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Asymptotic Equivalence of Ordinary Least Squares
and Generalized Least Squares in Regressions
With Integrated Regressors

P. C. B. PHILLIPS and JOON Y. PARK*

It is shown that 1 the multiple regression model y, = x/f + w,, where 4, is a stationary autoregressive process and x, is an
integrated m-vector process, the asymptotic distributions of the ordinary least squares (OLS) and generahzed least squares
(GLS) estimators of f are identical. This generahzes a result obtained by Kramer (1986) for two-variate regresston and extends
fixed regressor theory developed by Grenander and Rosenblatt (1957). Our approach uses a multivariate invartance principle
and yields explicit representations of the asymptotic distributions in terms of functionals of vector Brownian motion. We also
provide some useful asymptotic results for hypothesis tests of the model. Thus if x, is generated by a vector (autoregressive
mtegrated moving average) ARIMA(r, /, s) model and u, is generated by an independent (autoregressive) AR(p) process,
then T(3 ~ B) and T(8 — B) have the same hmiting distribution (where Band fare the OLS and GLS estimators, respectively).
This distribution 1s nonnormal and most conveniently represented m terms of a vector Brownian motion (Bi(r), B:(r)") as the
functional {J, (], B,B3}1{J, s B, dB}, where B, is an m-vector Brownian motion independent of B, Furthermore, if X (T x m)
is a matrix of T observations of x,, then (X' X)"%( — §) and (X' X)"%(§ — B) have the same limiting normal distribution as
T 1 o But the variance of this normal distribution 1s given by ¢} = 2x£,(0) [where f,(1) 1s the spectral density of u,] and
not ¢* = var(y,). Traditionally constructed asymptouc tests of significance are invalid in the present context; however, these
tests may be made robust by simply replacing the usual estimators of 62 with consistent estimates of ¢2.
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1. INTRODUCTION

taking residuals. The resulting series may then be analyzed

For years, statisticians have been interested in condi-
tions where least squares regression is efficient. In finite
samples, necessary and sufficient conditions for ordinary
least squares (OLS) and generalized least squares (GLS)
equivalence are well known. They arose originally in work
by Anderson (1948) and were independently studied by
Kruskal (1968), Zyskind (1967), and Rao (1967). More
recently, Kariya (1985) and Malley (1986) studied these
important conditions. But they are more important in the-
ory than in practice, since they are so seldom satisfied.
This is particularly true for time series regressions.

For infinite samples, however, the situation is different.
Grenander and Rosenblatt (1957) found a necessary and
sufficient condition for OLS to be asymptotically efficient
(relative to GLS) in a regression with fixed regressors and
stationary errors, requiring that the spectrum of the error
process be constant on the elements of the regression spec-
trum (in effect, those sets where the spectral mass of the
regressors is concentrated). This condition is satisfied in
many important time series cases, including regressions on
polynomial and trigonometric functions of time. Thus one
can detrend a time series stationary about a polynomial
trend (whose spectral mass is at the origin) by performing
a least squares regression on a polynomial of time and by

by traditional methods without any loss of (asymptotic)
efficiency. This approach forms the basis of much applied
work (see Anderson 1971).

Of frequent interest, however, are regressions involving
stochastic regressors rather than deterministic functions of
time. For example, in economics long-run regularities
between various macroeconomic variables often suggest
regression formulation in terms of the levels or log levels
of the relevant time series. Such time series are typically
slow moving and usually well represented by simple
ARIMA models with a single unit root. Integrated auto-
regressive integrated moving average (ARIMA) regres-
sors are nonstationary and nonergodic; the results of Gren-
ander and Rosenblatt (1957) on least squares efficiency
do not strictly apply. If the errors in a regression relating
the time series are stationary, however, and if the regres-
sors are integrated processes, then least squares still might
be expected to be asymptotically efficient. An intuitive
explanation is as follows: ARIMA processes with a single
unit root all have spectra with a singularity (a pole) at the
origin, so power is effectively concentrated at a single
point; namely, the 0 frequency. If the error spectrum is
continuous, it is necessarily constant on the elements of
the regression spectrum (the origin) where the spectral
power of the regressors is concentrated, suggesting that
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nomenon. He studied a two-variable regression model
driveni by a stationary AR(p) error process with a re-
gressor generated by an ARIMA(r, /, s) model, demon-
strating the asymptotic equivalence of OLS and GLS in
this regression. But his method of derivation does not
easily generalize to multiple regressions.

