i)G + 6(,(66)(, G + (4)6(,(66) "G,
+(%)G('z,)(GG')_1G (1,j=1,...,p).

In (8) and (9) we use the notation 4, =44 /8B, A, = 3°4/3B,B, for any
matrix A = A(fB). Note that (7) is a convenient matrix representation of the
stochastic expansion of W in terms of the component variates §.

The characteristic function of W may now be written:

(10) of () = (27) P> fRPeuwe-a/z)qfa dg

= (27) p/szpexp {-(0)7[1-2i6'(66") 6] 7}
it it 12 _
-[1 v (@) + 70(2) = 5@ |di+ o(T 7).

To compute the integral in (10) we first transform g — z = R™'§ where we define
R by writing

S=1-2itP, =P, +(1-2it)P,
and

R=P_+(1-2it) P, =512

Here we use the notations P, = 4(A4’4) "4’ and P, =1 — P, for any matrix A4 of
full column rank.
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Noting that the Jacobian of the transformation § — z is det R = (1 — 2it)~"/?
we find that (10) reduces to:

(11) ch(t)=(1—2it)_’/2{1+(it)T“1/2E(u)+(zt)T‘1E(v)

t2
- (?) T'lE(uz)} +o(T™Y)
where E is the integral expectation operator with respect to the density
(2m)~?exp{ —(})z’z} and
(12) u=u(Rz), v=v(Rz).
Note that the leading term in (11) is just the characteristic function of the x?
distribution, corresponding to the usual first order asymptotics of W. Higher
order terms in (11) are computed simply by taking expectations of polynomials in

independent standard normal variates. We observe that E(u)=0 since u in-
volves only a polynomial of odd degree in z. Moreover,

v=tr{(R®R)L(R®R)(zz' ® zz’)}
and

u*=vec(J)(R®R®R)(zz’® 2z’ ® 2z’)(R® R® R) vec (J ).
Expectations of v and u? are now obtained through the following Lemmas which
provide convenient representations of the matrices of fourth and sixth moments
of the multivariate normal distribution. We use X, to denote the commutation

matrix of order mn X mn, i.e. the matrix for which vec4’ = K, vec A where 4 is
any m X n matrix.

LEmMMA 2.1: If z= N(0, 1,) then
(13) E(z2z2’®zz')=1+K,,+ (vecI)(vecI)’;
(14) E(zz’ ® 22’ ® z2')
=I®I®I
+(WE[(1eT,eT)+(T,@1eT,)+(T,®T,oI)
nJ

})
+ E (T;j® T;k® ]}k)'
Ik

]

Alternatively,
(15) E(zz7®zz’ ® zZ')
=I+K,,+Kp,
+(I+ K, + Ky, )(I® (vecI)(vecIY)(I+K,,: + K,2,)
+I®K,, +K,, ®I+K, (I®K, )K,,;
where

