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This paper studies cointegrated systems of multiple time series which are individually well
described as integrated processes (with or without a drift). Necessary and sufficient conditions for
cointegration are given. These conditions form the basis for a class of diagnostic statistical
procedures designed to test for cointegration. The procedures rely on principal components
methods. They are simple to employ and they involve only the standard normal distnbution
Monte Carlo simulations reported in the paper indicate that the new procedures provide simple
and useful diagnostcs for the detection of cointegration. Some empirical apphcations to macro-
economic data are conducted and discussed.

1. Introduction

A recent development that seems likely to be of lasting importance to the
statistical analysis of economic time series is the theory of cointegration. The
idea of cointegrated variables was introduced by Granger (1981, 1983) and
Granger and Weiss (1983) and has been more systematically studied in the
recent paper by Engle and Granger (1987). Cointegrated systems allow indi-
vidual time series to be integrated of order one, I(1), but require certain linear
combinations of the series to be stationary or I(0). This framework accommo-
dates rather well the empirical observation that individual economic time
series often exhibit nonstationary characteristics but that certain combinations
of the series tend to move together over time. The notion may also be regarded
as a statistical embodiment of ideas from economic theory concerning long-run
regularities or steady state behavior among economic variables. Examples now
include modern theories of asset prices, purchasing power parity and the term
structure of interest rates [see Campbell (1986), Corbae and Ouliaris (1987).
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and Campbell and Shiller (1987)] as well as steady state theories of aggregate
variables. The hypothesis of cointegration is therefore important in terms of its
underlying economic ideas of long-run equilibrium and in terms of its statisti-
cal implications for applied research. Useful overviews of the subject have
recently been written by Granger (1986) and by Hendry (1986).

Evidence that a cointegrating vector exists provides strong support for a
long-run relationship among a group of variables whose short-run behavior
may be very much more complex. However, detecting the existence of coin-
tegration in a multiple time series seems to give rise to nonstandard testing
procedures. This is because the asymptotic theory of regression in cointegrated
systems is very different from conventional theory for stationary time series, as
is clear from earlier work by Phillips (1986a) and Phillips and Durlauf (1986).
These authors provide a detailed study of regression theory in the presence
and absence of cointegration. In both cases the limiting distribution theory is
nonstandard. Conventional significance tests and regression diagnostics have
nuisance parameter dependencies even asymptotically and this complicates the
use of the asymptotic theory for inference. Moreover, in the absence of
cointegration the parameters of the system are unidentified [see Phillips
(1987b)] and the estimated regression coefficients have nondegenerate limiting
distributions. This further complicates the asymptotic theory for residual
based diagnostic tests.

All of these complications present obstacles to the development of statistical
tests of cointegration. Engle and Granger (1987) recommend the use of tests
based on the residuals of cointegrating regressions. Under the null hypothesis
of no cointegration all linear combinations of the variables are nonstationary.
Under the alternative of cointegration, at least one linear combination (which
may be consistently estimated by the cointegrating regression) is stationary.
Test statistics for nonstationarity (or the presence of a unit root) in the
residuals of the cointegrating regression might therefore be expected to pro-
vide discriminatory power against the (alternative) hypothesis of cointegration.
Because of the complications discussed in the last paragraph, all of the
statistics considered by Engle and Granger have nonstandard limiting distri-
butions and these distributions are different from the usual limit distributions
of simple tests for unit roots. The asymptotic properties of these residual
based tests for cointegration have recently been studied in another paper by
the authors [Phillips and Ouliaris (1987)).

It is possible to test for cointegration without using the residuals of a
cointegrating regression. One alternative arises from the work of Phillips and
Durlauf (1986). These authors explored muliivariate tests for the presence of
unit roots in multiple time series and gave a limiting distribution theory for
Wald and modified Wald statistics under the null of no cointegration. They
also constructed some general specification tests whose asymptotic distribu-
tions are x2, again under the null of no cointegration. Both procedures may be
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used to test against the alternative of a cointegrated system and both yield
consistent tests. The Phillips-Durlauf tests rely in a simple way on the
estimated coefficient matrix in a first-order vector autoregression (VAR).
Under the null of no cointegration this estimator is O(T )-consistent for the
unit matrix. But, in a cointegrated system its probability limit is no longer the
unit matrix. Hence, multivariate unit root tests may be expected to provide
discriminatory power in the presence of cointegration. Stock and Watson
(1986) have subsequently pursued this approach to the subject. Their paper
explains the prefiltering of the data and the serial correlation corrections that
are needed to remove parameter dependencies; and they recommend that
attention be focused on the modulus of the smallest latent root of the
regression coefficient matrix (of the VAR) in mounting a test of cointegration.
In the scalar case their procedure reduces to the unit root test introduced in
Phillips (1987a).

The main purpose of the present paper is to suggest a rather different
approach to testing for cointegration. The intuition behind the procedures we
develop is quite simple. In effect, our approach is to perform a form of
principal components analysis for time series. When a multiple time series is
cointegrated, the cointegrating vector effectively reduces the variability in the
original series {which are taken to be I(1) processes] by an order of magnitude
[from 1(1) to I(0)). This reduction in variance should be detectable by principal
components methods.

More specifically, if multiple time series which are individually I(1) move
together over time so that some combination of the series is 1(0), then this
implies restrictions on the innovations that drive the full system. Phillips
(1986a) showed that a necessary condition for cointegration is that the spectral
density matrix of the innovation sequence (which we take to be weakly
stationary) has deficient rank at the origin. We call this matrix 2. Moreover,
the number of zero latent roots of 2 is the number of cointegrating vectors
and the associated latent vectors of 2 are the cointegrating vectors themselves.
This result suggests that we can test for cointegration by assessing whether or
not I has a negligible latent root. Moreover, since nonparametric consistent
estimates of X are easily obtained it is possible to develop simple asymptotic
tests of the cointegration hypothesis which apply for a wide class of underlying
innovations. To make matters even simpler, under general conditions con-
sistent estimates of 2 and hence its latent roots are asymptotically normal.
This indicates that diagnostic procedures can be developed which involve only
the standard normal distribution.

