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Best Median-Unbiased Estimation in Linear
Regression With Bounded Asymmetric

Loss Functions

DONALD W. K. ANDREWS and PETER C. B. PHILLIPS*

This article considers optimal median-unbiased estimation in a linear
regression model with the distribution of the errors lying in a subclass
of the elliptically symmetric distributions. The generalized least squares
(GLS) esumator 1s shown to be best for any monotone loss function,
that 15, any loss function that is nondecreasing as the magnitude of under-
estimation or overestimnation increases. This includes bounded asym-
metric loss functions For the same loss functions, a restricted GLS
estimator is shown to be best when the estimand is known to lie in an
interval. For the case of normal errors, a best median-unbiased estimator
of the error variance 6 1s given for restricted and unrestricted parameter
spaces This estimator differs from the sample variance s*> In comparison
with best mean-unbiased estimators of regression and variance param-
eters, the best median-unbiased estimators considered here take advan-
tage of restrictions on the parameter space and are optimal with respect
to a much wider class of loss functions—in particular, both bounded and
unbounded loss functions.

The choice of median-unbiasedness, as opposed to mean-unbiased-
ness, is not crucial when derving an optimality result for the estimation
of regresston parameters when the model has elliptically symmetric er-
rors, provided the parameter space 1s unrestricted or is restricted only
by linear constraints The reason is that many estimators considered in
the literature have symmetric distributions about the estimand in this
context and hence are both median- and mean-unbiased if their expec-
tations exist. (Proper Bayes and shrinkage estimators are the two mam
classes of estimators that do not have symmetric distributions and are
neither mean- nor median-unbiased.)

On the other hand, if the parameter space of the regression parameters
15 restricted by nonlinear constraints on the parameters, then the mean-
unbiasedness conditton becomes much more restrictive than median-
unbiasedness. This occurs because estimators that take advantage of the
restrictions on the parameters generally are mean-biased. Median-un-
biased estimators, however, can be adjusted to take account of restric-
tions without losing their property of median-unbiasedness. Thus our
use of the condition of median-unbiasedness, rather than mean-un-
biasedness, is of little consequence when the parameter space is unre-
stricted and 1s a distinct advantage when the parameter space is restricted
by nonlinear constraints on the parameters.

The class of error distributions that we consider consists of distributions
that are consistent with elliptical symmetry for any sample size. Such
distributions are rotated variance mixtures of muluvarate normal dis-
tributions (and hence include multivariate normal distmibutions). Ex-
amples are given of cases in which such distributions may arse.

The contents of this article are organized as follows. Section 1 briefly
reviews recent results by Kariya (1985) and Hwang (1985) that are related
to the results given here. Section 2 shows that the GLS estimator is the
best median-unbiased estimator of the regression parameters for quite
general loss functions, when the parameter space 1s unrestricted. Of note
is the fact that this result holds without moment restrictions. Thus the
errors may have a multivariate Cauchy distribution. Section 3 shows that
a restricted GLS estimator is best median-unbiased for a linear combi-
nation of the regression parameters, when that linear combination is
testricted to lie in an interval. Certain other linear combinations of the
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parameter vector may be subject to arbitrary additional restrictions.
Section 4 presents best median-unbiased estimators of the error variance
o2, as well as monotone functions of 62, when the errors are normally
distributed. If 62 is constrained to lie in a finite interval, the best estimator
15-a censored version of its unconstrained counterpart. When o2 1s con-
stramed only to be positive, the best median-unbiased estinator is always
larger than the best mean-unbiased estimator s* and 1s approximately
equal to s? calculated with its degrees of freedorn reduced by 66 The
Appendix gives proofs of the results. These make use of results due to
Lehmann (1959) and Pfanzagl (1979).

KEY WORDS Generalized least squares, Elliptically symmetric distri-
bution; Restricted parameter space; Minimum risk; Vanance estimation.