e —_ ’
T,=E,+E, E, =ee,

and e, is the i’th unit vector in RP,
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LeMMa 2.2: If x = N,(0,V') then
(16) E(xx' ®xx)=(I+K,,)(V®V)+ (vecV)(vecV ),
(17) E(xx’ ® xx’ ® xx”)
=(I+K,,+K,,)(VoVeV)
+(I+K,2+ Ky, ) (V@ (vecV )(vecV ) (I + K2 + K j2,)
+Ve {K,,(VeV)}+{K, (VveVv)}eV
+KPP2[V® {KPP(V® V)}]szp'
LeMMa 2.3:
(18)  E(v)=ay+a;(1-2it) ' +a,(1-2it) 7%,
(19)  E(u?)=by(1—2it) "+ b,(1 ~2ur) " + by(1 - 2it) 7,
where
a,=tr(4,) (1=0,1,2),
Ag=L {(I+ K”)(T’G/ ® ﬁG,) + (vecﬁG,)(vecI_’G')} )
Ay =L[(1+K,,){(Ps® Pg + Py ® Py} + (vec P, ) (vec Py )’
+ (vec Py )(vec I_’G,)’}],
A,=L{(I+K,,)(P; ® Pg) + (vecPg)(vec P )|,
b, = (vecJ YB,(vecJ) (i=1,2,3),
B,=H(P, ® P, ® P;) + H(P; ® (vec Py )(vec P ) ) H
+P;®K, (P ®P;) +K,,(Py®P;) ® P
+K”z(ﬁc, ® K},p(ﬁG, ® I_’G,))szp= CO(I_’G,), say,
B, =H{P,®P;®P;}H
+H{ P ® (vec Py )(vec Py, ) + Py, ® (vec P, )(vec Py )’
+P; ® (vec P )(vec Pg) } H
+P;®K, (P ®P;) + Py ®K,,(Py ®Pg)
+P;®K, (P;®P;) +K,,(P; ®Pg) ® P
+K,,(P; ® P )Py + K, (P ®Pg) ® Py,
+K,2{(Py ®K,,(Ps ®Ps)) + (P ® K, Py ® Pgy))
+(Pg ® K, (P ® Pg.)) } Kj2y= Co(( P Pg),  say,
B,=C\(Pg, Py),
By = Co(Pgr)s
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and where
H=1TI+ Kppz + szp'
Using (18) and (19) in (11) we find the following expression for the characteris-
tic function of W:
_, 1
(20)  of () =(1-2it) 71+ ?{(ao— 1p,)(ir)

+(ay+ by — 1b,)ir(1 - 2ir) 7
+(ay+ b, — 1b,)it(1 - 2it) 2

+5bsit(1=2it) T’} + o(T7Y).

Upon inversion of (20) we obtain asymptotic expansions of the density and
distribution function of W up to O(T~!). The final result is given in the
following theorem.

THEOREM 2.4: The asymptotic expansion of the distribution function of W up to
O(T™Y) as T 1 o is given by:

(1) edr(w) = E(w) = meln)f(w) + (1)

— Ew=T7%(w)) + o1

where f, and F, denote the density and distribution function, respectively, of a x>
variate and where

(22) c(w)= goanw"

with
ag=(4a,— b;)/4,
a, = (4a, + b, — b,) /4r,
ay=(4ay+b,— by) /4r(r+2),
a3 =by/4r(r +2)(r+4).
Finally, we observe that if w, is the critical value of the x2 distribution at the

level a, then the corresponding critical value of cfd(w) correct to O(T™!) is given
by the solution of

wr =T e(w*)=w,.
This may be approximated by
wr=w,+ T e(w,)

which is correct to the same accuracy of O(T™1).



FORMULATION OF WALD TESTS 1073

3 SPECIALIZATIONS

We shall examine various examples and Monte Carlo results that have ap-
peared in the recent literature in the light of the previous section.

(i) Gregory and Veall (1985)

These authors study by simulation methods the behavior of alternative Wald
tests of the algebraically equivalent restrictions:

(I) .31 - 1/.32 =0,
(H) .3132 ~-1=0,

where B, and B, are coefficients in a classical linear regression model. Their
evidence suggests that the Wald test based on formulation (I) performs poorly in
finite samples, even in samples as large as T = 500, when B, is in the vicinity of
the origin (more specifically, 8, = 0.2,0.1 in their experiments).

Asymptotic expansions of the distributions of these alternative Wald tests may
be deduced from Theorem 2.4 by applying the formulae of the previous section.
In particular, the coefficients of the correction factor ¢(w) in (22) are displayed in
Table I for easy comparison.

