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SUMMARY

This paper develops an asymptotic theory for a first-order autoregression with a root
near unity. Deviations from the unit root theory are measured through a noncentrality
parameter. When this parameter is negative we have a local alternative that is stationary;
when it is positive the local alternative is explosive; and when it is zero we have the
standard unit root theory. Our asymptotic theory accommodates these possibilities and
helps to unify earlier theory in which the unit root case appears as a singularity of the
asymptotics. The general theory is expressed in terms of functionals of a simple diffusion
process. The theory has applications to continuous time estimation and to the analysis
of the asymptotic power of tests for a unit root under a sequence of local alternatives.

Some key words: Autoregression; Brownian motion; Diffusion; Near-integrated process; Noncentrality
parameter; Unit root.

1. INTRODUCTION

There has recently been a growing interest in the asymptotic theory of autoregressive
time series with roots on or near the unit circle. Fuller (1976) and Dickey & Fuller (1979,
1981) developed statistical tests for detecting the presence of a unit root in a first-order
autoregressive process, AR(1). Subsequent papers (Solo, 1984; Said & Dickey, 1984;
Phillips, 1987) have extended these procedures to quite general integrated time series of
the ARIMA(p, 1, q) type. The limiting distributions of the various test statistics proposed
in these papers are known and are all nonnormal. However, these limiting distributions
may usually be represented quite simply in terms of functionals of standard Brownian
motion. Moreover, tables of the relevant distributions have been obtained by Monte
Carlo methods for the asymptotic case, as well as for a range of finite sample sizes. These
are reported by Fuller (1976) and Dickey & Fuller (1979, 1981).

Autoregressive time series with roots that are near unity have also been studied. Evans
& Savin (1981, 1984) found in extensive simulation experiments that the statistical
properties of the coefficient estimator and associated 7 test in a stationary ArR(1) with a
root near unity are close to those that apply when the model is a random walk, even
when the sample size is as large as 100. Similar results were found when the Ar(1) is
mildly explosive. In related work, Ahtola & Tiao (1984) recently studied the sampling
behaviour of the score function in an AR(1) as the autoregressive coefﬁcnent approaches
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536 P. C. B. PHILLIPS

The present paper deals with a closely related subject. We shall consider a time series
that is generated by the model

yt:ayt—l+ut (t=172"'°)’ (1)
with
a=exp(c/T) (—0<c<™), (2)

where T is the sample size. Since the coefficient in this autoregression depends on T,
time series generated by (1) formally constitute a triangular array of the type {y:
t=1,...,T; T=1,2,...}. However, with the exception of § 5, this formality is not
essential to our discussion and we shall simply refer to time series generated by (1) as
{y.}. Initial conditions for (1) are set at ¢ = 0 and y, may be any random variable, including
a constant, whose distribution is fixed and independent of T.

It is convenient to treat the parameter ¢ in (2) as a noncentrality parameter. When
¢ =0 the model (1) has a unit root. When ¢< 0 and T is finite, 0 <a <1 and the model
is evidently stable over a finite stretch of data. Similarly, when ¢>0 and T is finite it is
clear that a>1 and the model has explosive characteristics in finite samples of data.
When c is close to zero, a is close to unity and the model may be thought of as having
a root that is local to unity. In this case (1) and (2) comprise a nearly nonstationary
AR(1) of the type considered by Ahtola & Tiao (1984). However, Ahtola & Tiao deal
only with stable alternatives (a <1) and they require the sequence of innovations {u,} in
(1) to be independently and identically distributed as N (0, o), so that their model is a
conventional Gaussian AR(1). Much weaker conditions on {«,} will be employed in this
paper. As a result, the asymptotic theory that we develop will apply to rather a wide
class of nearly nonstationary processes. In particular, our approach is to require that the
sequence of innovations {u,} in (1) satisfy some rather general moment and weak
dependence conditions. Under these conditions {u,} may be generated by a wide variety
of models, including all Gaussian and many other finite-order ARMA models.