This paper suggests two new procedures for detecting the presence of
cointegration. The first test involves computing one-sided confidence intervals
for the smallest latent root of 2 (or an associated correlation matrix P). The
second test is similar but relies on the ratio of the smallest latent root to the
sum of the latent roots of 2 (or P). We conduct a Monte Carlo study to assess
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the properties of the new procedures. On the basis of the first stage of the
Monte Carlo simulations, which compare a cointegrated system of integrated
variables with a noncointegrated (or spurious) system of integrated variables,
we recommend a simple rule for detecting cointegration amongst a group of
integrated time series. This rule works well in our experiments for models of
different dimensions and for a variety of data generating mechanisms. Also, in
order to evaluate the ability of the rule to discriminate between structures
which are cointegrated and those which are nearly cointegrated, we develop a
model which allows one to systematically control the degree of cointegration.
The simulation results indicate that the bounds procedure provides a useful
diagnostic for detecting the absence of cointegration.

In the scalar case our procedures may be used as (autoregressive) unit root
tests. But they are more directly interpretable as tests for the presence of a unit
root in the moving average (MA) representation of a stationary time series. In
effect, our tests may be regarded as tests for the invertibility of an MA
representation. This hypothesis is itself of independent interest. We therefore
hope that our procedures will have some applications in this context as well as
that of cointegrated systems.

Our organization of the paper is as follows. Necessary and sufficient
conditions for cointegration are given in section 2. Our bounds tests for
cointegration are developed in section 3. We present several possible proce-
dures, all centered on the same basic idea; and in section 4 we show how these
results may be interpreted as tests of invertibility. The procedures are ex-
amined and compared in simulations that we report in section 5. Size and
power comparisons are given for models of different dimensions and various
plausible data generating mechanisms. Section 6 reports some empirical apphi-
cations of our methods to macroeconomic data. Concluding remarks are made
in section 7.

2. Conditions for cointegration

Let { ,}& be a multiple (n X 1) time series that is generated in discrete time
according to

y=Ay_,+u, t=12,..., (1)
with

A=1I,
and where y, may be any random vector, including a constant. In (1) {4, } is a
zero mean, weakly stationary innovation sequence with spectral density matrix
fuu(N). Throughout the paper we shall require that

Eluol?<c0 (for i=1,..., n) andsome B8>2, (2)
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and
{u,}q is strong mixing with mixing numbers a,,

that satisfy Y, )" %# < 0. (3)

mwl

Under these conditions,

-]

2 =2af,,(0) = E(uqup) + Y E(uguj + uu) (4)

kw1

[Phillips and Durlauf (1986, corol. 2.2)]. In fact, the series defining X is
absolutely summable in view of (2) and (3). Under these conditions, therefore,
f..(A) is bounded and (uniformly) continuous on [, 7).

We now make explicit the hypothesis of cointegration. The variables of y,
are said to be cointegrated if there exists an n-vector y # 0 for which y'y, is
stationary. More specifically, we shall define y, to be cointegrated if there
exists a vector y # 0 for which v, = v’y, is weakly stationary with continuous
spectral density. This ensures that the action of the cointegrating vector
reduces the integrated process y, to a stationary time series with properties
analogous to those of the innovations driving the mechanism (1). It follows
directly from (1) that

YU, =v,-v_;. (5)
Thus, some combination of the innovations in (1) has an MA representation
with a unit root. (Note that we are not asserting that v, is white noise.) We
deduce:
Theorem 1. The system (1) is cointegrated with cointegrating vector vy # 0 iff
Y u(A)y=cN¥+0(X) as A0 (6)

for some constant ¢ ( possibly zero).

Proof. In view of (5) the spectrum of y’u, is zero at the origin. To prove the
necessity of (6) we observe that

Y W)y =11-MN,(2),

where f,(A) is the spectrum of v, =¥’y,. Since f (A) is continuous under the
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hypothesis of cointegration and since [1 — e*|> =2+ O(X*) as A -0, we
deduce that for some constant ¢

Y uu(A) =N +0(N),

proving the necessity of (6). This condition is also sufficient because f,(A) is
continuous and bounded on every interval e <A 52w, £ >0 [since f, (A) is
continuous and bounded]; and, in view of (6), f,(A) = ¢ as A = 0. Hence, v,
has continuous and bounded spectrum and is weakly stationary. W

Note that (6) implies the necessary condition
YZy=0 (7)

(that is, 2 is singular and y les in its null space). This necessary condition was
given and discussed earlier in Phillips (1986a). When there are several distinct
cointegrating vectors v, (i=1,...,k <n) we have 2y,=0 and 2 has k zero
Iatent roots.

Condition (6) is necessary and sufficient. It is important in what follows
because it more completely characterizes the properties of the spectrum f,,(A)
under the hypothesis of cointegration. In particular, it tells us that y’f,(A)y
is not only zero at A =0 but flat at the origin as well. This means that for
cointegrated systems such components of the spectrum should be well esti-
mated by an average of the periodogram ordinates in a band centered on the

origin.

3. Bounds tests of cointegration

We shall develop tests based on the latent roots of a consistent estimate of
the covariance matrix 2 given in (4). These tests may be regarded as per-
forming a form of principal component analysis in the frequency domain, a
subject on which there is a large literature [see, for example, Brillinger (1981,
ch. 9) and the references therein). The latter methods are concerned with
approximating a given multiple time series by another that is of lower
dimension and yet contains much of the information of the original series.
When a multiple time series is cointegrated there clearly exists a linear filter of
the series which retains much of the variability of the original series but which
is of lower dimension. The issue of practical importance is whether the
variability that is lost by this reduction is small enough to be negligible. In a
cointegrated system the lost variability is smaller by an order of magnitude (of
integration) so it should be possible to make an empirical assessment of the
existence of cointegration by principal component methods. The procedures
we now develop are inspired by this line of reasoning.
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We first consider the following estimator of 2:

Tk 2‘”/2:«(0)

-z 2

+1[ 0+ L R1 (zf))] ®)

s=1

where
IUM(A) = WH(A)WH(A)*

is the periodogram, and
-
w,(A) = 22T) " Lu,e™
1

is the finite Fourier transform. In practical work I,,(A) can be computed
using the fast Fourier transform for highly composite T, although the compu-
tation of (8) is in no way burdensome for typical sample sizes in economics.