The first two coefficients o, and «; agree under the null hypothesis. Dis-
crepancies to O(T™!) occur in @, and a,. For small 8, both a, and a, are of
O(B5 %) under (I); but, under (I), a, = O(B3) and a; = O(BS) as B, — 0. Thus,
substantial deviations from the nominal asymptotic size are to be expected for
the Wald test under (1), whereas rather good approximations from first order
asymptotics are to be expected under (I1), at least in this region of the parameter
space. For example, when B, = 0.1 we find that:

a,=—400, ;=100  under (I)
while
a,=-001, @;=10"%  under (II).

TABLE 1
COEFFICIENTS OF THE CORRECTION TERM c¢(w)

1
Y] B1-§‘=0 an gp,—-1=0
2
a, 0 0
B3 B
o - e - T
(1+8) (1+8)
4+108;5 B — 4B¢ + B3O
@ - E 3
B (1+8) (1+81)
1 B

a,

B (1+8)’ 1+ )’
)
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It is clear from the polynomial correction factor
(1/T)c(w)=(1/T)(—10"%w — 400w2 +100w*)  under (I)

that the Edgeworth expansion produces large corrections (often above 50 per-
cent) to nominal asymptotic probabilities even for sample sizes as big as T'= 100.
This is strong evidence that the asymptotic distribution of W under (I) is a poor
approximation in this region of the parameter space (8; = 10, 8, = 0.1) and that
the gap between the finite sample and asymptotic distributions of W is substan-
tial. This confirms the experimental results of Gregory and Veall. Theory also
strongly supports their recommendation that (II), the multiplicative form of the
Wald test, is to be preferred on the basis of the accuracy of nominal size if we
have reason to believe that 8, may be in the vicinity of the origin. For in this case
the polynomial correction factor

1/T)e(w)=(Q/T)(—10"%w —0.0lw +10"°w?)  under (II)

delivers only very minor corrections to the asymptotic even when samples are as
small as T = 10.

(ii) Lafontaine and White (1986)
These authors consider the algebraically equivalent restrictions:
o) B=1,
(I, Bk=1, keZ

In this case the coefficients in our correction factor ¢(w) for the distribution of
the Wald test based on (II), are given by:

ag=a; =0,
ay=—3(k=1)(k-2),
ay=4(k- 1)2-

Note that all coefficients vanish when k =1, as is to be expected since the Wald
statistic has an exact x? distribution in this case. Moreover, a, = O(]k|?), a; =
O(|k|?) as |k| = co. Thus, the correction on the first order asymptotics becomes
more substantial as |k| increases. In other words, as the nonlinearity of the
formulation (II), increases, the adequacy of the asymptotic x2 approximation
deteriorates and the nominal critical values for the test that are delivered from
asymptotic theory become less reliable. For large |k| the deviations from the
asymptotic theory may be expected to be large. This confirms the finding of
Lafontaine and White.

(iii) Breusch and Schmidt (1985)
These authors give the example of the equivalent null hypotheses:
(1 B=0,
am  k(B)=0,
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where h satisfies #(0)=0 and A'(B8)>0 for all B. To test these equivalent
hypotheses the following two Wald statistics are considered:

W,=TX%,  Wy,=Th(X) /(K (X)),

where X is the sample mean of a random sample of iid N(,1) variates. Taking
h to be continuously differentiable to the third order we deduce from Theorem
2.4 after some elementary manipulations that the distribution of W, has the
following Edgeworth expansion to O(T™1):

(@) (W) =F(w) = pe(n)fi(w) +o(T™)

where

(24) c(w)=-

219(0) 1{n?(0)\*

____w2 4+ — 3
3n'(0) 4\ n'(0)

For certain functions 4 in (II) the correction term (24) will lead to substantial

deviations from the first order asymptotics. Breusch and Schmidt suggest the
following function to illustrate possibilities:

h(B)={1+e7#=0} 7 — (14+e) 7, B0,
= —h(-B), B<o0,
where b > 0 and c is unrestricted. Simple calculations verify that
rO0)  b(1-eb)

n(0)  1+e*
and
RO0)  b2(1—4ebe + e2b)
RO (1+et)
These expressions can be large for large b. Thus, we find
h®(0 h®(0

as b — oo. In such cases the distribution of W, can be expected to be poorly
approximated by the asymptotic x{.