If T— oo while the noncentrality parameter is held fixed we see that a > 1. Thus, in
the limit as T oo the model (1) has a unit root. Note that the rate of approach to unity
is controlled at O(T™"). This is the order of consistency of the least-squares estimator
of the coefficient in (1) when there is a unit root. It might be anticipated that the main
effect of the hypothesis (2) is to induce noncentrality in the limiting distribution theory.
It turns out that the asymptotic theory is indeed noncentral. The relevant limiting
distributions are most conveniently represented as functionals of a first-order diffusion
process, rather than standard Brownian motion. The coefficient in the diffusion process
is the noncentrality parameter c. This parameter may be used to measure the effects of
the departures from the hypothesis of a unit root in (1) on the limiting distribution theory.
Moreover, the resulting noncentral limiting distribution theory yields the asymptotic
power functions of statistical tests for a unit root under a sequence of local alternatives
to unity.

The paper is organized as follows. Some preliminary theory is presented in § 2. Section
3 develops the general theory which accommodates autoregressive roots in the vicinity
of unity. In § 4 we examine how these results change as the noncentrality parameter
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2. SOME PRELIMINARY THEORY

Throughout this paper we assume that the innovation sequence {u,} satisfies the
following general conditions:
(i) E(u,)=0forall ¢t;
(ii) sup, E|u,|?** <oo for some B >2 and &> 0;
(iii) as T>o0, o’ =1lim E(T'S%) exists and 0> 0, where S, =u, +...+u,;
(iv) {u,} is strong mixing with mixing coefficients a,, that satisfy

a:,,—Z/B < 00, (3)
1

AN

Condition (iv) imposes a form of asymptotic weak dependence on the sequence of
innovations {u,}. The reader is referred, for example, to Hall & Heyde (1980, p. 132) for
the definition of strong mixing and the mixing coefficients a,,. The summability require-
ment (3) on the mixing coefficients is satisfied when @, = O(m ™) for some A > B/(8 —2).
Condition (ii) controls the allowable heterogeneity in the sequence {u,} in relation to the
mixing decay rate prescribed by (3). Thus, as 8 declines towards 2 the moment condition
(ii) weakens and the probability of outliers rises. On the other hand, the mixing decay
rate B/(B—2) increases as B approaches 2 and the effect of outliers is required by
condition (iii) to wear off more quickly. Condition (iii) is a convergence condition on
the average variance of the partial sum Sy. It is a common requirement in much central
limit theory. If {u,} is weakly stationary then

o*=Eu})+2Y E(u,u), (4)

where the sum is over k=2,...,, and the convergence of the series is implied by the
mixing condition (iii), as proved in Theorem 18.5.3 of Ibragimov & Linnik (1971, p. 346).
As is conventional, we still require o> 0 to exclude degenerate results.

Conditions (i)-(iv) are quite weak. They permit the innovation sequence {u,} to be
heterogeneously distributed and weakly dependent over time. This includes a wide variety
of possible data generating mechanisms such as all Gaussian and many other finite-order
ARMA models under very general conditions on the underlying errors (Withers, 1981).

From the sequence of partial sums {S,} we construct

XT(r) = T_ia_ls[Tr] = T_%o'—lsj—ls (J_ 1)/’1.‘S r<J/ T (J = la ccey T)a

where [ Tr] denotes the integral part of Tr. The random element X (r) liesin D = D[0, 1],
the space of real-valued functions on the interval [0, 1] that are right continuous and
have finite left limits. It will be sufficient for our purpose if we endow D with the uniform
metric defined by || f—g|| =sup, |f(r) — g(r)| for any f, ge D.

Under conditions (i)-(iv) the random element X (r) obeys a central limit theory on
the function space D. In particular, from Herrndorf (1984) we have, as T -,

Xr(r)=W(r). (5)

The symbol ‘=’ here signifies weak convergence of the associated probability measures.
Thus the probability measure of X (r) converges weakly to the probability measure,
namely Wiener measure, of the random function W(r). The result is known as a functional

rantral limit thanram Ar tntrasinmanas sawinninala rwd dlan 1ianlé mmcmnmnn X770\ 20 mam 11



538 P. C. B. PHILLIPS

Definition. A time series {y,} that is generated by (1) and (2) with ¢ 0 and where {u,}
satisfies (i)-(iv) is called near-integrated. When ¢ =0, in (2), {y,} is called an integrated
process.