This article deals directly with the multiple regression
case. Our method of proof relies on the theory of weak
convergence and yields generalizations of Kramer’s results
in a very stralghtforward manner. (Proofs are given in the
Appendix.)

2. EFFICIENCY OF OLS
Consider the regression model
yt = xt,ﬂ + Uy, = 1’ 2’ AR (1)

where {u,} follows a zero-mean stationary AR(p) process
and {x,} is an m-dimensional time series generated recur-
sively by

t=1,2,.... @)

Assume that the innovation sequences {u,} and {v,} in (1)
and (2) are statistically independent, so the regressors in
(1) are strictly exogenous. Our results do not depend on
the initialization of (2): We allow x, to be any random
variable (with a fixed probability distribution) including,
of course, a constant.

We define w; = (u,, v/) and require only that the partial
sum process S, = > w, satisfies a multivariate invariance
principle. More specifically, if

Xg(r) = TS, (- DT =r<jiT,
then )

X=Xy H U,

Xi(r) > B(r)as T 1 . )

Here T denotes the sample size, = signifies weak con-
vergence of the associated probability measures, and B(r)
is an n-vector Brownian motion (# = m + 1), with non-
singular covariance matrix

3 = limmoT 'E(S1SF)

-[ah 4 @

Sincé {u,} and {v,} are independent, B(r)' = (B,(r), By(r)")
where B;(r) and B,(r) are independent Brownian motions
of dimension 1 and m, respectively, with variance matrices
o} and 3,.

Multivariate invariance principles of this type were proved
by Eberlain (1986) and Phillips and Durlauf (1986). They
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When {w}is stationary with spectral density matrix f,, (1),
then (4) may be written as

2= 20 =2 [0 )]

Throughout this article we assume that {u,} is generated
by the AR(p) model

p
2 p]ut—/ =& Po = 1’ (5)
=0

where {¢} is iid(0, ¢?) and the roots of 2/_; p,z/ = O lie
outside the unit circle. Then

ot = 2nf,(0) = (i p,)_ o’

For a sample of T observations (1) is written in con-
ventional matrix form as y = X + u. The asymptotic
distribution of the OLS estimator = (X'X)~1X'y is eas-
ily obtained, this being a special case of a more general
result of Phillips and Durlauf (1986, theorem 4.1).

Lemma2.1. AsT t =,

TS - ) > [ f " By(r)Bor) dr] ) [ f 'By(r) dB.(r)],
’ (6)

where B(r)' = (By(r), B;(r)) is an n-vector Brownian
motion with covariance matrix (4).

In this lemma the asymprotic distribution of the OLS
estimator is a 51mple functional of vector Brownian mo-
tion. The integral f o B2 dBy in (6) is interpreted as a vector
of stochastic integrals with respect to the univariate
Brownian motion B(r). The matrix f o B>Bj dr is a qua-
dratic functional of the vector Brownian motion B,(r) and
is nonsingular with probability 1.

The representation (6) is useful in what follows: It allows
demonstration of the asymptotic efficiency of OLS in the
model (1), and leads to some interesting consequences
concerning the distribution of statistical tests (see Sec. 3).
Finally, note from (6) that § = f + 0,(T~"), with B a
consistent estimator of .

The GLS estimator of § in (1) is given by B =
(X'Q7'X)"Y(X'Q"'y), where E(uu’) = 6%Q. As is well
known, f can be regarded as the OLS estimator of the
coefficient vector in the transformed model y* = X*f +
u*, where y*, X*, and u* are obtained from y, X, and u
by premultiplying a nonsingular matrix Q such that Q'Q =

0.1 The first result follows from annlving Temma 2.1 to
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Theorem 2.3 through a simple conditioning argument. In
particular, it implies that the usual F statistic for testing a
linear hypothesis in (1) has an asymptotic chi-squared dis-
tribution upon appropriate standardization. Note also the
difference in the variances of the two limiting distributions
in Theorem 2.3: It has some interesting consequences (see
Sec. 4).

3. STATISTICAL TESTS

Suppose we wish to test the linear hypothesis H,: Rf =
r,where Ris g X mofrank g < m. The following theorem
gives the asymptotic distribution of Wald-type test statis-
tics for testing H,.

Theorem 3.1. Under the null hypothesis H, and as T
T o, (@) (R — r)[R(X'X)'R]"Y(RE — r)io}=> x2
and (b) (RB — r)[R(X'Q-1X)~ 'R'] (Rp ~ rie* >
2. Both (a) and (b) remain true if § is replaced by A.