By contrast, W, is quadratic in X* and W, =x; for all T. Thus, when # is
linear the asymptotic distribution is exact.

The form of the Edgeworth expansion (23) and the correction factor (24)
suggest that it may be possible to select formulations (II) which accelerate
convergence to the asymptotic x; distribution by eliminating (or, at least
reducing the magnitude of) the correction. Thus, any function & for which

25)  hP(0)=h(0)=0
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will be sufficient to eliminate the O(7~!) correction term on the asymptotic and
hence accelerate the convergence to an error of O(T~?). Clearly a function &
satisfying (25) is approximately linear in the vicinity of the origin, so that this
approach goes some way towards suggesting the formulation (I). In fact, if A
were assumed to be analytic in a fixed neighborhood of the origin, we could
develop a complete asymptotic series for the distribution of W,. This would
involve an expansion of the form (23) taken to an arbitrary number of terms.
Although we shall not report the details here, application of the argument given
above on accelerated convergence in this case would lead to the choice of a
function A for which

(26)  RW0)=0, all j=2,3,....

Since A is analytic and has a convergent power series representation, (26) would
then imply a preferred choice of a linear function. In this case, therefore, the
argument leads directly to the formulation (I) of the Wald test.

4 CONCLUDING REMARKS

Since the finite sample distribution of the Wald statistic for testing a nonlinear
restriction can depend substantially on the algebraic representation of the restric-
tion, the study of functional forms is of great importance in this context. The
present paper provides a theoretical study of the problem using asymptotic
expansions. The correction terms that are delivered by these expansions are
shown to be extremely useful in evaluating algebraically equivalent, competing
formulations of the Wald test. We have derived the explicit form of the asymp-
totic expansion of the distribution of the Wald statistic to O(T!) for a general
class of parametric restrictions. The formulae obtained should be of independent
interest. Moreover, upon specialization to the testing problems considered re-
cently by other authors, these formulae explain well the discrepancies that have
been observed in the finite sample behavior of alternative Wald tests. Finally, as
we have seen in Section 3, Edgeworth expansions are not only useful in explain-
ing phenomena such as the Wald test discrepancies. They may also be used to
locate transformations which attenuate or even eliminate the effect of higher
order terms, thereby accelerating convergence to the asymptotic distribution and
helping to make it more reliable in finite samples.

This paper does not address the big question facing empirical researchers of
what is the best way to formulate a Wald test of a given nonlinear restriction. But
we can tell, using the approach we have adopted, how adequate the usual
asymptotic theory of the Wald test is likely to be for different formulations of the
restrictions in a given region of the parameter space. This is useful information.
To tackle the bigger question we must first measure the loss associated with
errors of different magnitude (and sign) in asymptotic significance testing and,
presumably, be prepared to average this loss in some way over relevant regions of
the parameter space for different formulations of the test. In principle, this is
possible but, in practice, it is likely to place excessive demands on the quality of
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the corrections delivered by Edgeworth expansions. We prefer the more open
ended solution to the problem presented by our own approach. This puts less
demands on the numerical quality of the corrections and serves in the role of a
diagnostic device for assessing likely troublespots in the formulation of Wald
tests.