The terminology we employ here for an integrated process corresponds to the usage
popularized by Box & Jenkins (1976) when {u,} is generated by a stationary ARMA model.
The above definition actually extends the terminology to include time series whose first
differences are not necessarily stationary processes and may be generated, for example,
by finite-order ARMA models whose innovations are nonidentically distributed. When
¢ %0, the specification (2) allows us to introduce the closely related concept of a
near-integrated process. The latter includes alternatives which are strongly autoregressive
(¢ <0) or mildly explosive (¢ >0) in finite samples of data.

The following functional will play a central role in our theory:

J.(r)= fr e dW(s).

Here J.(r) is a Gaussian process which, for fixed r >0, has the distribution
J.(r)=N(0,3(e*~1)/c), (6)

where we use the symbol ‘=’ to signify equality in distribution. Actually, J.(r) is an
Ornstein-Uhlenbeck process, generated by the stochastic differential equation

dl.(r)=cJ.(r) dr+dW(r), @)

with initial condition J,(0) = 0. It is simple to establish that

L(N=W(r)+e _[ W (s) ds,

and by stochastic differentiation of {f e™* dW(s)}?, where the integral is over (0, r), we
deduce the following useful relationship:

1

{J.(n¥Y dr+2J‘1 J.(r) dW(r). (8)

0

{Jc(l)}2=1+2cf

0

When ¢ =0, equation (8) reduces to the commonly-used formula

f W(r) dW(r)=;[{W(D}-1].

0

In these expressions, | J,dW and | WdW, where the integrals are over (0, 1), are inter-
preted as stochastic integrals.

3. ASYMPTOTICS FOR NEAR-INTEGRATED PROCESSES
Our first step is to find the relevant asymptotic theory for the sample moments of data
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Towards a unified asymptotic theory for autoregression 539

The following lemma has all the results we need for the development of our regression
theory.

LEMMA 1. If {y.} is a near-integrated time series generated by (1) and (2), then, as T - c©:

(a) T—%y[Tr]=>0-Jc(r);

(b) T*?2 y,=o [ J.(r) dr, where the integral is over (0, 1);

(c) T2 y’=0?|J.(r)*dr, where the integral is over (0, 1);

(d) T2y, u,=0*[J.(r) dW(r)+1(0*— o2), where the integral is over (0, 1);
with o =lim T~' = E(u?). Joint weak convergence of (a)-(d) also applies.

Proof. The approach we follow is based on Phillips (1987). To prove (a) we first note
from (1) and (2) that

t
¥y, = Z e(t—J)C/Tuj+etc/Ty0
i=1

and thus

[Tr] T
T_éy[Tr] =0 Z e((Tr]"])C/T f dXT(S) + Op(T—-;)

j=1 G-1/T

[Tr] (J/T
=g ) J e dXr(s)+ 0,(T™)
=1J@(-1)/T

J
=0 f e dXr(s)+ O, (T?).
0

We.now use integration by parts on the first term, which is valid since e" ¢ is continuous
and Xr(s) is increasing and of bounded variation. We obtain, as T oo,

o’{XT(r)+c fr e X (5) ds} + Op(T'5)=>0'W(r)+c J‘r e W(s) ds = aJ,(r)
0 0

by (5) and the continuous mapping theorem (Billingsley, 1968, p. 30). This proves (a).
The proofs of (b) and (c) are entirely similar. To prove (d) note by squaring (1) and
summing over ¢ that

T yr=2cT Y yi AT YWl +2T " Yy u,+ O, (T,

Now T7' 2 u} > o3 almost surely, by the strong law of large numbers for weakly dependent
sequences; see, in particular, McLeish (1975, Th. 2.10). From parts (a) and (c) and the
continuous mapping theorem we now deduce that, as T - oo,

1 1
2T7'Y yu=>0*{J.(1)}* - 2co? f {J.("Y dr—o% =207 f J.(r) dW(r)+ o -2
0 1]
in view of (8). Part (d) of the lemma follows immediately. To establish joint convergence
of (a)-(d) we need only note that the vector of sample moments may also be expressed
as a continuous functional of X (s) up to an error of O,( T7%). The required result then
follows. O
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sample moments of nearly nonstationary time series. Thus, since J.(r) is Gaussian it is
easy to show by elementary calculations that

