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Conditional independence almost everywhere 1n the space of the conditioning variates does not
imply unconditional independence, although 1t may well imply unconditional independence of
certain functions of the vanables An example that i1s important 1n linear regress.on theory s
discussed 1n detail This involves orthogonal projections on random hnear mamfolds, which are
conditionally independent but not unconditionally independent under normality Necessary and
sufficient conditions are obtained under which conditional 1ndependence does imply unconditional
independence

1. Introduction

It 1s often useful 1n problems of multivaniate analysis 1o work with condi-
tional distributions as far as possible, leaving the integration that 1s required
for unconditional results to the final stage of analysis. Many examples where
this approach has been helpful 1n achieving simplifications have arisen recently
1n econometric distribution theory Phillips (1984) and Hillier (1985) give some
specific instances from simultaneous equations theory where the gains in
economy that can be achieved with this approach are rather apparent. The
approach 1s also useful in asymptotic theory, particularly when central limit
theorems are inapplicable or difficult to employ. For example, Phillips (1987),
Park and Phillips (1986) and Phullips and Park (1986) use the method
extensively in asymptotic studies of regression with non-ergodic processes. In
these applications the limiting distribution 1s first expressed as a functional of
vector Brownian motion. The conditional distribution of the functional is then
dertved for a given realization of a subvector of the stochastic process and the
unconditional distribution follows by integration with respect to the marginal
probability measure of the conditioning variates.

The approach is particularly helpful when selective conditioning ensures
statistical independence of key remaining variates. In a series of recent articles
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in the statistical hiterature, Dawid (1979, 1980, 1985) has made extensive use of
the concept of conditional independence, developing a rigorous framework for
its use 1n terms of statistical operations and illustrating its application in
diverse areas of statistical inference.

In view of these developments 1t seems likely that the use of this approach
will become more widespread in econometrics. The purpose of this note 1s to
bring attention to the following rather simple (but easily neglected) point.
conditional independence almost everywhere in the space of the conditioning
variates does not imply unconditional independence. We give examples to
illustrate this point. The first is a simple and famliar example to multivarate
analysts but is less well known to econometricians. The second example 1s
new. It mvolves orthogonal projections on random linear manifolds and has
interesting consequences in the study of regressions with stochastic regressors
(such as models of simultaneous equations). Necessary and sufficient condi-
tions are given under which conditional independence does imply uncondi-
tional independence.

2. Mixtures of normals

Let x be a random n-vector and w a random scalar for which w > 0 and
P(w=0)=0. Suppose that, given w, x= N(0, wl). The symbol ‘=" here
signifies equality in distribution. Let G denote the distribution function of w
Then the probability density function (pdf) of x 1s

pdf(x)=fO°oN(0, wI)dG(w), (1)

a scale mixture of normals. Condiuonal on w, the elements of x are statisti-
cally independent and this holds for all w> 0. However, unless G assigns a
probability mass of unity to some single point w, [1n which case pdf(x)=
N(0, wy1)] the elements of x are not unconditionally independent. Indeed, the
only member of the famuly of distributions (1) for which the elements of x are
unconditionally independent 1s the normal. The same result applies in the
somewhat wider famuly of spherically symmetric distributions as shown, for
example, 1n Mwrhead (1982, theorem 1.8.3).

The family of scale mixtures of normals (1) 1s recerving a growing amount of
attention in the econometric literature. Zellner (1976), for example, showed
that inferences based on the usual regression - and F-statistics remain valid 1n
a linear regression model whose errors follow the muluvariate distribution (1).
Similar robustness results have been demonstrated for other tests by Ullah and
Zinde-Walsh (1984) and for predictive inferences by Chib et al (1987) Such
robustness 1s a simple consequence of (1) the scale invariance of the statistic
(which holds by construction) and (ii) the fact that, conditional on scale, the
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component variates of (1) are independent normal It may be said that the
unconditional dependence in the component vanates of (1) directly com-
pensates for the departures from normality 1n these studies. Indeed, results for
regression models whose errors have the same marginal distributions but are
unconditionally independent are very different. This has been shown recently
in Phullips and Hajivassiliou (1987). In particular, data from an #-dimensional
Cauchy population [whose density 1s given by (1) with 1/w = x? and whose
components are therefore conditionally independent] yield a -statistic whose
distribution 1s classical student 7, ; and the robustness of conventional
inference applies. However, if the sample comprises independent draws from
the same Cauchy (0, 1) marginals then the #-statistic 1s no longer student ¢,_,.
Its distnibution 1s, in fact, bimodal for all n, including the asymptotic
distrbution. This example serves to illustrate the major differences that can
result from working with conditionally independent rather than uncondition-
ally independent variates 1n regression

