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The asymptotic theory of regression with integrated processes of the ARIMA
type frequently mvolves weak convergence to stochastic integrals of the form
{8 W dW. where W(i) 1s standard Brownian motion In multiple regressions and
vector autoregressions with vector ARIMA processes, the theory involves weak
convergence to matrix stochastic imtegrals of the form [} BdB , where B(r) 1s vector
Brownian motion with a non-scalar covariance matrix This paper studies the weak
convergence of sample covanance matrices to [ BdB' under quite general con-
ditions The theory 1s apphed to vector autoregressions with integrated processes
© 1988 Academic Press, Inc

1. INTRODUCTION

Let {y,}& be a multiple (n-vector) time series generated by

y[:A)’171+u[; t:11 23 (1)
A=1,, (2)
o =random with a certain fixed distribution (3)

Under very general conditions on the sequence of mnovations, {u,}{, n
(1), t='?y, converges almost surely to standardized vector Browman
motion ¢~ "?B(r) on C"[0, o] The covariance matrix, Q, of B(¢) depends
on the serial covanance properties of {u,} If the sequence {u,};° 1s
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stationary with spectral density matrix f,,(4) satisfymg f,.(0)>0 (“>~
here signifies positive defimite) then Q =2xnf, (0) Strong invariance prin-
ciples of this type have been proved recently by Berkes and Philipp [1]
and by Eberlain [4]

Weak invariance principles follow directly from these strong convergence
results as shown by Philipp and Stout [87]. In this case, 1t 15 usual to define
the partial sum process S,=3} u, and construct the following random
element of D*{0, 1]:

XT(”):Tﬁl/zS[Tr]zTill2 ) — 15 (J—1)/T<r<y/T
Then as T'T oo,
Xr(r)= B(r), (4)

where B(r) is vector Browman mouion on C"[0, 1], with covariance matrix
Q. In (4) we use the symbol “=" to signify weak convergence of the
associated probability measures. Billingsley [2] provides an extensive
discussion of such weak mvariance principles 1 the scalar case (n=1) and
gives many useful applications.

One major time series application of (4) is to the theory of regression for
integrated processes. If {u,}%° 1s generated by a linear process such as a
finite-order stationary and invertible vector ARMA model then y, 1s known
as an integrated process of order one (Box and Jenkins [3]). We are often
interested 1 the asymptotic behavior of statistics from hinear least-squares
regressions with integrated processes. Thus, from the first-order vector
autoregression of y, on y,_, in (1) we obtain the regression coefficient
matrix

“ T N T —1
A=<Zy,y’,_1)<2y[1yil> .
1 1

Here, 4 is a simple function of the sample moments of y,. To the extent
that y, behaves asymptotically like vector Brownian motion, we might
expect the asymptotic behavior of 4 to be described by a corresponding
functional of Brownian motion.

To be more precise consider standardized deviations of 4 about I,

T(/i——])=<TIZu,y;1><T"22y,1y;1> . (5)
1 1

By simple calculations we may write the sample second moment
T72¥7Ty,_,y,_, as a quadratic functional of the random element X ,(r),
at least up to a term of o0,(1). That is,

T 1
2%,y 0= Xl XelrY dr+ 0, (1)
1
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Result (4) and the continuous mapping theorem then establish that

7Yy, = [ B0 BOY dr )

as T1T
In a similar way, we nught expect that

T Sy | dBO)BOY )
1

at least when {u,} 1s a sequence of square integrable martingale differen-
ces. However, unlike (6), (7) cannot be obtained by a simple application of
(4) and the continuous mapping theorem. The reason 1s that we cannot
write the sample covariance matrix 7-'> 7w, y,_, as a continuous
functional of the random element X, (r). Moreover, the limit process
s dBB’ (we shall sometimes suppress the argument of the random function
in integrals of this type) 1s a matrix stochastic integral and, since B(r) 1s
almost surely (vector Wiener measure) of unbounded variation, {§ dBB’
cannot be considered as the (mean square) hmit of a Riemann Stieltjes
sum Furthermore, when the innovations u, are not martingale differences,
E(u,y,_,)#0, m general, and there 1s no reason to expect (7) to hold