JI J.(r) dr=N(0, v),

where v=1/c>+1(1/c*)(e* —4e°+3). Parts (a) and (b) of Lemma 1 therefore yield
T yr=0J.(1)= N{0,3(c%/c)(e* - 1)}, (9

T—s/zzy,=>0'fllc(r) dr= N(0, o°v). 10)

When ¢ =0, expression (9) is oJ,(1)= N(0, o), which is the limiting distribution of
the standardized sum T *X u, of the innovations in (1). The variance of this limiting
distribution is o?=1lim T™'E(S%). When {u,} is stationary we have o =2xf, (0), where
£, (1) is the spectral density of {u,}. In this special case of (9) we therefore find that

T u,= N{0, 2nf,(0)}.

This is, of course, a general central limit theorem for stationary time series; see, for
example, Hannan (1970, Th. 11, p. 221).

When ¢ = 0in (10) a simple calculation gives o | J,(r) dr= N(0,}0?), where the integral
is over (0, 1), which is the limiting distribution of the standardized sample mean of an
integrated process (Phillips, 1987).

Perhaps the most useful application of these results is to the theory of regression for
near-integrated time series. Suppose (1) is estimated by least-squares giving the regression
coefficient =2 y,y,_,/= y?_;, and associated ¢ statistic ¢, = (= y*_,)*(@— a)/s, where
s?=T' = (y,— dy,—,)*. The asymptotic theory of these regression statistics is as follows.

THEOREM 1. If {y,} is a near-integrated time series generated by (1) and (2), then, as
T > 00:
(a) T(@—a)=>{f J.(r) dW(r)+3(1— 02/ 0D}/ [{J.(r)} dr, where the integrals are over
(0, 1);
(b) @~ 1,s>~ o’ in probability;
(¢) t,=(o/a ) T.(r) dW(r)+i(1 =02/ D}/ {J.(r)}* dr]?, where the integrals are
over (0, 1).

Proof. To prove part (a) we note that

T(@-a)=(T? X yi)) (T ' Lyau)

=>”0 {J(np dr]- {L J.(r) dW(r)+%(1—0i/02)}

by direct application of the continuous mapping theorem and Lemma 1. Moreover, this
implies that 4=a+0,(T')=1+0,(T™") so that part (b) also follows. Part (c) is an
immediate consequence of Lemma 1, the continuous mapping theorem and part (b). O
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1979). In particular, (a) and (c) become

T(Zi—l)=>|:J‘1 {W(r)y dr]_l{fl wW(r) dW(r)},

0

ta=>”1 (W(r)P drr”l w(r) dW(r)}.

In this case, we have o= o2 and J.(r) = W(r) in the formulae of Theorem 1.

When ¢ +0 Theorem 1 delivers the noncentral asymptotic theory for the regression
statistics 4 and ¢, for a very general class of innovations in (1). The theory is particularly
useful in studying the asymptotic power of tests for a unit root under the sequence of
local alternatives given by a =e“” ~1+ ¢/ T. Dickey & Fuller (1979) suggested the test
statistics T(4—1) and t,. These statistics are appropriate when the errors in (1) are
independent and identically distributed, in which case we have o= o> and

T(d - 1)=>c+”l {L(n)P dr]—l{fl J.(r) dW(r)},

e[ 1) o[ [ o] [ 10w,

The Dickey-Fuller tests have recently been extended by the author to accommodate
rather general time series with a unit root. The new statistics Z, and Z, (Phillips, 1987)
are based on T(d4—1) and ¢, but they employ a nonparametric correction for serial
correlation. Under the sequence of alternatives a = e’ ", Theorem 1 provides asymptotic
power functions for these new tests as well; Z, and Z, have the same asymptotic local
power as the Dickey-Fuller tests T(4 —1) and ¢, given above, yet the new tests allow for
a much wider class of error processes.

Nl

4, LIMIT DISTRIBUTIONS AS ¢ -> £00

It is interesting to study the limiting behaviour of the asymptotic theory of § 3 as the
noncentrality parameter approaches the boundaries of its domain of definition. As might
be expected, the results for the sample moments are different at the two boundaries and
two different normalizations are required to eliminate degeneracies. The central results
we shall use are contained in the following lemma which is proved in the Appendix.