Finally, we should remark that algebraically equivalent formulations of nonlin-
ear restrictions generally lead to nonequivalent formulations of alternatives,
including local aliernatives. Thus

(I Bi—1/B,=d/T?

is not equivalent to

(IT) BB, —1=d/T'?

unless d(11) = B8, d(I). Such differences should be taken into account in power

evaluations under local alternatives of different formulations of the Wald test.
These may be swudied by methods analogous 10 those of the present paper.
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APPENDIX A

PrOOF OF LEMMA 21: Equations (13) and (14) are given by Magnus and Neudecker (1979,
Theorem 4 1). To prove (15) we note that

Z(Eu@T;j):Z(Eu@Eu) +Z(E11®Eu)
[ L2%) H

=K,,+ (vecI)(vecl)

so that
2(T,0T,)=2(K,,+ (vecI)(vecI)'}
Also v
Y(T,818T,) =Y K,(I®T,0T,)K;,
2%} Y
=2K,,2{I®[K,, + (vecI)(vecI )]} K,2,,.
Hence

(a1 Y {(eT,eT,)+(T,0IxT,)+(T,eT, o)}

=2{ 18 {K,,+ (vecI)(vecT)'}
+Kppz{[® [Kpp + (vecI')(vec I)’]}szp
+{K,, + (vecI)(vecI)} ®1}.
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Now
T;j®T;k®Tj‘k=(Elj+E‘jl)®(Elk+El(l)®(Ejk+Ekj)

and simple mampulations along the following lines yield.

L (E,@E®E,)= ) (e®e)(e®¢) O E,
i, 7.k b7k

Zk {vec(E,)(e; ®¢;)} ®E,
7,

]

{z':vec(E”) ®Ip}§ {(e;®e;) ®eje,§}

_ {(vec[)®[p}{§(ej’®e;'(®e}®efc)}

={(vecn)e,} Y {(eg@l@e®@1)(,0c;®10¢))
J.k
= {(vec[)®Ip}{2(ej’®ej)(l®e,§®e,ﬁ)}
N

= {(vecT) ®,Ip}{(;Eﬂ)(I® );(ek'ae;))}
- {(eer) 01,} {1,0 (wee1,)).

Note that
K, ((vecI)® 1)K, =K, 2 ((vecI)®I)=I® (vec)
so that, using the fact that K, > = K2, we deduce that
Y (E,®E,®E,)~K,,(I® (vecI)(vecI)')
Gk
In a simular way we find that.

Y (E,®E,®E,) =K, (I® (vecI)(vecl)),
[

Y (E,®E,®E,)=(I®I81)K,.,,
7.k

Y (E,®E,®E,) =K, {I® (vecI)(vecI)}K, 2,
1,7,k

Y (E,®E,®E )=K,,{I®(vecI)(vecI)}K,,,
1.7 k

Y (E,®E,®E, )=(I®I®I)K,,
gk

Y (E,®E.®E,)=(I®(vecI)(vecI) }K,
ok

217’

Y (E,®E,®E,)={I&(vecl)(vecI)}K,,
[N
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It now follows from (14), (Al) and the above that:
(A2) E(zz’®22' ® z2")
=I+K,+K;z,+(I®K,,)+(K,,®I) + K, (I®K,,)K,,
+ {1 (vecI)(vecI)}(I+ Ky, + K, 2) + (vecI)(vecI) ® I
+K, 2 {1® (vecT)(vecI) } K2y + K, 2 { 1@ (vecT)(vecT)' } K, 2
+K,2, {I® (vecI)(vecI)'} Ko, + (K2, + K, ,2) {I® (vecT)(vecT)'}.
Noting that
(vecI)(vecly @ I=K,,(I® (vecI)(vecIY)K, 2,
we deduce that the final six terms of (A2) sum to
(I+Kyp,+K,2){I® (vecI)(vecIY}(I+ Ky, + K, ,2),

leading to result (15) as stated in the lemma.