3. Orthogonal projections in regression

Let x= N(0, /) and ) = N(0, I,) be independent random n-vectors. Let P,
be the projection matrix onto the range space of x and wnte Q =I—P,.
Clearly, p=P_.y and ¢ = Q. y are conditionally independent given x and this
1s true for all x. However, p and ¢ are not unconditionally independent To
see this we may examine the joint charactenistic function (cf) of (p, g) and
show that 1t does not factor. Wnite P, = hh’ where h=x/(x'x)"/>*€ V,, the
unit sphere in R" Then 4 and y are independent and by 1terated expectations
we find the jomt cf of (p, g) as follows.

cf(s, t) = B[E{exp(ss'hh’y + 1t'(1 — k') y)|h }]

= E{exp(—s'hh's/2 —1'(I1— hi')t/2)}

=™/ [ exp{3(nr' = s5') i }(dh)
|4

n

=641’1/201:'0(")(%([['_55’)’1)' (2)

In the above (d4) denotes the normalized invariant measure on the manifold
V, and (F{™ 1s a hypergeometric function with two matrix arguments.
Expression (2) has an alternative series representation in the form

e T (/G (' = 55))/G,(1,), ®

/=0
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where C(-) denotes a top-order zonal polynomual of degree , for which James
(1964) gives explicit formulae. When n > 1, cf(s, t) does not admit a factoriza-
tion 1nto the marginal characteristic functions. The latter are given by

of(s) =™ (—1ss",1) = F(3,n/2; — Ls's), (4)

of(1) =e "2 FM(Le', 1) =e "2 F(L,n/2; 311). (5)

When n=1 we have cf(s) = e/, cf(r)=1 and factorization is immediate
since g =0 almost surely. In (4) and (5) | F; denotes the confluent hypergeo-
metric function.

Remark 1. In this example 1t 1s interesting to construct cases where joint
probabilities do not factorize into the product of the marginal probabilities.
Let n= 2, write h = x/(x'x)!/? as before, and define H = [}, k] to be orthogo-
nal. Then

p=hh'y=hY,
g=(I—hh)y=kk'y=kZ.

Here Y and Z are independent N(0,1) and both are independent of & (and
hence k). Now consider the event (Y >0, kZ > 0), i.e., both coordinates of
7Y and both coordinates of kZ non-negative. Since / is orthogonal to k in the
plane R* it is clear that this event occurs with probability zero. Thus

P(hY >20,kZ>0)=0. (6)
On the other hand it 1s easy to see that

P(hY 20) =1, P(kZ=0)=1, (7)
and the joint probability is not equal to the product of the marginals. Note
that this example does not depend on the fact that the joint probability (6) 1s
zero. Indeed, the probability measures of #, Y and Z are continuous and the
mnequality between the joint probability and the product of the marginal
probabilities continues as we move awav from the zero probability event

(hY >0, kZ > 0)

-
NS

Remark 2. Even though p and ¢ are dependent, some functions of these
projections may be independent. For example, ¢'q|, =y'Q, y| = x2_, and 1s
imdependent of x so that the unconditional distribution of ¢’q 1s also x2_,. In
this case, p and f= ¢’q are conditionally independent as before for all x.
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However, the conditional distribution of f is independent of x and this
ensures that p and f are unconditionally independent. The same 1s true of any
measurable function of g (or p) that 1s distributed independently of x. Let
f=f(q) be such a function. Then simple manmipulations show that the joint cf

of (1. p),

cf(a,b)= E(E(e'“’f“b'ﬂx))
- E(E(em’f|x)E(e'b’P|x))

= E(e""f)E(E(e’b’Hx))

=cf(a)ef(b),
factors into the marginals.

Remark 3. One interesting application of the observation in the previous
remark is to the central Wishart. Let Z(n X T, T = n) be matrix N, (0, 1,,).
Then ZZ'= W (T, I,). Now partition Z as

T
Z | n
Z= { Zj n‘
Then, as given by Muirhead (1982, theorem 3.2.10),
Wy=2,Z/~ ZIZ2’(ZZZ2’)_1Z2Z1’ =Z,Q,7Z{= VVn1<T_ na, Inl)

is independent of W, =Z}(Z,Z3) 'Z,Z{. To see this we simply write W, =
Z,CC'Z{, where C 15 a T X (T — n,) matnx of orthonormal vectors that span
the orthogonal complement of the range of Z]. Observe that Z;C=
N, 1-n,0, 1, (r_,,) and is independent of C (and hence Z,). It follows that
Wy= W, (T = n,, I, ) as stated. Moreover, conditional on Z,, W, and W, are
independent. But, since W] 1s independent of Z,, the argument of the previous
remark apples and we deduce that W, and W, are unconditionally indepen-
dent It 1s easy to deduce that W] 1s also unconditionally independent of the

matrices Z,Z{ and Z,Z4, as given in Muirhead’s theorem 3.2.10.