LEMMA 2. As ¢ > —00:
(a) (=2¢) [{J.(r)}’ dr-1 in probability, where the integral is over (0, 1),
(b) (—2c)%fJC(r) dW(r)=>N(0, 1), where the integral is over (0, 1);
As ¢+,
(c) [(2c) e~ [ I.(r) dW(r), 2c)? e [{T.(")} drl=(&n, n%), where the integrals are
over (0, 1);
where £ and 1 are independent N(0, 1) variates.

We now define

Kz(C)=g(C)%“0 {L(n} dr]_ ” J.(r) dW(r)+%(1—cri/02)},

0



542 P. C. B. PHILLIPS

where

1

g(0)=E U (LY dr] =—(20){1+(20) (1= e*)).
0

Here K,(c) and K;(c) are functionals which represent the limiting distributions of the

standardized regression coeflicient g(c)}T(d—a) and the associated ¢ ratio t,. The

behaviour of K,(c) and K;(c) for large |c| is now a simple consequence of Lemma 2.

THEOREM 2. As ¢ > —00:
(a) K,(c)=>N(0,1) if o> = o and diverges otherwise,
(b) K;(c)=N(0,1) if 0*= o’ and diverges otherwise.
As ¢ > +0;
(c) Ky(c)=C,
(d) Ks;(c)=N(0,0%/07),
where C denotes the standard Cauchy distribution.

Proof. Parts (a) and (b) follow directly from Lemma 2 upon appropriate standardization
of numerator and denominator. To prove part (c), we write

K> (c)=(2c)7"e* Ul {Jc(r)}zdr] ) ”1 J.(r) dw(r)+3(1 —Gi/az)} +0,(1)

0

= [(ZC)2 e % fl {L.(n} dr]wl{Zc e ¢ r J.(r)dW(r)+ce ‘(1 —crf,/crz]} +0,(1)

0

=én/n'=§&/1=C,
as ¢—> 00 by Lemma 2 and the continuous mapping theorem. In a similar way we find

1 “ic 1
Ks(C)=(cr/cru)”0 {L.(ny dr] ” Je(r) dW(r)+%(1—cri/02)}

0

—1
2

=(0/0u) [(ZC)ze‘” L {J.(n¥ dr]

X {(Zc) e’ r J.(r)ydW(r)+ce ‘(1 —ai/az)}

=(a/0.)én/In|=(o/ 0,)€ sgn (n) = N(0, o°/ oy)
as ¢— 0o, proving part (d). 0

The above results are obtained by studying asymptotic behaviour in successive limits:
first as T - o with ¢ taken to be a fixed constant; and secondly as ¢ - +co. Heuristically,
one might expect the asymptotic results of Theorem 2 to provide reasonable approxima-
tions in finite samples for which both T and |c| are large. Note, in particular, from (2)
that c= T log a, and thus finite-sample configurations with large T and large |c| may be
associated with stable or explosive AR(1)’s depending on the sign of c. In this sense the
results of the theorem are suggestive. In fact, parts (a) and (b) correspond with known
asymptotic theory for the stationary AR(1); and parts (c) and (d) correspond with
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Towards a unified asymptotic theory for autoregression 543

with a fixed coefficient. This point has been emphasized by a referee. The reason is that,
in general and without further conditions, one cannot deduce rigorous asymptotic results
that apply for T > oo with the coefficient a fixed by telescoping the limits as T - co0 and
¢ —> £00,

Theorem 2 relates to some recent independent work by N. H. Chan and C. Z. Wei in
a University of Maryland research report. These authors take the case of independent
and identically distributed innovations {u,} and by an approach that is quite different
from that used here they obtain parts (b) and (d) of Theorem 2, both for the special case
in which o*=02.