Usmg /f rather than f in Theorem 3.1(b) gives
W, = (Rf — r)'[R(X'Q"'X)"'R']"{(Rf — r)la?,

the Wald statistic for testing H, in the standard linear
regression model with nonstochastic regressors and (known)
error covariance matrix (). Interestingly, W, still has a
limiting y% distribution even when x, is a rather general
integrated process generated by (2), because of the strict
exogeneity of x,, When the innovation sequences {u,} and
{v} driving (1) and (2) are dependent, the limiting distri-
butions of statistics such as W, are no longer y* [See
Phillips and Durlauf (1986) for pertinent results.]
Consistent estimates of o2 and ¢?% are needed to make

" the tests in Theorem 3.1 operational for statistical infer-

ence. It is simple to show the following theorem:
Theorem 3.2. (a) 02 =T 1(y - XB)'Q‘I(y - XB)
—p)azand(b)ﬁ (X_op)” —>a

These estimators depend on (2 and the AR coefficients p,.
When order p of the autoregression for u, is known, the
coefficients p, may be consistently estimated by the usual
two-step procedure based on the OLS residuals. Call these
consistent estimators p, and write Q = Q(p). Then

= Ty ~ Xp Oy - X - o*

and

¥4 -2
% (2 ) Sz—p> 0'%.
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where we employ the feasible GLS estimator
f= (x0T (),

On the other hand, when (1) is estimated by OLS, the
conventional error variance estimator is

$ =Ty - Xp)(y - XB)—> o% =
Here the usual Wald statistic for testing H, is
W, = (Rf — r)[R(X'X)'R']"Y(Rf — r)/&,
and from Theorem 3.1(a) W, = (03/02)x3. Thus the con-
ventional Wald statistic for testing H, based on an OLS
regression has a limiting distribution proportional to a
. When u, is generated by (5), the constant of propor-
tlonahty is [(Z}-0 p,)o Z] lo2. For spherical errors this is
unity; for an AR(1) itis (1 - p)/(1 + py), which shows

that the asymptotic distribution of W, can be very different
from the conventional y3 when there is serial correlation.

E(u?).

4. ADDITIONAL REMARKS AND EXTENSIONS

The proofs of these results depend heavily on the theory
of weak convergence. These methods seem to provide a
convenient way of handling the complications resulting
from stochastic regressors generated by ARIMA models.
Not only do they provide a means of establishing the
asymptotic efficiency of OLS in regressions of this type;
they also yield simple representations of the limiting dis-
tributions, in terms of functionals of Brownian motion.
Furthermore, the conditioning argument developed in the
proofs of Theorems 2.3 and 3.1 gives a simple way of
demonstrating the validity of conventional asymptotic chi-
squared theory for classical tests of linear hypotheses in
multiple regression with integrated processes. Section 3
shows that conventional theory applies without modifi-
cation for tests based on feasible GLS estimates of the
coefficients [see (8)]. For OLS-based tests, it is sufficient
to replace the usual error variance estimator (as in the
definition of W,) with a consistent estimator of the error
spectrum at the origin, leading to W, [given in (7)]. With
this simple modification conventional asymptotic chi-
squared theory applies to the OLS-based statistic W,.

Our theory has been developed for regressions without
a fitted intercept. But all of our results continue to apply
where (1) includes a constant or even a polynomial func-
tion of time, in addition to the integrated regressor x,. The
only modification to the asymptotic formulas that is re-
quired for these extensions is that the Brownian motion
B, be replaced by the corresponding demeaned or de-
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gressor-error correlation, such as econometric models of
simultaneous equations. But similar techiques may be used
to analyze such regressions (see Phillips and Durlauf
1986).

APPENDIX: PROOFS OF THE MAIN RESULTS

Proof of Lemma 2.1. The result can be easily deduced from
theorem 4.1(a) of Phillips and Durlauf (1986).

Proof of Theorem 2.2. The matrix Q may be chosen so that

xf =

M=

14
P Xeeys  UE =D puL,, (A1)
1=0

]

=0

for t > p. Since the corrections leading tox; and 4" for1 = ¢ =
p do not affect asymptotic results, we may assume (without loss
of generality) that the transformation (A.1) applies for all + =
1, 2, ..., with the convention that x_,,, = --- = x, = 0. It
follows that v;" = x} — x; = f=0 p,v.., and
P
wi = 20 pWes (A2)
p
where w;}*' = (u}*, v;*') and (without loss of generality) w_,,; =
=, = 0.