In the scalar case (n=1, A=a, 2= ?) the problems described 1n the
previous paragraph are easily resolved We simply write

T T st—1
S?zZuf+2z<Z us)u[
1 2 1

and, then, under quite general conditions as 7T o0,

T 1 T ,
! ZJ’:W:ZE{(T”UZXT(I))Z' r! Z“?}‘*’op(l)
1 1

2 (W) 03], (8)
where W(r) denotes standard Browman motion on C[0, 1] and where
wi=lm, . T 'Y E@w?) Here T~' Y] u? > w} as. by a suitable strong
law for weakly dependent time series (e.g, McLeish [7]). In view of the
formula [ WdW=4W(1)*—1) and the fact that wW(r)= B(r) (here the
symbol “=" signifies equality in distribution) we deduce that

T 1 1
TY g uy= | BdB+3 (0 - ) (9)
1 Y 2

This reduces to the formula suggested above 1n (7) iff ®? = w3
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Thus, 1n the scalar case, we obtain the following hmit law for the
autoregressive coefficient:
A v /g
T(a—l):“ BdB+—(w2—w§)>/{J B(r)zdr} (10)
0 2 J 0
Equation (10) 1s proved m Phillips [10] and it generalizes the simple
formula [} B dB/[$ B dr that was first suggested by White [14] for the case
where the mnovation sequence 1s 1.1.d N(0, ®?)
When n>1 the argument that was used above to deduce (9) no longer
applies. In fact, partial summation of the outer product S;-S% yields

T T—1 t—1 T7—1 r—1 ’
&&:zmm+z(qum+zu(qu
1 2

2 1 1

so that, in place of (8), we now obtain

T T
T Z(yt~lu;+uzy,171):XT(l)XT(l)/_ Tﬁlzuzu;‘i‘ol;(l)
1 — B(1)B(1y —Q,, (11)

where Qo =lm,_ , T7' 37 FE(u,u;). Determination of the hmit law of the
matrix 7' Y7 y,_,u; 1s not possible from (11), although the joint hmiung
distribution of its diagonal elements may be deduced. However, the latter 1s
mnsufficient for many problems of central interest, such as the limiting dis-
tribution of the regression coefficients (5)

The purpose of the present paper is to obtan the matrix analogue of (9)
directly. Our approach permits a wide class of possible innovation sequen-
ces and our main result is directly applicable to the study of regression
statistics such as (5). It should also be useful in other contexts where weak
convergence to the matrix stochastic integral {} BdB' is needed. Some
econometric examples are given in Phillips and Durlauf {13].

2 MaIN RESULTS

We shall require {u,}$ to satisfy conditions which are sufficient to
ensure the validity of (4). In particular, we impose
Assumption 2.1.  (a) E(u,)=0 all ¢,
(b) sup,, E |u,|’ ¢ < oo for some f>2 and £>0
(c) Q=lim,_ . T 'E(S;S7) exists and 1s positive definite;
(d) {u,} is strong mixing with mixing numbers o, that satisfy

Y al < o, (12)
1
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If {u,} 15 weakly stationary then (c) 1s, in fact, imphed by the mixing
condition (d) (Theorem 18.5 3 of Ibragimov and Linnik [67]) In this case,

we obtain
o0

Q=Ewu)+ S Ewu)+ Y E(ued)

k=2 h=2

=Q,+ 2, + 2, say. (13)

Under Assumption 21 we have:

LEMMA 2.2. If lu,} 15 a sequence of random n-vectors that satisfy
Assumption 21 then as TT oo, X(r}= B(r), vector Brownian motion with
covariance matrix £

It 1s convenient to introduce a multiple (nx 1) time series {z,(x)}{
generated by the model

2(xX)=Fz, (x)+u, t=1.2 . (14)
F=exp{(x/T)G} (15)
zo(X) = yo. (16)

Here x 1s a scalar and G 1s an arbitrary n x #n matrix When x =0 the model
1s equivalent to (1)-(3). Note that as T'T oo, F— I, so that for fixed x #0,
z,(x) behaves, at least asymptotically, like an integrated process. Such
processes were 1ntroduced m Phullips {9, 12] and were called near
integrated nime series. Note also that since F depends on T, (14) in fact
defines a triangular array of near integrated time series { {z,(x)}7_ }%_,
We will suppress the additional subscript 7 on z,, to simplify notation.