PROOF OF LEMMA 2.2: Let z=V~/2x= N (0, I). Then
E(xx'®@xx") = (V2@ V¥2)E(2zz' @ 22') (V2 @ V1/?)
=(I+K,,)(V®V)+ (vecV )(vecVy
as required for (16). Similarly
E(xx' @ xx' @ xx") = (V2@ V2@ VI/2)E(zz' ® 22’ ® z2') (V1/2 @ V12 @ V'1/?)

and result (17) follows directly in view of the properties of the commutation matrices K, 2, K,2,,, and

pp? PP
144

PROOF OF LEMMA 2.3: We note that §= Rz = N(0, R*) = N(0,S"!) and
(A3) E(v)=tr{LE(332q7)}
=t[L{(1+K,,) (s @57!)+ (vecs™!)(veeS1)'}]
Now
(A%) S =Fs+ (1-2)"'Py
so that upon expansion of (A3) we obtain
E(v) =tr(4y) + tr(4)(1 - 2u) " +tr (4,) (1 ~2u) 2
as required for (18). To prove (19) we wnte
(A3) E(u?)=(vecJ)E(37 ® 47 ® ') (vec])
= (vecJ){ By+By(1 - 2it) "' + By (1 —2u) > + By (1 - 2ut) "’} (vecJ).

Upon evaluation using (17) with ¥ = S"! and noting that (vecJ) By(vecJ) =0, we find that (A5)
yields the stated formula (19).

PROOF OF THEOREM 2.4: Term by term Founer inversion of (20) yields
1
(46) pdf(w) =/ (w) + Z{ & (1) (W) + (- 1) "2 (w)
+o3 (-1 f%a(w) + 04 (-1 [ (W)} +o(T71)
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where
by =ag— by /4,
pr=ay+b/4=b/4  y=ay+b/4-b/4,
by =b3/4

Upon integration of (A6) we obtain
1
(A df(w) = Ew)+ Z{=0uf,(#) = #a02(9) = bsfrra(#)
—$afyr6 (W)} +o(T7h)

and in view of the relationship
fr+2n(w) = 2'"w"f,(w)/(r/2)n,
(A7) can be rewntten in the form

w w? W
cdf (w)= F(w)————f,(w) ot ¢2 r(4:3+2) r(r+4;)(r+4) +0(T—1)

which reduces to (21) as stated upon translauon of notation. Validity of the expansion as a proper
asymptotic senes follows from the theorem in Sargan (1980).

APPENDIX B

This appendix derives formulae for the Edgeworth expansion to O(T!) of the distribution of the
Wald statistic (5) in full generahty Thus, mn place of assumption (4) we require only that the
dxstnbuuon of the component variates § have a valid Edgeworth expansion of the form (3). Let
§=82"123 and carrying terms to O(T~!) we write the Edgeworth expansion as:

pdf(§) = ) e T 1+ TV g+ (4059 §))
+T ! fo+u(Fgg) +tu { (37 ©4§7))}
+ir {F (37 © 33 ©§3)}]} +o(T7Y).
This new form of (3) up to O(T™!) has not been used in the literature before. But it is most

convenient for our algebraic approach to Edgeworth expansions n explcit matrix form.
The Wald statistic for testing H, as given by (1) is now:

(B)  W=Tg(GRG) '

where Q= Q(f) 15 a consistent estimator of 2 and where it 1s assumed that GQG’ (respecuvely

GQG) is nonsmgular (with probability one). The function () representmg the estimator of 2 is

assumed to be continuously differenuable to the third order We wnte ¥~ = (G2¢")~1 = (') and

employ the Taylor representations

1 1
ﬁgl = guiij + 2—‘/='guk‘7]qk + g?gljqu_jqk‘q_[ + Op(T—3/2)7

Je=yest r Vgt TJL:ntimq,. +0,(T™),

where
gu = 8is%Ws;» g gk = BustWs, Wi
g,k! 8.5t S Wi Wy s ‘P ‘Ps sm
"1”(’1"_ st sm“"m?

and where £2!/2 = (w,,) is the symmetric positive definite square root of Q.
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In place of (7) we now obtain the expansion

W= g9 G (GRG") G/ G+ T 2u(§) + T (§) + 0,(T™*?)