Sy« 1s a smoothed periodogram estimate of 2 = 2#f,,(0). It is consistent as
T 1 oo provided k 1 co in such a manner that k/T | 0. The associated matrix
f,,,,(O) in (8) is the Daniell estimate of the spectral density matrix at the origin
[see, for example, Priestley (1981, pp. 440-441)] and this involves a rectangular
spectral window. Of course, other choices of spectral window may be used,
leading to alternative estimators of 2. However, the flat behavior of v’f, (A)y
in the vicinity of the origin in the presence of cointegration [see (6) above]
indicates that the choice of a rectangular spectral window may be rather
appropriate for the purpose we intend.

To make our approach as general as possible we shall often wish to allow
for a drift in the generating mechanism (1). In this case (1) is replaced by

Ve=p+y_+u, t=1,2,..., 1)

with some constant n-vector u. When there is cointegration in the system we
have y’n =0, so that the cointegrating vector now annihilates the drift as well
as the spectrum of u, at the origin.

It is easy to accommodate (1’) in our approach. We simply remove the zero
frequency periodogram ordinate from (8) and continue to compute the finite
Fourier transforms using first differences 4 y,. This is equivalent to computing
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(8) using first differences about their fitted mean (i.e., 4 y,— Ay). Adjusting for
degrees of freedom in (8) we therefore recommend the use of the following
estimate of 2

Sre= 7 > Re(l(z—;’.f)) 9)

s=1

which we compute using measured first differences u, = 4y,.

Note that we do not suggest the use of regression residuals such as
fi,=y,— Ay,_, in the estimation of 2. The reason is that under the alternative
hypothesis of cointegration the least squares coefficient matrix 4 does not
converge in probability to the identity matrix {see Park and Phillips (1987)]
and estimates of X that are based on #, converge in general to a nonsingular
matrix and are thereby inconsistent. The bounds procedures given below rely
on consistent estimation of 2 (and hence its smallest latent roots) under the
alternative of cointegration in order to obtain discriminating power between
cointegrated and noncointegrated systems. We remark that the situation is
different with residual based tests for cointegration for which consistent tests
do rely on the use of regression residuals [see Phillips and Ouliaris (1987) for a
discussion of this point).

As T 1 e with k fixed we know from standard spectral theory [for example,
Brillinger (1981, theorem 7.3.3)] that

1
Sric= 7 Wal2k, £ ()52 Wy (2K, 3), (10)

where W,(. , .) signifies a Wishart matrix of dimension n X n with degrees of
freedom and covariance matrix given by the first and second arguments of W,,
respectively. The latent roots of S, are correspondingly distributed as the
latent roots of the scaled Wishart matrix in (10) when T too for k fixed
[Brillinger (1981, theorem 9.4.4)). Note that we use the symbol = in (10) to
signify equality in distribution.

In view of Theorem 1 our main concern in testing for cointegration is
naturally with the smallest latent roots of S,,. In particular, we need to assess
whether these roots are negligible or statistically insignificant. This is, of
course, a central element in principal components theory in multivariate
analysis. Here the relevant distribution theory for the latent roots and extreme
latent roots of a Wishart matrix has been fully developed in recent years.
Muirhead (1982, ch. 9) provides an extensive review of these developments.
Unfortunately, the distributions of the extreme roots depend on the full
eigenstructure of the covariance matrix 2 and involve zonal polynomial
representations which make computational work difficult. The conventional
approach in principal components theory has therefore been to work with



P.C.B. Phillips and S. Ouliaris, Testing for contegration 213

large sample approximations to the Wishart distribution W,(2k,Z) for large k.
Much of this theory was originally developed by Anderson (1963). When the
latent roots of X are distinct the results are particularly simple. If /, and A,
(i=1,...,n) are the latent roots of Sy, and 2, then /, is asymptotically
independent of /, (i #/) and the standardized variates,

K21 =A)/A,  i=1,...,n,

are asymptotically (k 1 00) N(0,1) [see, for example, Muirhead (1982, p. 403)].
Now order the rootsas Ay >A,> --- >N, and [, 2/,> -+ >1/,. We deduce
that :

kY2 (1, - X,)/A, ~ N(0,1). (11)

If z, is the one-tailed 100(1 — «)% upper significance point of the N(0,1)
distribution, then (11) implies the following (approximate) 100(1 — )% one-
sided confidence bound for A,:

AL/ =z, fE) ~ 1+ 2, KM (12)

Similarly, a 100(1 — a)% upper confidence bound for the sum of the m’=m + 1
smallest latent roots of 2 is

Yy A< Y L+

J=n—m J=n—m

n 12
) 1}) 2, /K2 (13)

J=n—m

Anderson (1963) suggested the following test. If the upper bound in (12) is
sufficiently small, then the smallest root A, may be taken to be negligible. In
the same way, if the upper bound in (13) is sufficiently small, then the m’
smallest latent roots of 2 may be deemed negligible.

One advantage of this criterion is that it is based on the implied null
hypothesis of the form

Hy: A >A,> - >A,>0.

Under this null it is not necessary to be concerned about multiple roots and, in
particular, multiple roots of zero. The upper bound (13) is calculated under H
and the decision is to reject H if (13) is less than some preassigned small
quantity, the idea being that the alternative is much more likely in this event.
Just as in the Neyman-Pearson framework, which involves the setting of an
arbitrary significance value, the above procedure relies on an arbitrary selec-
tion of a ‘critical value’ against which the upper bounds (12) and (13) are
assessed.

Inferential procedures based on the upper bounds (12) and (13) may be used
in the present context of tests for cointegration. In this case the null represents
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absence of cointegration (2 nonsingular) and the alternative hypothesis coin-
tegration (2 singular). However, the latent roots of 2 and Sy, depend on the
units of measurement and this presents difficulty in the selection of a ‘suffi-
ciently small’ criterion for the upper bounds (12) and (13). Anderson (1963)
suggests an alternative procedure based on the ratio of the smallest latent
roots to the sum of all the latent roots. In this case we obtain by simple
manipulations the following 100(1 — a)% upper confidence bound:

n n

2 A, >
S < L+ 2, Bk, (14)
LA, Xl

=1 =1

where

B =

LE(E)

J=n—-m J=1

T2

J=1 J=n—m

+

1/2/(/?11])2

[see Anderson (1984, p. 475)]. Once again, if the upper bound given by (14) is
sufficiently small, then the smallest latent roots A,,..., A, ,, may be deemed
negligible relative to the sum of all the roots.