1. KARIYA'S AND HWANG'S OPfIMALITY RESULTS
FOR GLS

The Gauss-Markov theorem states that for the linear
regression model,

y = XB, + uy, E(uy) = 0, and cov(uy) = 023,

®
the generalized least squares (GLS) estimator,

B = (XX XSy, @
is the best linear mean-unbiased estimator in the sense
that ¢’f minimizes the mean squared error for estimation
of ¢'f, for all fixed K-vectors c, provided that 3, is known.
Here Xis an N X K fixed matrix of rank K, 3, is a positive
definite N X N matrix, and §, € RX.

Two extensions of this result have appeared recently in
the literature; see Kariya (1985) and Hwang (1985, cor.
3.2). In this section, we briefly review these extensions.

A common criticism of the Gauss-Markov theorem is
that it only considers linear estimators. This has little or
no justification. In contrast, Kariya’s (1985) recent version

of the Gauss—Markov theorem allows for nonlinear esti-
mators. The class of estimators he considered is

& ={B1B(y) = Cle)y, Cle)isa K x N
matrix-valued measurable function
of e such that C(e)X = Ix
for all e and E|f|? exists},

where e is the N-vector of ordinary least squares (OLS)
residuals, thatis, e = y — Xb, where b = (X'X) ' X'y
is the OLS estimator. For a more restricted class of error
distributions than that considered in the Gauss—Markov
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framework, this class includes the class of linear mean-
unbiased estimators. It contains both nonlinear and biased
estimators. A typical example of an estimator in ¢, is the
nonlinear feasible GLS estimator defined by C(e)
(X'27'X)"'X'3 "1, where the estimated covariance ma-
trix %, depends only on the OLS residuals e.

Kariya’s optimality result for the class ¢, is possible,
because he considers a smaller class of error distributions
than is considered in the Gauss—Markov theorem. Let
F% be the class of distributions satisfying (1) such that when
uy is transformed into iy = 3 2u, the distribution of
Uiy is orthogonally invariant; that is, &(Tiy) = £(iy), where
I is any N X N orthogonal matrix and £(-) denotes the
distribution of -. 5% is the class of elliptically symmetric N-
variate distributions with two moments finite (see Kelker
1970; King 1980). It contains the N-variate normal distri-
bution and N-variate exponential and ¢-distributions with
3 or more degrees of freedom (see Bennett 1961; Dunnett
and Sobel 1955; Lord 1954).

Kariya showed that if &(uy) € 5%, then the GLS esti-
mator is best in the class ¢, in the sense of mean squared
error. That is, for any § € ¢, and all ¢ € R,

E(C'f — By = E(c'f — c'Bp)? = o' (X'S1X)c.

)

As Kariya pointed out, this result has relevance whether
or not 3, is known: If 3, is known it yields a best estimator;
if 3, is unknown, it yields a sharp lower bound for the mean
squared error of estimators in ¢.

Although Kariya’s class ¢, is more general than the class
of linear mean-unbiased estimators, it is still quite restric-
tive. It excludes a wide variety of estimators in the liter-
ature that are mean- and median-unbiased in the present
context. Such estimators include maximum likelihood for
unknown 3, robust M-, L-, R-, minimum distance, spec-
tral, and adaptive estimators [see Andrews (1986) and the
discussion in Sec. 2 here]. In addition, Kariya’s result only
establishes optimality with respect to the squared error
loss function.

Hwang (1985, cor. 3.2) extended the Gauss—Markov

theorem in a direction different from that of Kariya. He -

generalized the criterion of optimality considerably from
mean squared error to risk under arbitrary symmet-
ric monotone loss function (defined subsequently). The
squared error loss function is of very special form and ex-
hibits the general qualitative features of unboundedness
and symmetry. In many circumstances, this loss function
is not very appropriate. Hence it is important to see if
the optimality of the GLS estimator is sensitive to this
particular choice of loss function.