Back substitution in (14) yields

t

z,(x)= Y, exp{((t—)x/T)G}u, +exp{(1x/T)G} y,. (17)

1=1

Define
z,=(dfdx) z (x)

= GZIZGXP{((I_J) x/T)G}((1=7)/Thu, + G(t/T) exp{(1x/T)G }yo.  (18)

We now consider the asymptotic behavior of sample moments of these
processes

LeMMA 23 If {u,} sausfies Assumpuon 2.1 and {z,(x)}7 s a near
integrated time series generated by (14)-(16), then as TT o0,
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(a) T 'zH{x)z(x)=GLs(1, x) Ks(1, x)';
(b) T *3Tzz(x)=G[}Ls(r, x)Ksr,x) dr,
(c) T 2XTz(x)z{x) = [} Ko(r. x) Ko(r, x)' dr,

where

Ky(r, x) = J exp((r — 5) xG) dB(s)

Lo(r, x)= JO exp{(r—s) xG}(r — 5) dB(s).

We also need.

Lemma 24. If B(r) is vector Brownian motion with covariance mairix §2
and J (r)= [y exp{(r—s)C} dB(s) then

JWJ (1)Yy=2+c Jl J(r)Jr) dr+ Jl J () J . (r) drC’

0
1 1
+[ ) dBOry + [ dBr) I (ry (19)
0 0
Jor any nxn matrix C.
LemMa 25  If {u,}¥ sausfies Assumpiion 21 and {z,(x)}7 1s a near

mtegrated process generated by (14)-(16), then as T oc,

(a) T—l ZIF {Zz—l(x) u; + u,z',_l(x)’} = G fé LG(rz X) dB(’)’ +
{6 [dB(r) Lo(r, x)'1G";
(b) T7'XTZ, (x)u;=G o Lo(r, x) dB(r)',

(C)T STz uy — T70 20 youp = [§ Ko(r, 1) dB(r) —
{6 B(r) dB(r)

We are now 1 a position to establish our main result:

TurOREM 26  If {u,} % 15 weakly stationary and satisfies Assumption 2.1
and if {y,}& 15 generated by (1)-(3), then as TT o0,

(a) T '>Ty,_u,=[\B(r)dB(r) +Q,,
by T YTz, _ (Du,=[s Ke(r, ) dB(rY +Q,

where

Q= hm T- lZE VY, u))= Z (u 1)
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COROLLARY 2.7. If {u,}{ is a sequence of stationary martingale dif-
ferences that satisfy Assumpiion 2.1 and f [ y,}& 1s generated by (1)-(3),
then as TT oo,

T

Yy u :JOI B(r) dB(r).

1

Theorem 2.6 may be extended to include sequences {u,}{° which are not
weakly stationary with some strengthening of the moment and mixing con-
duions (b) and (d) of Assumpuon 2.1. The details are not given here since
the case of predominant interest 1s that of weakly stationary imnovations
i (1)

We may now deduce the relevant asymptotics for regression statistics
such as (5). In particular, we have:

THeEOREM 2.8. If the conditions of Theorem 26 hold then as T oo,

—1

T(A—1)= {Jl B(r)dB(r) + Ql}’{Jl B(r) B(r)’ dr} (0

Note that mn the scalar case (setting 2, =wm,) we have o’ = w2+ 2w, and
(20) reduces to the earlier formula (10)

3 PrOOFS

Proof of Lemma 2.2 See Phallips [11]
Proof of Lemma 2.3. To prove (a) we note that