It is somewhat easier to assess when the upper bound of (14) is small. Take
for example, the case where m’ =1 and our focus of attention is the smallest
root of Z. If the upper bound given in (14) is less than 0.10/n, then we can
say with (approximate) 100(1 ~ a)% confidence that the smallest latent root of
Z is less than 10% of the average of the roots, i.e, LiA,/n. This might be
interpreted as strong evidence in favor of cointegration (our alternative
hypothesis).

The selection of this preassigned small quantity or critical value against
which the upper bound (14) is assessed is, of course, quite arbitrary. However,
given the inherent arbitrariness in Neyman~Pearson testing, this aspect of the
procedure may not be too unpalatable. Note that from the theoretical stand-
point the use of such a preassigned quantity has two major effects. First, it
ensures that the bounds procedure produces a consistent test. This is because
Sy, is consistent for £ and under the alternative, where 2 has some zero
latent roots, the smallest latent roots of Sy, will converge to zero, ensuring
that power goes to unity asymptotically. Second, it inevitably leads to a test
whose type I error may be large for models in which 2 has one or more small
but positive latent roots. The size distortions in the tests that are suffered for
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these structures may be tolerated for two reasons. By setting the preassigned
quantity to be small the probability of a type I error will be small for all
structures except those which have some small latent roots, so that in general
the test is likely to be conservative. Moreover, structures for which 2 has some
small latent roots are likely to be very difficult to distinguish from cointegrated
structures involving economic time series of typical length.

Note that we can apply the test in the opposite direction to provide con-
firmation of the null hypothesis of no cointegration. Thus, a lower 100(1 — )%
confidence bound for the ratio of the roots is given by

n

v 0 S A,

L 2 BV < T (15)
X1 1A,
=1 =1

In this case, if the lower bound (15) is greater than 0.10/n, then we have
100(1 — @)% confidence that the smallest root of I is greater than 10% of the
average of the roots, Z{'J\ ,/n. This might be interpreted as substantial support
for the absence of cointegration.

The bounds tests based on (14) and (15) relate different latent roots of . If
the units of measurement of the variables that comprise y, in (1) or (1’) are all
the same this procedure seems justified. However, we may often be interested
in situations where the component variables involve different units of measure-
ment. This is most likely to be the case when the long-run equilibrium
relationship of interest relates real and monetary aggregates (as in the quantity
theory of money). In such situations it seems preferable to work with dimen-
sionless quantities. These may be constructed as follows.

First we define the variance of the innovation sequence {u,} in (1) or (1),
viz.

Zo=E(u,ul).

We may require 2, to be nonsingular. Otherwise the support of the distribu-
tion of u, has dimension less than n and there is an exact linear dependence in
the series which could be removed prior to the analysis. Now define the matrix

- -]
P=351233;12 =1+ Y (T, +I.), (16)

m=1

where
L, =Z25"E(uou;,) 252,

and 2Y? is the positive definite square root of X, Next, we introduce the
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sample estimate of X,
S=T"'3Tq,al,

where #, = Ay, —Ay = measured first differences about the mean. The
corresponding sample estimate of P is

R=S§"12%5_ 85172 (17)

* Since § = 2+ O,(T~/?) we now find in place of (10):

1
R— —W,(2k, P),
L Wi(2k, P)

as T 1 oo with k fixed. Define r,>r,> --- 2 r, to be the latent roots of R
and p, > p,> - > p, to be the latent roots of P. In the same way as before,
the latent roots , are (approximately) independently distributed as N(p,,p?/k)
for large k. We may therefore deduce confidence bounds for the roots of P
and ratios of the roots of P as we did before for 2.

Thus, for the smallest root p, of P, we have the upper 100(1—a)%
confidence limit

p,Sr,+r,z,/k?, (18)
and the corresponding lower 100(1 — «)% confidence limit

=2,/ <p,, (19)
where, as before, ®(z,)=1—a and ®(-) is the standard N(0,1) c.d.f. Simi-

larly, upper and lower 100(1 — a)% confidence bounds for the ratio of the sum
of the m’ smallest roots to the sum of all of the roots of P are given by

L < 5+ 2, DK, (20)
PN r
J=1 J=1

and

PO PO’

L 2 DRV s S, (21)
> PO
=1 =1
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where

5 ) g

In applying these confidence bounds to tests of cointegration some general
guidelines will once again be useful. Since we are now working in terms of
dimensionless quantities like correlation coefficients some broadly applicable
rules are possible. Thus, for the smallest root bounds given by (18) and (19) we
could suggest the following: if the upper bound (18) is less than 0.05, then
there is strong evidence in favor of cointegration; if the upper bound is less
than 0.01, then the evidence might be taken as being very strong. Conversely,
if the lower bound is above 0.05 (respectively, 0.10), then the evidence favors
(respectively, strongly favors) the null of no cointegration. For the ratio
bounds given by (20) and (21) we might continue to work with the earlier rule
based on the value 0.10/n. For example, if the upper bound (20) is less than
0.10/n, then the evidence supports the existence of m’ =m + 1 cointegrating
vectors.

Again, we emphasize that these critical values for the bounds are arbitrary.
Their use ensures that the bounds tests are consistent but they will lead to size
distortion for structures in which X has some small latent roots. Such
structures will be hard to distinguish from cointegrated structures using these
bounds tests.

The adequacy of these broadly defined criteria for the bounds tests has been
investigated by simulation methods. The results seem encouraging in terms of
both size and power and are reported below in section 5.