When the errors have multivariate normal distribution,
it is known that the GLS estimator ¢'f is the best mean-
unbiased estimator of ¢’f, for any convex loss function
(see Lehmann 1983, th. 3.4.3, p. 189). This is a general-
ization of the standard uniformly minimum variance un-
biased (UMVU) result. It is quite useful, because it allows
for asymmetric loss functions of fairly flexible shape and
does not impose linearity of the estimators. Unfortunately,
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the convexity condition implies unboundedness of the loss
function, which may be inappropriate in many circum-
stances.

Hwang’s result, on the other hand, imposes symmetry
of the loss functions, but otherwise allows for quite general
shape, including boundedness. For estlmatxon of ¢'fy, he
considered nonnegative loss functions L(c’f — c'f,) that
are symmetric about 0 and nondecreasing in |c'f — ¢'f.
[In fact, Hwang’s (1985) results carry through unchanged
for loss functions L(f,, ¢'f — c¢'f,) that are symmetric
about 0 in their second argument and nondecreasing in
lc'B — c'By|, for each value of their first argument g, €
RX. This extension can be important, because the mag-
nitude of the loss attributable to overestimation or under-
estimation by a fixed amount often depends on the true
value of the parameter.]

Hwang (1985, th. 2.3) showed that his class of loss func-
tions is sufficiently general that given two estimators ¢ ‘B
and c'f,, the risk of ¢'B, is less than or equal to that of
c'p, for all symmetric monotone loss functions iff

lc’ ﬁl - ¢ ﬁol IC ﬁz ~ B, 4

where = denotes ‘“‘stochastically less than or equal to.”
Thus optimality under Hwang’s class of loss functions is a
strong result. The only clear deficiency is the restriction
to symmetric loss function.

To show the optimality of GLS under symmetric mon-
otone loss functions, Hwang assumed that the errors have
elliptically symmetric distributions and maintained the re-
striction to linear estimators that is used in the Gauss-
Markov theorem. In addition, he assumed that the esti-
mators are either mean- or median-unbiased. In the latter
case, the error distributions are not subject to any moment
restrictions; that is, £(uy) € F%. [The superscript 0 denotes
the assumed number of well-defined moments. For dis-
tributions in 5 that have infinite variances, 3, does not
satisfy (1), since no covariance matrix exists. In this case,
2 is just the characteristic matrix that achieves spherical
symmetry in the transformed coordinates.] In the former
case, the error distributions are assumed to have one mo-
ment well defined; that is, &(uy) € F). Thus Hwang’s error
assumptions are stronger than those of the Gauss—Markov
theorem with respect to the range of distributions with
finite variances but are more general in terms of moment
restrictions.

Under these assumptions, Hwang showed that the GLS
estimator ¢’f of ¢'f, is best in the class of linear mean- or
median-unbiased estimators for all symmetric montone loss
functions. Thus

|C'ﬁ - C’ﬁol |Cﬂ = ¢'pol
for all linear unbiased estimators ¢'f.

This is an interesting result, but it suffers greatly from
the arbitrary restriction to linear estimators. In addition,
the restriction to symmetric loss functions may be objec-
tionable.

©®)
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2. A STRONG OPTIMALITY RESULT FOR GLS

Each of the optimality results discussed previously is
less general than desirable because of the class of loss
functions considered and/or the class of estimators con-
sidered. For example, none of these results allows for
bounded asymmetric loss functions. Further, the results
of Kariya and Hwang arbitrarily restrict the class of esti-
mators beyond the restriction due to mean- or median-
unbiasedness (which itself may be subject to criticism).
The result we present here removes these restrictions.

For estimation of ¢'fy, given ¢ € RX, we consider loss
functions L(fy, ¢'f — c'f) that are subject only to
the condition that loss is nondecreasmg inc'p - c 'y for
c¢'f - ¢'By>0and nonincreasing in ¢’ — ¢‘f, for ¢'f —
¢'fy < 0, for each value of its first argument f, € RX.
Such loss functions are called monotone. They were consid-
ered by Lehmann (1959, p. 83) and Pfanzagl (1979).

Given any d;, d, > 0, there exists a monotone loss func-
tion such that the risk of an estimator ¢'f is Pr(—d, <
¢’B ~ ¢'By = d,). Thus an estimator that is optimal with
respect to the class of monotone loss functions has a dis-
tribution more concentrated about the estimand than any
other estimator considered. This is a strong optimality
property.