T 'Pz(x)= 3 exp{((1-J/T)0)G} f/i L ()4 0T

J=1

= zT: JJ/T exp{(1—s)xG} dX (s)+ OP(T—l/z)

y=1"0—1yT

=J1 exp{(1 —5) xG} dX1(s) + O (T~ )

:>J1 exp{(1—s)xG} dB(s), as T1oo
0

m view of Lemma 2.2 and the continuous mapping theorem In a similar
way we find that

=12 (x) :GJI exp{(1—s) xG}(1 — 5) dB(s)
[0}
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and result (a) follows directly. To prove (b) we write
T

77y z,z;
1

=77 XT: [G Z exp{((t—y)/T) xG}((l—J)/T)uJ}

=1 =1

[ Z u exp{((1—k)/T) xG’}} +0,(T'?)

k=1
T .yr ! /T

=Y J dr [G Y Jj exp{(r—ys) xG}(r~s\dXT(s):l
i1 U= T S=1Yu—yT

[ Zl: Jk/T dX (1) exp{(r— t)xG'}:lJr OP(T‘“Z)
(k—1)/T

k=1
= [1 J'J’Gexp{(r—s) xG }(r—s) dX 1(s) dX ((1') exp{(r — 1) xG'} dr
Y0 Y0 Y0
+0,(T7'7?)

:Jl |:G Jr exp{(r—s)xG}(r—s) dB(s):l
0 0
X “r dB(1) exp{(r—1) xG' }:l dr
0
I
-G J Lolr, x) Ko(r, x) dr

as required. Part (c) follows 1in a similar fashion.

Proof of Lemma24. First define &(r)= [ exp(—sC)dB(s) and note
that J.(r)=exp(rC}&(r) Now by the multivariate Ito formula for
stochastic differentiation we have

d{&(r) E(rY y=dE(r) E(r) + E(r) dE(r) + exp(—rC) Q exp(—rCY dr.

Hence
[ Lexp(rO) df(r) &) ) expirC)]

= Jl dB(r) J(r) + jol J (r)dB(r) + Q

leading to the result as stated.
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Proof of Lemma 2.5 From (14) we obtain

’

Z,(X) z,(.x)’*z,kl(x) Zt~1(x)
= (xG) TJIZH (x)z, o (x)Y + T‘lzz‘
tz, oy (X)u,+uz, (x) +uu+ 0, (T

1(x) 2,1 (x)(xG")

and averaging over ¢ we find
T~ 'z(x) z7(x)
T T
=(xG) T2z, (X) 2,y (x) + T2 Y z,_4(x) 2z, 1 (x)'(xG)

1 1

T T T

+ T Yz, (U T Y uz, () + T Y uu,+0,(T )
1 1

Differentiating with respect to x yelds
T 'z zp+ T 'zp20

T
=xGTA22(Z-;~IZ’,~1+Zx—1z./1—1)
1
T
T2 (a2 422 )G+ ( 222,417', )
1

T T

+<T~ZZL~12L1> G+ T 'Y (2, qul+uz, )+ 0,
1 1

(21)

From Lemma 2.3 and (21) we now deduce that

T! (Eroqur+u, iz, q)

~ =

= GL4(1, x) K51, x)' + Kg(1, x) Ls(1, x)'G’

e {GJlL (r, x) Kolr, x)’ dr+J K(r, x) Lo(r, x)' er'}

0

—1 J Lo(r, %) Ko(r, x)’ dx+J Ke(r, x) Lolr, x) dG’}xG

—GJ K(r, x) Kg(r, x) a’r—J1 K(r, x) Kg(r, x) drG’.  (22)
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Now let C=xG mm (19) and differentiating (19) we have (noting that
J.6(r)=Ks(r, x) and (d/dx)J .(r) = GL(r, x))

GLG(1, x) Ko(1, x)" + K(1, x) L(1, x)'G’