4. Tests for invertibility and unit roots

The bounds tests developed in the preceding section may be interpreted as
simple tests of the invertibility of the moving average representation of a
stationary time series. Note that p, = 0 iff A, = 0 (i.e., the smallest latent root
of X is zero). This is true iff there is a degeneracy in the MA representation of
the stationary process u,. In particular, A, (2) =0 iff we can write

u,=D(L)e,= {AC(L) + (1~ L)B(L)}e,, (22)

where A is n X n of rank <n, C(L) and B(L) are matrices of polynomials in
the lag operator L, and ¢, is an iid(0, ) sequence of primitive innovations
with nonsingular covariance matrix. The degeneracy in D(L) occurs for any
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vector y in the null space of the matrix 4. Then y'D(1)=0 and y'u,=
(1 - L)YB(L)e, =v,—v,_; for b, stationary with spectral density
y'B(e**)QB(e**)*y. In such cases the MA representation (22) is noninvertible.
Test of the invertibility of (22) may therefore be mounted using the bounds
test procedures developed in the previous section. Note that the null hypothe-
sis in this case is invertibility and the alternative is noninvertibility (corre-
sponding to 2 and P being of deficient rank). We should remark, in addition,
that invertibility may fail due to the existence of a degeneracy in the spectrum
fuu(X) =g(2) = D(2)RD(z)* at a point on the unit circle z =e'* other than
A = 0. Obviously the bounds tests described earlier are constructed to focus
attention on the frequency A = 0. Analogous procedures may be developed to
explore possible degeneracies at other frequencies.

In the univariate case (n = 1) the bounds tests may also be interpreted as
tests for the presence of a unit root. We now write 62 =%, of ==, 574 = Sty
p?=P, and r?=R. Our interest is in the (alternative) hypothesis

H: p?=02/0=0.
We accept H if the upper limit
r*+rz, /k'?

is sufficiently small ( < 0.05, say) for a preassigned significance level (one-tailed
5%, say). We reject H on the other hand if the lower limit

r2—rz /kV?

is above a preassigned point such as 0.05. Note that when H is true we
necessarily have the MA representation

U=0-u_,

[cf. (22) above]. It follows from (1) that y,=v, and y, is stationary. Thus, the
alternative hypothesis in this test corresponds to a stationary alternative to (1).
Thus, the bounds test based on r2 here corresponds to a test for the presence
of a unit root in the autoregressive representation (1) against a stationary
alternative. We remark that this idea has recently been pursued in empirical
research by Cochrane (1986) and Campbell and Mankiw (1987). Their ap-
proach is to estimate the variance ratio 02/0¢ for aggregate time series like
GNP and assess its magnitude. Our bounds test formalizes this notion into a
statistical test but we work with H as our alternative hypothesis rather than
the null.

The limitations of the bounds procedure that were discussed in section 3
also apply here. In particular, the procedure has little discriminatory power
between structures with an MA unit root and those with an MA unit root that
is close to unity.
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5. Monte Carlo resuits

This section reports the results of a Monte Carlo experiment designed to
assess the performance of the latent root bounds tests for no cointegration. We
are primarily interested in two issues: (a) the stability of the empirical
distribution functions of the bounds statistics to the form of the data genera-
tion process (DGP) of the innovation sequence (u,), and (b) the power of the
test procedures under the alternative of cointegration. The simulations were
carried out for model sizes ranging from two to five integrated variables and
for three different assumptions about the data generation process:

(a) vector MA(1): u=§+v¢_,,
(b) vector AR(1): u=o¢u,_,+§,

(c) vector ARMA(1,1):  u,=¢*u,_, +y*§,_,+ 4,

where ¢, ¢, ¢*, and y* are the parameter matrices (each n X n) of the process
and e, is n-vector white noise (0,7).

Estimates of the asymptotic distributions of the various test criteria under
the null hypothesis of no cointegration were generated using 500 observations
and 5000 repetitions. The innovation sequences for the integrated processes
were assumed to be independent so as to ensure that the long-run multiple
correlation coefficient between the innovation sequences was zero under the
null {see Phillips and Quliaris (1987, sect. 2)]. Thus, the parameter matrices 1.

*Notes 1o the following tables ! and 2:

(i) The empirical distributions under the null hypothesis of no cointegration were gencrated
using 5000 iterations and 500 observations. Simulations under the alternative hypothesis were
based on 2500 iterations, and used sample sizes between 100 and 200 observations

(ii) Model dimension includes the dependent variable.
(iii) The parameters of the vector DGP of {u}, were set to:

MA(D AR(1) ARMA(1,1)
Model Diagonalof ¢  Diagonalof ¢  Diagonal of 4* and ¢*
1 0.90 0.75 0.89 0.95
2 045 0.53 0.77 0.11
3 0.35 042 0.12 0.56
4 0.67 092 045 G0s
5 0.12 0.88 0.34 0.98

(iv) Remaining elements of ¢, ¢, ¢*, $* were set to zero.

(v) Thus, for an ARMA(1,1) model with two integrated variables, the data generation process for
the innovation sequence would be as follows:

First process ty, = 0.89 ,_, + 0.95¢ ,.1 + &,
Second process  uy, =0.7Tu;,.; +01ley, ., + oy,

(vi) The random numbers ¢, were drawn from N(0,1) distribution. Random number generator:
‘SUPER-DUPER".
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Table 1a
Critical values for bounds tests of no cointegration based on Sy 2
Size
Model Min 5% 10% 15% 20% 25% Max
Muimum latent root bound [inequality (13)}

2(a) 1.4503 2.2308 2.3729 24729 2.5523 2.6340 4.8233
(b) 2.9681 41828 4.4459 4.6194 4.7702 4.8923 9.9191
(c) 9.4610 13.4401 143726 15.0415 15.5502 16.0805 31.2651

5(a) 0.8148 1.2406 1.3186 1.3673 1.4111 1.4494 2.4358
(b) 1.8669 2.7031 2.8781 3.0009 3.0998 3.1865 56714
() 2.0251 2.9079 3.0986 3.2165 33194 34037 6.1329

Mimmum latent bound: Ratio test [inequality (14)}

2(a) 0.4555 0.7358 0.7758 0.8007 0.8225 0.8403 1.2109
(b) 0.4433 0.5709 0.6089 0.6325 0.6541 0.6721 1.1151
(©) 0.1185 0.2226 0.2448 0.2600 0.2731 0.2847 0.7244

5(a) 0.3477 0.4906 0.5190 0.5398 0.5569 0.5717 0.9770
(b) 0.1015 0.1645 0.1779 0.1869 0.1945 0.2016 0.4522
(©) 0.0567 0.1051 0.1140 0.1202 0.1250 0.1294 0.3031