The argument of Hwang (1985, th. 2.3) can be used to
show that for two estimators ¢'f, and ¢ /)’2, the risk of
c'f, is less than or equal to that of ¢ '8, for all monotone
loss functions iff

~ N A

(B = B = (o~ B
A T A
and (¢'fy — c'Bo)- = (c'f, — ¢'Bo)-, (6)

where (-). and (-)_ denote the positive and negative parts
of -, that is, for A € R, (1), = max{4, 0} and (1)_ =
max{— 4, 0}. If an estimator f, satisfies (6) for all §, in a
designated class, we say that 3, is stochastically best in this
class of estimators. This is a stronger property than opti-
mality with respect to Hwang’s stochastic condition (4).

A particula}r monotone loss function that may be of
interest is the function L(By, s) = s%/(1 + is?) for 4 >
0, where s = ¢'f — ¢'f,. This loss function is bounded,
yet for small 4 it is close to the common squared error loss
function except when s? is large. Of course, the (un-

bounded) squared error loss function is also a monotone |

loss function.

The class of error distributions that we consider is slightly
less general than the class 5% of elliptically symmetric N-
variate distributions centered at the origin. In most ap-
plications of the linear regression model, the properties of
the errors are not specific to the sample size under con-
sideration. In particular, if an assumption such as elliptical
symmetry of the errors is reasonable for sample size n
equal to some N, then it is necessarily reasonable for sam-
ple size nequalto N — 1, N — 2, ..., 1, and usually
also is reasonable for sample sizes N + 1, N + 2, .. ..
This being the case, it is not unduly restrictive to consider
the subclass of error distributions of 5% given by

Sy = {&(uy) € 5% : &u,) € Flforn =1,2,.. .},
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where u, denotes the vector of errors (i), ug), - - . , Ug)'
when the sample size is n. That is, 9y contains all distri-
butions of the first N errors that can be generated by errors
(uqy> U@y - - - » Upy)' that have elliptically symmetric dis-
tributions for any sample size n = 1, 2, . . ..

Distributions in Sy are called consistent elliptically sym-
metric (CES) N-variate distributions, where the adjective
“consistent” refers to the fact that the distributions are
consistent with elliptical symmetry for any sample size n.
Since 8y is not restricted by moment conditions, it contains
distributions with infinite variances and nonexistent means.
In particular, Sy contains the N-variate normal, exponen-
tial, and t-distributions, including the N-variate Cauchy
distribution.

By theorem 10 of Kelker (1970), £(uy) € Sy iff the
distribution of 3,~2u, is a variance mixture of N iid mean
0 normal random variables (with nonnegative mixing den-
sity). Thus CES distributions can be constructed and char-
acterized quite simply.

In comparison with the error distributions considered
in the Gauss-Markov theorem, the class of CES distri-
butions restricts the range of distributions with finite vari-
ances considerably. On the other hand, this restriction
weakens the conditions of mean- and median-unbiased-
ness substantially, as we now shall see.

The class of estimators that we consider consists of all
medwan-unbiased estimators. By definition, an estimator

c'B of ¢'B, is median-unbiased if

Pr(c'h = c'ho) = 4 Prch=<ch)=h (1)

for each error, distribution £(uy) in Sy. If Pr(c’/? c'Bo)
= 0, as is usually the case, then this condltlon simplifies
to Pr(c'f > c'B) = Pr(c’f < c'Bo) =