The new process {w}} defined by (A.2) has partial sums that
satisfy the multivariate invariance principle (3). For mstance, if
{w} is strong mixing with mixing numbers «, that satisfy
a2 < o for some J > 2, then the same 1s true of the trans-
formed sequence {w;}; (see, e.g., White 1984, p. 153). In fact,
using X7(r) to denote the random element constructed from
partial sums of w; gives X3 (r) = B*(r) in place of (3), where
B*(r) is vector Brownitan motion with covariance matrix 3* =
(2f=0 p,)3. When {w,} is stationary, the new covariance matrix
3% = 2af e (0) = ( f=0 p,)(2zf,.(0)) may be deduced from
the action of the linear filter (A.2). In the general case

T P T P
si=3wr =(3n)(Zw) - 2o
1 J=0 1 1=1 t

T
> w, (A3)
=T—-;+1
and it follows that limy.. T7'E(S¥S7’) = ¢*% = X*, where ¢
p

=2
‘1=0 p]'
Note that the transformed model 1s driven by the new process
{w/} the same as the original model (1) 1s by {w,}. Since f§is the
OLS estimator of § in the transformed model, from Lemma 2.1

(6 - §) > [ [ BrBzOy dr]_l[ [ B2 dBr(r)].

B*(r) = ¢B(r), where = signifies equality in distribution.
Asymptotic equivalence follows, since by cancellation of the scale
factor ¢*

”f B3 (r)Bi (r) dr]_l[ [_1 Bi(r) dB;"(r)—I

Jourmnal of the Amerlcan Statistical Associahon, March 1988

so by the continuous mapping theorem (CMT) and Lemma 2.1
(X' Xy*(B - p) =

[ 0By ar| | [ B B |

Now suppose the n(= m + 1)-dimensional Brownian motion
B(r) 1s defined on the probability space (Q, F, P), and let F,
denote the sub o-field of F generated by {B,(r):0 < r < 1}. The
symbol -|F, signifies the conditional distribution relative to F,.
Since B,(r) is Gaussian and independent of B,(r),

- N(o, o2 f By(r)By(r)’ dr)

2

[ By B,

and

| [ 0.0 | [ [ B¢y a0

= N(0, 63I).

P

Since the latter distribution does not depend on realizations of
B,(r), 1t is also the unconditional distribution. Part (a) of the
theorem follows immediately.

To prove part (b) we first show that as T ] o«

IX7(r) — ¢Xy(r)| = maxsup,[X3(r) — pXn(r)| > 0,
(A.5)

where ¢ = 2/, p,. Note that for (k — 1)/T <r < k/T

k-1 p k-1
2 2 PsWy-s — @ 2 Wu'
1

1 s=0

|X1(r) = 9Xp(r)] = T2

k-1
> w.

P
S 5 |
5=0 k—1-s
k-1
=Tl 2w
k—1-p

Thus
IX3(r) — pX5(r)| < T~"p|p|(max,max,|w,|)
— 0,
»
proving (A.5). It now follows thatas T 1 o«
h( X3 (r)) — h(pXy(r)) 5 O,

where & 1s any uniformly continuous functional on D”[0, 1], the
product space of n copies of D[0, 1]. In particular,

fl X3(r)X3(r) dr — ¢? fl Xo(r)X+(r) dr—0

and
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Proof of Theorem 3.1. By the CMT and Lemma 2.1,
{R(T2X'X)"'R'}" "™ T(Rf — r)

= [R {Ll ’Bz(r)Bz(r)' dr}_l R’]
xR {J: B,(r)B,(r)’ dr}_1 Ll By(r) dB(r)

= N(0, 63l,).

The last line follows from the conditioning argument used in the
proof of Theorem 2.3(a). Part (a) of the theorem now follows
from a further application of the CMT. The proof of part (b)
makes use of (A.7), but 1s otherwise entirely analogous. The
invanance of the results to the replacement of B by f 15 also
straightforward.

Proof of Theorem 3.2

-1/2

& =Ty - XB)yQ(y — Xp)
= T7(y* = X*B)'(y* - X*B)
= T Ww*u* — T-Y(T 'w* X*)(T2X* X*)"(T'X*'u*)
=T 'w*u* + 0,(1)
— g2

P

as required for (a). Part (b) follows immediately.

[ Recewved October 1986 Revised June 1987.]
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