Remark 4. The result of the previous remark no longer applies when W
1s non-central Wishart. To see this suppose Z=N, (M, I ;) and par-
tition M into submatrices M; and M, conformably with Z. Now
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Z,C=N, r_,(MC, I, r_,,) and conditional on Z,, W, 1s non-central
W, (T — n,, I, 2) with non-centrality matrix = M;CC’M;{. This distribution
depends on Z, (unless M, = 0) and, hence, W, and W, are in general uncon-
ditionally dependent although they are conditionally independent.

4. Necessary and sufficient conditions

In Remark 2 above we saw that, if the condiuonal distmbuuon of f 1s
independent of x, then this 1s sufficient to ensure that conditional indepen-
dence of f and p (given x) implies the unconditional independence of f and
p- This condition is sufficent but not necessary. To find necessary and
sufficient conditions 1t 1s helpful to use a more abstract framework.

Let x and y be random elements defined on the probability space (2, #, P)
Let p=p(x.y). g=4q(x, y), f=f(q), g=g(p) be measurable functions of
(x, y), g and p, respectively. Let %, denote the sub-o-field of % that 1s
generated by a (=x, y, p, g, f, g) and let Z, V %5 be the smallest sub-o-field
of # that contams #, and %, Finally, let us suppose that p and ¢ are
conditionally independent relative to %,. This means that for any sets A »EF,
A, EF, we have

P(A,NA %) =P(A#)P(AZ,).

In what follows, we use A, to denote any set 1n the field %, and 1, to denote
the mndicator of the set A, Then we have.

Theorem.  Conditional independence of f and g relatwe to F, implies uncondi-
tional independence of f and g 1ff

E(E(14%,)1,) = B(1,)E(1,), (8)
and

B(E(1,1%)1,) = E(1,)E(1,). (9)

Proof. We first observe that conditional mndependence of f and g relative to
Z. 1mplies that

P(A|FNF,)=P(A)Z) as.
and

P(AJZVF)=P(A %) as.

[see Chung (1974, theorem 9.2.1, p. 307)]. Write these relations 1n terms of
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conditional expectations as

E(1/%,Vv #,)=E(1)%,) as. (10)

E(1,1% Vv %) =E(1,1#,) as. (11)
Multiply (10) by 1,, (11) by 1, and take expectations giving

P(A,n4A,)=E(E(1)%,)1,), (12)
and

P(A,NA,)=E(E(1|#)1,). (13)

(12) and (13) necessarily hold when f and g are conditionally independent
relative to %,. If f and g are unconditionally independent then (8) and (9)
necessarily hold as well, since P(A,N A )= E(11,) = E(1,)E(1,) under inde-
pendence. Conversely, if (8) and (9) hold then we deduce directly from (12) or
(13) (and hence from the conditional independence of f and g) that f and g
are unconditionally independent. O

Corollary  Sufficient conditions for conditional independence of f and g relative
to #, to imply unconditional independence are either

E(10%) =E(1,) a.s. (14)
E(1,1#)=E(l,) as. (15)

Proof. We need only venfy (8) and (9) If (14) holds then (8) follows
immediately. To verify (9) note that

E(E(1,1%)1,) = E(E(1,1%)E(1)%,))

= E(1,)E(1,),
as required In a similar way, (8) and (9) also hold under (15) O

Remark 5 Since 1,=1(A,) and (14) holds for all sets A, &%, (14) 15
equivalent to the statement that the conditional distribution of f 1s indepen-
dent of x. Thus, the Corollary gives the condition for unconditional indepen-
dence discussed earlier 1n Remark 2 in the context of regression projections
[where g=p 1s conditionally independent of f=f(g) given x and also
unconditionally independent of f since f 1s independent of x].
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Remark 6. Theorem and Corollary hold for quite general random elements.
Thus, we can take x = {x,}®_, y={),}*, as time series and p, ¢, f and g
as measurable functions of them. The outcomes p and ¢ (and hence f and g)
may then be conditionally independent given a third factor x but are not
necessarily independent when we no longer condition on x. In this context the
results obtained seem useful in evaluating whether independence between
observed series 1s due to (possibly implicit) conditioning on other variables.
Such considerations are particularly important 1n tests of causality and feed-
back between economic time series.
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