1 1
= GJ K(r, x) LKs(r, x) dr +J Ks(r, x) Kg(r, x) drG’
0 0

+xG {G f Lo(r, x) Ko(r, x) dr + Jl Ko(r, x) Lolr, x) er/}
(4]

0

+ {G J'l Ls(r, x) Kg(r, x) dr + Jl Kg(r, x) Lg(r, x) er’} (xG')
+G [ Lolrx)dB(ry + [ [dB() Lo(r, x)] G (23)

It follows from (22) and (23) that
T 1 1
TY (G 4,2 )= G [ Lo(r, x) dBGY + | [dB) Lo(r, x) ]G’
1 0 0

as required for part (a).
To prove part (b) we note first from (18) that Z,=Gw,, where

w, =Y, exp{((t— ) X/ TYG}(t =)/ T, + (1/T) exp{1x/T)G } yo.
1
Thus, from part (a) we have
T T
G (T1 Y w,lu,'> + (T’l Y u,w;1> G
1 1
1 1
=G [ Lolr,x)dB(r) + [ dB(r) Lo(r, x)G"
0 o
It follows that
T a1
tr{G<TIZW,_1u;)}:tr{GJ Ly(r, x) dB(r)’} (24)
1 0
Since (24) holds for all matrices G we deduce that
T 1
Ty w,_qu :J Ls(r, x) dB(r)’
1 0

Result (b) follows directly.
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To prove (c) we integrate with respect to x over the interval [0, /]. We
have

T A T T
T [ i de=T Yz, (Dui =T Y. yo_u
170 1 1
and

JJGLI Ls(r, x) dB(r) dx:Ll L’ GLo(r, x) dx dB(r)

0
= Ko(r. 1y dB(ry — | B(r) dB(ry
0 0

Part (c) now follows from (b) and the continuous mapping theorem.

Proof of Theorem 2.6. We work from part (¢} of Lemma 2.5. First let
G = fI, for some f <0 and write

T T /t—~1
T 'Yz, (Duy=e Y7T! Z( Y e(’”f)’f/Tu]) u,
1

2 \ 1
71 T

=e Ty e“ﬁT(T‘1 Y utﬂuﬁ)‘ (25)
s=1 t=s5+1

Now let /=T/M We shall allow MToo as TToo in such a way that
M/T |0 (and, thus, [T o). Equation (25) becomes

T-—1 T
e My e‘yf“”(T’1 y u,ﬂu;>
s=1 f=s5+1
But ¢ ™ — 1 as M1 oo and

1 T
> esf/M<T‘1 Y u,,guf)—I)»Ql. (26)

s=1 t=s+1

In fact, (26) 1s simply the Abel estimate of the component Q, of the scaled
spectral density matrix Q =2nf,,(0) at the ongmn (see, e.g., Hannan [5,
p 27973). We deduce that

T T
T Yz, (=T ) v
1 1

has the same asymptotic distribution as 77 oo (with /=T/M | o) as

T
Q=T ' Yy auy (27)
1
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Now consider

1

Kolr, 1) =j

0

eV dB(s) = N(O, Jr e dy Q>

0

= N(O. ((¢™ = 1)/20)2)
Since f <0 we deduce that
K, (r. D — 0

as [T oo We may also show that
1
| Kotr, 1 dB(ry —o. (28)
0

Now part (c) of Lemma 2.5 holds for all /, so that combining (27) and (28)
with part (¢) we obtamn

T )
T='Y v qu;— @, = | B(r)dBir),
1 0

giving the result as stated Note also that

T T t—1
lim T7'% y, qu;= hm T7'Y Y E(u,_ uj)
T— 1 T— 2 =1
T—-1
= lim Y (1—s/TYE(uu,,,)
T— o s=1
=3 Elu,uy)
k=2

Part (b) of the theorem follows mn a similar way

Proof of Theorem 2.8 This follows as a consequence of Theorem 2.6(a)
and (6) since joint weak convergence of the numerator and denommator
matrices 1 the quotient defining 7(A4 — I) holds and an applhcation of the
continuous mapping theorem yields (20) as stated
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