where
(B2) u(§)=vec(J)(3©§®4),
(B3) v(§) =t {L(§ ®§)}

Here vec(J) has { p?(; — 1) + p(b— 1) + m}’th element:
gl_[ J’r:lzgab +gt/mluagab;
and L is p*> X p? with (y(p — 1) + b.m(p — 1) + n)’th element:
(3) 2,928 = & ym¥iiBas + (3) & ¥ “Bubn + (3) &V Bt
In place of (10) the characteristic function of W therefore becomes:
o ()= @) [ exp (- (2)457)
it i 2
() + —0(F) ~ — 12 (G
X{l * JFu(@) + (@) = g (q)}
{1+ fg+ 5 (G842 )]
+T Y fo+ e (B4q) + e {Fi(37' ©34) }

+ir{ F(§7 ® 37 ® §§")}]} dg+o(T™1)
where

§=1-2iG(GG) '6, G=cav
Upon integration and simplification this reduces to:
S (t)= -20)" {1+ T+t (BSY) + w { RE(G7 ® 37))}
+u{ RE(37 ® 47 © 7))
+(ut/TY{ E(v) + e { FE(§7 © 3}
+vec (SYE(47 ® 47 ©43) 5}
~(2/2T)E(#)} +o(T7Y)
where E denotes the expectation operator with respect to pdf(§) = N(0, f =1y and where vec(F;) =
h %‘s,{ncc;JL).emmas 2.2 and (2.3) we find that:
E(§§ ®§3') = Do+ Dy(1 - 2it) "'+ D, (1 - 2ir) 7,
E(§7 ®§7 ®43) = By+ By(1-2u)™"
+B (1 -20) 4 By(1—-2u) 77,
E(u?)=vec(JY{By+ B(1—2u)7"
+B, (1 - 21) "%+ By(1 - 2it) 77} vec (J),
E(v)=tr(dy) +tu(4) (@ -20) " +uw(A)(1-20) 7%,

where {Ej, A, v 1=0,1,2,3; k =0,1,2} are matrices 1dentical in form to those defined in Lemma 2.3
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but with Pz = G(GG)™'G = 2/°G(GRG)"'GR/? and L n place of P, and L, and where
Dy=(1+K,,)(Ps ®Ps) + (vecPs)(vecPs ),
D, =(I+K,,)(Ps ®Ps+ Ps®Ps) + (vec Pz ) (vec Pz )’ + (vec Pg)(vec P ),
D,=(I+K,,)(Ps®Py)+ (vecPg)(vecPy )
We now obtain

13 it 2 ~
o () =0 —21)"?|1+ 7 Y o (1-2)7 + 7 Zoej(l —2u)™
1=0

t2

o7 Y hA-2u)7 | +o(TY)

=1

where
co=fo+ tr( BPs) + tr (EDy) + tr( F; By),
a=tr(KPy)+tu(FD)+u(FB),
a=u(ED)+u(FB),
e =tr( K B),
ej=dj+dj (y=0,1,2,3),
dj-——(vec.ln)’l'ijf3 (;=0,1,2,3),
5,-((4) r=(5n) b=0.1
I;J= (vecf)'ﬁj (vecf) (/7=1,2,3)

Inversion of ¢f,, (¢) now yields’

1 3
pdf(W)=fr(W)+7/);00,f,+2,(W)
(B (9) = Bl () = B (9) = B ()} +0(T)
where
4;1=eo*1;1/4,
b=e+b/A-b/4  d=c+b/4-b/4,
4;4=e3+53/4,

Upon 1ntegration we obtain:

12 1 3
(B4) () =E)+ 7 E oFua, (%) #F L4 (0 +o(m™)
where
Yo, = "‘;1,
Y1, = "4;2/'3
Y= =93 /r(r+2),
Y3, = —by/r(r+2)(r+4)
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Formula (B4) is the Edgeworth expansion to O(7T™ 1) of the distribution of the Wald statistic (B1) in
the general case. It should be useful in many situations besides those considered in the present paper
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