Table Ib
Critical values for bounds tests of no cointegration based on R.?
Size
Model Min 5% 10% 15% 20% 25% Max
Mimmum latent bound (imequality (18)}

2a) 1.3669 1.9253 2.0145 20811 21312 2.1788 3.3051
(b) 2.5414 3.3412 3.9710 3.5695 3.6469 3.7084 5.3405
©) 4.4783 5.6640 5.8338 5.9547 6.0406 6.1132 7.5020

5(a) 0.8633 1.2540 1.3259 1.3740 1.4068 1.4410 23076
(b) 1.6536 2.4308 2.5937 26782 2.7450 2.8064 40417
(c) 1.5223 2.2549 23617 24487 2.5090 2.5519 3.7517

Minimum bound: Ratio test [wnequality (20))]

Xa) 0.7584 0.9671 0.9965 10165 1.0331 1.0466 12151
(b) 0.7688 0.8959 0.9217 0.9354 0.9473 0.9579 1.2090
©) 0.9489 1.0422 1.0589 1.0693 1.0772 1.0842 1.2136

5(a) 0.5083 0.6804 0.7123 0.7364 0.7564 0.7702 1.1043
(b) 0.4066 0.5891 0.6158 0.6339 0.6426 0.6602 0.9332
() 0.4529 0.6084 0.6357 0.6539 0.6673 0.6800 0.9641
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Size
Model Obs. Min 5% 10% 15% 20% 25%
Mummum latent bound [inequahty (13)]

2(a) 100 84.95 99.20 99.55 99.70 9975 99 85
(b) 96.05 99.55 99.75 99 90 99.90 99 90
() 100.00 100.00 100.00 100.00 100.00 100 00
(a) 150 95.60 99.85 99,85 100.00 100.00 100 00
(b) 92.10 98.60 9915 99.60 9975 9975
(c) 100.00 100.00 100.00 100.00 100 00 100 00
(a) 200 98.15 100.00 100.00 100.00 100.00 100 00
(b 98.65° 100.00 100.00 100.00 100.00 10000
) 100.00 100.00 100.00 100 00 100.00 100 00

5(a) 100 65.30 88.40 90.45 91.55 9225 9260
(b) 41.10 83.35 88.05 90.95 92.25 93 90
(c) 66.65 96.45 98.20 98.80 99.20 99 45
(a) 150 76.90 92.40 94.05 94.75 95.20 9555
(b) 33.80 83.30 88.55 91.80 94 05 9510
©) 76.55 98.65 9925 9955 99 80 99 90
(a) 200 81.60 94.10 95.40 96.15 96 85 97 00
(b) 26.15 79 35 86.40 90.55 92.35 94 00
() 83.65 99.80 100.00 100.00 100.00 100.00

Miramum latent root ratio [inequality (14))

2(a) 100 80.75 99.30 99.65 99.65 975 9975
(b) 82.05 95.20 96.95 97.40 97 90 9815
©) 96.25 99 90 99.95 99 95 99 95 100 00
(a) 150 89.90 99.90 99.95 9995 9995 99.95
(b) 92.15 98.60 99.15 99.60 99 75 9975
(©) 74.55 98.80 99.25 99.50 99 60 9975
(a) 200 9425 99.95 100.00 100.00 100 00 10000
{b) 96.45 99.60 99.85 100 00 100 00 10000
(c) 82.00 99 50 99.70 99.80 99.90 99 95

5(a) 100 8835 98.05 98.75 99.32 99.40 99 60
(b) 4.00 26.10 31.90 35.95 3990 43 55
(©) 9.55 58.05 65.00 69 45 7280 7595
(a) 150 91.60 98.70 99.35 99 50 99 85 99 85
(b) 2.75 25 50 32.30 3780 41.80 4510
(©) 13.75 72.85 79.35 83.55 86 45 88 65
(a) 200 92.75 99.40 99.65 9965 975 9975
(b) 1.65 25.95 3450 40.45 4535 50 30
(<) 18.35 85.55 90.70 9315 94 90 95 80
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¥*, ¢, and ¢* were all set to diagonal matrices. Specific values for the diagonal
entries are given in the notes to tables 1 and 2.

Simulations under the alternative of cointegration were conducted for
sample sizes equal to 100, 150, and 200 observations, using 2500 iterations.
Under the alternative of cointegration the innovation sequences were gener-
ated with long-run muitiple correlation coefficient, p, equal to unity (com-
pared to zero under the nuil) - again see Phillips and Ouliaris (1987). It was
assumed that there was a single cointegrating vector (m’ =1) of the form
y'=(1, —i’), where i is the (n — 1) X 1 sum vector and n is (as before) the
dimension of the system. Cointegrating vectors of this form appear quite
frequently in modern economic models of long-run equilibrium behavior.
Examples include the term structure of interest rates, purchasing power parity,
and the monetary equation, M¥ = PY. [See Campbell and Shiller (1987) and
Engle and Granger (1987) for additional examples.] Finally, the spectral
density matrix was estimated by (8), using k = 7% ordinates of the second-
order periodogram, which was computed using the IMSL Fast Fourier trans-
form routine FTRCC.

Tables 1 and 2 and figs. 1 and 2 summarize the results for the critical values
and power of the latent root procedures for testing the null hypothesis of no
cointegration. These procedures are based on the confidence bounds given by
(13), (14), (18), and (20). Note that the critical values of the ratio test are
expressed as a proportion of the mean of the latent roots. The simulations
show that the critical values of the upper bounds for the minimum latent root
[see (13) and (18)] are sensitive to the assumptions made about the form of the
DGP (see the first panels of tables 1a and 1b). This, of course, makes it
difficult to design simple decision rules for rejecting the null hypothesis of no
cointegration. However, the simulations indicate that the probability of ob-
taining a latent root that is near zero under the null hypothesis of no
cointegration is essentially zero. Thus, the minimum upper bound for the
smallest latent root is much greater than zero for all the models considered.
Moreover, the tabulations reported in table 2 show that the power of the
minimum latent root procedure based on Sy, and inequality (13) is high and
is seldom below 90% at the 5% level of significance. In the case of the unit free
bounds test for the minimum latent root, power was found to be 100%,
irrespective of the form of the DGP, the number of observations, and the
dimension of the model. This feature of the bounds test is shown clearly in fig.
1 which plots the cumulative distribution function obtained under the null and
the alternative for models 5(a)~5(c). As this figure demonstrates, the location
of the distributions under the null and the alternative are clearly differentiated
and their respective supports are quite disjoint.