5. REGRESSIONS WITH CONTINUOUS TIME OBSERVATIONS

Models such as (1) and (2) have another interesting interpretation and application.
Let{y.:t=1,..., T,; n=1,...} be an autoregressive array generated for each row n by

Voi = @Yty (t=1,...,T,), yu=y(0), (11)

in which the innovations u,, are independent and identically distributed with zero mean
and variance o’h,. Now let h,=1/T, and define

a,=e"n=e’ T, (12)

Each row of the triangular array {y,,} may be interpreted as an autoregression in discrete
time with sampling interval h,. We require T, -0 as n >, so that h, > 0. The array
then represents a sequence of autoregressions with sampling intervals that decrease as
we get deeper into the array. For each value of n, expressions (11) and (12) are just a
special case of the earlier model (1) and (2).

Note that by definition T,h,=1 so that {y,,; t=1, ..., T,} may be regarded as
equispaced observations of a continuous stochastic process over the interval [0, 1]. In
fact, by methods analogous to those of the proof of Lemma 1(a), it is easy to show that,
as T, o0,

yn[an]=>0'Jc(")+ech’(0)- (13)

Thus, setting o =1 and initial conditions y(0) =0, we find that the triangular array {y,,}
converges weakly as n— 00 to the diffusion J,(r) over the unit interval 0<r=<1. In this
way (11) and (12) may be regarded as a discrete time autoregression whose natural limit
as n-> o is the first-order stochastic differential equation (7). Note that it is not necessary
to treat {y,.} as a Gaussian process for this interpretation to be valid since (13) applies
provided the innovations in (11) are independent and identically distributed. Of course,
if {y..} is Gaussian then we may go further and treat (11) and (12) as the discrete time
equivalent of (7), that is the discrete time model that is satisfied almost surely by
equispaced observations generated from (7).

When continuous time observations are available a natural estimator of the coefficient
in (7) is the least-squares estimator

3=Jl J.(r) d-fc(r)/f1 {J ()} dr.
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Since
E—c=ch(r) dW(r)/fl{Jc(r)}2 dr, (14)

the finite-sample distribution of ¢ — ¢ is identical to the asymptotic distribution of the
corresponding statistic T, (d, — a,) that is based on a discrete time record, taken as T,, - c0.
Similarly we introduce the continuous record ¢ statistic

f, = f J.(r) dW(r) / U (TP dr]z (15)

whose distribution is identical to that of the asymptotic distribution of the regression ¢
statistic ¢, from discrete time data.

From Theorem 2 we now deduce the asymptotic behaviour of these continuous record
statistics as ¢ approaches the limits of its domain of definition. Thus

g(c)(é—c)=>N(0,1), 1.=N(0,1), (16)
as ¢ - —o00; and
g(c)(é-c)=>C, t,=N(0,1), (17)

as ¢ >+, where C is the standard Cauchy distribution.

These results together with (14) and (15) completely characterize the distributional
behaviour of the continuous-time regression statistics. Note that (14) and (15) apply
whether the stochastic differential equation (7) is stable with ¢ <0, explosive with ¢>0
or simply a continuous-time random walk with ¢ = 0. The asymptotic distributions given
by (16) and (17) for the boundary cases ¢ = £00 complete the theory.

6. SUPPLEMENTARY REMARKS

Many observed time series in the physical and social sciences are well modelled by
integrated processes of the ARIMA type. However, we are frequently uncertain whether
the process has a root of unity or a root in the vicinity of unity, and the discriminatory
power of tests for the presence of a unit root is rather low against such alternatives. The
present paper develops an asymptotic theory of autoregression covering the possibility
of a root near unity. This theory has several advantages.

First, it may be used to construct distributional approximations for regression statistics
in mildly explosive, strongly autoregressive or unit root models. Secondly it provides a
mechanism by which we can obtain asymptotic power functions for unit root tests under
a sequence of local alternatives. The local departures from the unit root theory are then
measured through a noncentrality parameter which figures in the asymptotic theory.
Finally, the theory enables us to obtain a very convenient unification of the asymptotic
theory for autoregressions with roots in the vicinity of unity. This is useful because in
previous work the unit root case has been viewed as a singularity of the asymptotic
theory. In the new theory for near integrated processes that is developed in this paper
it becomes a simple special case, the case where the noncentrality parameter is zero.
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then y, = pu(a'—1)/(a—1)+y!, where y? is driven by a model such as (1). When a =1,
y,=ut+y? and y, is dominated by a deterministic trend. Similarly, when a=1, for
example a=exp (¢/T*?), we still find that y,~ ut when the drift u +0. In this case
conventional normal asymptotics obtain for regression statistics such as 7*%(4 —a) and
t.- When u =0 and (18) is estimated with a fitted drift, results analogous to those of the
present paper apply. One needs only to make simple modifications to the formulae which
account for the fitted mean. For example, we have