In the case of the ratio bounds procedures based on Sy, and inequality (14),
we see even stronger evidence of the absence of a zero latent root under the
null hypothesis of no cointegration. The minimum upper bound for the
smallest latent root as a percentage of the overall mean is less than 10% only
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Fig. 2. Cumulative distribution functions for latent root bounds test; unit-free estimator; models
5(2)-(c); eq. (20).

in the case of model 5(c) (see table 1b), and is typically much higher. This, of
course, implies that a 10% decision rule for rejecting the null hypothesis would
be too conservative, since the true size of the test, at least for the DGP’s
considered in the tables, would be zero. However, the power of the ratio test,
although high for models involving two integrated variables, is low for models

5(b) and 5(c) (see table 2).
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Turning to the unit free ratio bounds procedure [based on inequality (20)],
we observe that the critical values of the upper bounds are relatively stable
across DGPs for the innovation sequence, though they are sensitive to the
dimension of the system (see the ratio test panel of table 1b). Power was found
to be 100%, once again irrespective of the DGP for the innovation sequence,
the number of observations being used. and the dimension of the model. The
stability of the upper bounds and the power of the unit free bounds test is
shown in fig. 2. Again we see that the distribution of the bounds test under the
null and the alternative are clearly differentiated. The figure also highlights the
conservative nature of a 10% rejection rule for the unit-free ratio test.

In summary, the Monte Carlo results indicate that latent root procedures
are apparently useful tools for detecting the presence or absence of a
cointegrating vector. On the basis of these results we feel able 10 recommend
the following diagnostic procedure for testing the null hypothesis of no
cointegration:

(1) Evaluate the upper and lower confidence bounds given in (20) and (21) for
the ratio of the minimum latent root to the sum of the roots of R.

(2) Reject the null hypothesis of no cointegration if the upper bound is less
than 0.10/n.

(3) Accept the null hypothesis of no cointegration if the lower bound is
greater than 0.10/n.

The adequacy of this procedure was next evaluated for data whose innova-
tion processes had long-run multiple correlation coefficient in the interval
0 < p <1 rather than at the extremes (p =0, 1).

In what follows we shall restrict our analysis to a simple bivariate system
which allows one to control the value of the long-run multiple correlation
coefficient. Partition { y,} as {z,, x,}’ and constder the following data genera-
tion process for the innovation sequence {u,}:

u=v,+My,_,,

where
10 O
M [b o]’ b=0.
v, isiid. N(0, =),
and

1
20=[a ‘{].
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Table 3

Rejection rates for umt-free bounds test [MA(1) model%; rejection rates (%) for different values of
a and b (corresponding values of p*given in parentheses).

b

a 0.00 0.50 1.00 1.50 2.50 350 500
0.25 0.00 0.00 0.00 0.01 8.02 4326 8427
(0.06) 0.37) (0.62) (0.76) (0.88) (094 (0 96)

0.50 0.00 0.00 0.00 032 328 5825 84 45
(0.25) 0.57) (0.75) (0.84) (0.92) (095) 097

0.75 0.00 0.00 0.06 2.99 5268 85 83 9279
(0.56) (0.78) (0.87) 0.92) (0 96) 097 (0 98)

Thus, u, is driven by an MA(1) process which depends only on a single
moving average parameter b. The primary innovations, »,, are drawn from a
multivariate normal distribution with covariance matrix 2, which depends
only on the covariance parameter a. The spectral density matrix of u,
evaluated at frequency zero is given by

[011 ¢’12] 1 atb
2= - 2 N
o1 2 a+b (a+b)y+(1—-a?)

from which it follows that [see Phillips and Ouliaris (1987, p. 8)]

(a+b)*
(a+b)+(1-4a%)’

p*= ¢7122/(“22‘711) =

and
det(2) =1-a42

The above model is useful because it allows one to systematically control the
degree of cointegration between {z,} and {x,} (as measured by the long-run
multiple correlation coefficient). For fixed |a| < 1, the degree of cointegration
between {z,} and {x,} increases with 5. But {z,} and {x,} will never be
cointegrated in the sense of Engle and Granger (1987) for any finite value of 5»
when |a| <1 since it is impossible to induce singularity in X by varying b in
this case. For fixed b, p? increases and tends to unity as a — + 1. Moreover.
when b is finite {z,} and {x,} are cointegrated if and only if |a]=1.

This framework was used to evaluate the performance of the unit-free
bounds test using the 0.10/n decision rule given above. Table 3 presents the
rejection rates (size) of the bounds test for different values of @ and 5 (and
hence p?). The empirical distributions were simulated using 5000 replications
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and 250 observations. Overall, the results indicate that the unit-free bounds
procedure yields a conservative test for models with p? <0.90, since the
rejection rates are well below 5% for all the models in this class. However, the
size of the test increases quickly for p?>> 0.94 and becomes quite large as p?
approaches 1.00. The rejection rate for some of the models with p? > 0.94 is
greater than 80%. For such models, the ability of the bounds procedure to
discriminate between the null and the alternative is quite poor.

6. Empirical applications

In this section we apply the unit-free bounds procedure for testing the null
hypothesis of no cointegration to five models of potentially cointegrated
systems:

(1) total and nondurable consumption and disposable income,
(2) nominal money and income,

(3) the quantity equation MV = PY,

(4) real stock prices and dividends, and

(5) the term structure of interest rates.

Models 1-3 were originally formulated as cointegrated systems by Engle
and Granger (1987). They found evidence in favor of a cointegrating vector
only in the case of real nondurable consumption and disposable income. Their
analysis was based on the residuals of the cointegrating regression, using the
DW and ADF statistics to detect nonstationarity in this vector. The critical
values for the DW and ADF were generated by a small Monte Carlo
experiment for an assumed, but arbitrary, DGP for the innovation sequence.
Campbell and -Shiller (1987) employed these critical values to accept the null
hypothesis of no cointegration between real stock prices and dividends, and
accept cointegration between short- and long-term yields on bonds (the
one-month and twenty-year yields, respectively).