1 1 2
T_zz(y,—i)2=>02U {J(ny dr—{J Je(r) dr} ]

0 0
in place of (c) in Lemma 1. Sometimes (18) is fitted with a trend as well as a drift in
order to discriminate between processes which are stationary in differences rather than
stationary about a trend. Such models may also be extended in the manner of the present
paper to accommodate roots in the vicinity of unity and closely related results are again
obtained.
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APPENDIX
Proof of Lemma 2

To prove parts (a) and (b) we employ the invariance principle. We first find the limiting
distribution of (T'2 y,_,u,, T2 X y?_,) when the innovation sequence {u,} is independent and
identically distributed as N(0, 1). In this case, of course, 0° = o2 =1 and by Lemma 1 the limiting
distribution is that of the functional [[ J,(r) dW(r), [{J.(r)}* dr], where the integrals are over
(0, 1). However, by the invariance principle this distribution is not dependent on the normality
assumption made about the innovation sequence. The assumption is simply a device which
facilitates the extraction of the mathematical form of the distribution. Moreover, relaxation of
the independence assumption about the u, leads only to the additional presence of the constants
o and o2 in the limiting distributions; see, in particular, parts (¢) and (d) of Lemma 1. Thus,
we may extrapolate easily from the limiting distribution obtained under independent N(0, 1)
innovations to the general case.

When {u,} is independent N(0,1), (T"'2y,_,u, T2 y?_,) is a pair of quadratic forms in
normal variates. The joint moment generating function of these forms may be obtained following
White (1958), allowing for the representation a = e“”. The limit of this function as T > o is then
the moment generating function of [ J,(r) aw(r), [ {J.(r)}* dr], where the integrals are over
(0, 1). Simple calculations along these lines yield the joint moment generating function

M, (w, z)=(G(+2ew—22)" e [{(c*+2cw—22)t ~ (c+w)} exp {(Z+2ew —22)}}
+{(c*+2ew—2z) = (c+w)} exp {—(c*+2ew —22)}] . (A1)

This expression holds for all ¢ and will be used later in our derivations for explosive (¢ - o0)
alternatives. For our present purpose, with ¢ < 0, we note that the joint moment generating function
of [(—2¢)} [ J.(r) dW(r), (=2¢) [ {J.(r)}? dr)], where the integrals are over (0, 1), is

L(p, 9)=M.{(—2c)'p, —2¢cq}. (A2)
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Using (A3) in (A2) we deduce that, as ¢>—0, lim L.(p, g) =exp (3p*+9q). It follows that

1

(—2c)*J J.(r) dW(r)=N(0,1), (—2c)J {J.(P dr->1,

0

the latter in probability as ¢ > —o0, proving parts (a) and (b).
To prove (c) we first deduce from (A1) that the joint moment generating function of

[2c e Jl J(r) dW(r), (2¢)* e Jl {J.(n} dr]

0 0
is
K.(p,q)=M.{2ce™p, (2¢)* e *gq}. (Ad)
Now
{2+ (2¢)%e ™ p—2(2c) e gl =c{1+2e p—de 2°q—2(e p—2e g+ O0(e )} (AS5)
for large positive c¢. Substituting (A5) into (A4) we deduce after a little calculation that, as ¢ - oo,
K(p,9)>(1-p°-29)7 (A6)

Setting p =0 in (A6) we have K. (0, ) =(1 —2¢)7}, corresponding to a x? variate. Setting g =0
in (A7) we have K.(p, 0)=(1-p?~}, which is the moment generating function of a product of
independent N (0, 1) variates. Moreover, a simple calculation shows that K..(p, q) =(1—p*— 2g)7
is the joint moment generating function of (&7, n°), where ¢ and 7 are independent N(0,1)
variates. Thus we also have joint weak convergence as required for part (c) of the lemma.
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