Table 4 presents the results of applying the unit free bounds procedures to
the above models. The innovations for the system were estimated by the
measured differences of the original series. Using the 10% decision rule for the
ratio test, we find that the null hypothesis of no cointegration cannot be
rejected for models 3-5. Indeed, there is strong evidence against cointegration.
For example, in the case of the real quantity equation, the lower bounds for
the minimum latent root, expressed either in absolute terms or as a proportion
of the average root, are not close to zero. This result holds true for all
definitions of the money supply - M1, M2, M3, and total liquid asset hold-
ings. The results for consumption and disposable income (model 1) are
inconclusive, since the lower bound of the minimum latent root as a ratio of
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Table 4
Empirical results for cointegration models; unit-free estimator.?

Bounds

Model T & r, (r./ i r (/MY (r/N*

1. Consumption and disposable income; real, per capita, 19828; 1947:2-1986:1
(a) Nondurable 156 12 03120 0.1508 0.7187 0.1903  0.5066 00966

(b) Total 0.2814 01271 0.6482 0.1716 0.4319 0.0767
2. Nominal money and income; 1959:3-1986:1

(a) M1 108 10 04504 01925 11846  0.2655 0.6567 01122

(b) M2 03663  0.1613  0.9634  0.2158 0.5598 0.0854

(c) M3 03921 0.1740 10314 02310  0.6000 00960

(d) Liquid assets 03795 0.2119 09981 0.2234  0.7166 0.1310
3. Quantity equation MV = PY; 1959:3-1986:1

(a) M1 108 10 1.8257 02077 4.8019 10762 1.0092 02379

(b) M2 1.6355 01690 43009 0.9641 0.8299 0.1843

(c) M3 1.6027 0.1552 42154 09447 0.7657 0.1656

(d) Liquid assets 1.3769  0.1351 3.6217 0.8116 06724 0.1378

4. Stock prices and dividends; 1872-1985

114 10 0.5556 0.2881 1.4561  0.3262 0.9359 0.2167
5. Term structure (one-month, twenty-year yield); 1959:4-1983:1

296 17 04010 02894 0.7644 02595 0.8555 0.3024

“PData for models 1--3 are from the June edition of the 1986 Citibase databank. Data for models
4 and 5 were kindly provided by J.Y. Campbell and R. Shiller.

the overall mean is less than 10%. In the case of model 2, which tests the
long-run relationship between nominal income and money, the bounds test is
also inconclusive using M2 and M3.

Some observations on these results are in order. First, acceptance of no
cointegration for real stock prices and dividends is consistent with the results
of Shiller (1981), who rejected the present value model of stock prices using
volatility bounds tests. The results for the term structure of interest rates are
consistent with previous results for the rational expectations theory of the term
structure [see Shiller (1986, table 2) for a summary of these results]. Given the
observed empirical regularity of the relationship between consumption and
income, the inconclusive outcome of the bounds test for model 1 is most likely
a result of the 10% bounds rule. Finally, accepting the null hypothesis of no
cointegration between narrowly defined measures of money (M1) and income
is consistent with the empirical observation that the velocity of money, for
narrowly defined definitions of the money supply, has behaved erratically since
the deregulation of the banking system in 1981.
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7. Conclusion

Testing for the presence of cointegration amongst aggregate economic time
series seems likely to become a standard method of assessing the empirical
support for steady state theories of macroeconomic behavior. Cointegrated
sysiems capture the idea that individual economic time series often exhibit
noastationary characteristics but that certain combinations of the series move
together over time. Since linear combinations of nonstationary variables are
typically also nonstationary, evidence that a cointegrating vector exists obvi-
ously provides strong support for the existence of a long-run relationship
amongst a group of integrated variables.

This paper develops diagnostic procedures that are designed to help detect
the presence of cointegration in multiple time series. Drawing on earlier work,
we provide necessary and sufficient conditions for cointegration. These condi-
tions prescribe the behavior of f, (A), the spectral density matrix of the
innovations, in a neighborhood of the origin. Under cointegration, = =
27f,,(0) is singular and its smallest latent root is zero. These results motivate a
class of statistical tests for cointegration that are based on principal compo-
nents methods. The tests place upper and lower bounds on the minimum
latent root (and ratio of the minimumn to the average latent root) of a unit-free
form of the matrix. The resulting bounds tests are simple to construct, involve
the standard normal distribution and yield criteria for acceptance and rejec-
tion of cointegration. Monte Carlo simulations indicate that the bounds test
provides a useful diagnostic procedure for testing the null hypothesis of no
cointegration.

We emphasize that our diagnostic procedures do not purport to test a null
hypothesis of cointegration or, more specifically, A, (2)=0. There are
pitfalls in classical Neyman-Pearson tests of the null A, (Z) =0 and these
have recently been considered in Phillips and Ouliaris (1987). In effect, no
generally applicabie asymptotic theory is possible under this null and classical
tests turn out to be inconsistent. OQur approach in the present paper works
from a null hypothesis of no cointegration. This enables us to use conventional
asymptotic methods to assess whether any latent roots of X are negligible. The
methods we recommend do have a precedent in principal components theory.
Indeed, they may be regarded as performing a form of principal components
analysis for time series.

The unit-free bounds procedure recommended in section 3 yields a test
which is consistent against the alternative hypothesis of a cointegrated system.
This is achieved by the use of a preassigned fixed cut-off point {we suggested
that the upper bound (20) be less than 0.10/n] to identify cointegrated
systems. For some time series, however, the long-run multiple correlation
coefficient may be large but not unity. In such cases the bounds procedure can
suffer size distortions whereby the probability of rejection of the null by the
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bounds criterion is high even though the series are not cointegrated. This is
borne out by some of our simulation results for p? > 0.90. For such series the
discriminatory power of the bounds test between the null and the alternative is
low. This is a limitation of the bounds test. Interestingly, it does not appear to
be a serious problem in the case of the empirical implementations reported in
section 5. For in these applications the evidence is predominantly in favor of
the null of no cointegration.
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