In the present context, the class of median-unbiased
estimators is very large—much larger than the class of
mean- or median-unbiased estimators in the Gauss—Mar-
kov setup. The reason is that uy is symmetrically distrib-
uted about the 0 vector [i.e., &(uy) = £(—uy)] when it
has an elliptically symmetric distribution. Thus all esti-
mators £ that are odd functions of the errors have distri-
butions symmetric about f, and yield median-unbiased es-
timators ¢'f of ¢ 'Bo, for all ¢ € RX. As shown in Andrews
(1986), this result applies to the majority of non-Bayesian,
nonshrinkage estimators considered in the literature. It
holds for a wide class of nonlinear estimators that are de-
fined as solutions to maximization problems or systems of
equations, where initial estimators may be employed.
This includes iterated estimators. In particular, the follow-
ing estimators are covered: feasible GLS, quasi-maxi-
mum likelihood, Huber M-, bounded-influence M-, L-,
R-, minimum distance, spectral, band spectral, generalized
efficient M- (see Andrews 1983), adaptive, one-step
asymptotically efficient, and instrumental variable. Note
that these estimators also are mean-unbiased provided that
their expectation exists.

Our main result is the following theorem. Its proof makes
use of a result of Lehmann (1959, pp. 80-83) for best
median-unbiased estimation in monotone likelihood ratio
families of distributions that are indexed by a scalar pa-
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rameter. A different proof of our result can be obtained
by applying an extension of Lehmann’s result due to Pfan-
zagl (1979).

The term “unique” is used in the theorem to mean
unique almost everywhere with respect to Lebesgue mea-
sure.

Theorem 1. Consider the model y = Xf, + uy, where
Bo € RX, X is full rank, and £(uy) € Sy. (a) The GLS
estimator ¢’f} is the unique best median-unbiased estimator
of ¢'B, for any given ¢ € RX in the sense of uniformly
minimum risk for any monotone loss function. (b) Equiv-
alently, the GLS estimator ¢'§ is the unique stochastically
best median-unbiased estimator of ¢'f, for any given ¢ €
RK,

The proof is given in the Appendix.

Comment 1. The theorem also holds if we restrict at-
tention to errors with multivariate normal distributions.
The requirement of median-unbiasedness under the larger
class of CES distributions is not driving the optimality
result by eliminating estimators from consideration.

Comment 2. The GLS estimator has infinite risk for
some loss functions and some error distributions in §y.
The theorem still has import in these circumstances, how-
ever, because it implies that every other median-unbiased
estimator also has infinite risk.

Comment 3. In some cases, the ultimate object of in-
terest is not ¢'f, but a nonlinear function of ¢'f, say h(c'f),
because it has a particular interpretation or meaning in an
underlying theoretical model. For example, we may want
to estimate the logarithm of a regression parameter. If A(-)
is a monotone function, then given Theorem 1, it is not
hard to see that not only is 4(c’f) median-unbiased, but
it is the best median-unbiased estimator for any monotone
loss function (under the assumptions of the theorem). This
is a very convenient result, especially in light of the dif-
ficulties in obtaining best mean-unbiased estimators of
nonlipear functions of ¢’f;. Such estimators do not equal
h(c'p), in general, and may not even exist.

Comment 4. For bounded loss functions, the risk of the
GLS estimator is finite even when the errors have unde-
fined means or infinite variances, for example, as in the
N-variate Cauchy case. Thus we get the interesting result
_ that situations exist in which the least squares estimator
is strictly preferred over a wide variety of robust proce-
dures, even though the errors may have no moments finite.
This result is possible, because the errors are not inde-
pendent, even if 3, = I, unless uy has normal distribution.
The optimality result depends heavily on the elliptically
symmetric form of the underlying error distribution, as
comparisons with results in the robustness literature clearly
attest [compare Huber (1981)]. '

Comment 5. The class of estimators considered in Theo-
rem 1 is much more general with respect to nonlinearity
than is Kariya’s (1985) class ¢. It does not contain €,
however, because ¢, includes some median-biased esti-
mators. On the other hand, if the function C(e) that
defines Kariya’s estimators is an even function of the
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OLS residuals e, then f = C(e)y is median-unbiased for
&(uy) €:5%, since B — By is an odd function of the errors.
[Remember, C(e)X = I, by definition of C(e).] Given
the assumed symmetry of uy about the 0 vector, the even-
ness of C(e) arises quite naturally and most estimators
in ¢; that have been considered in the literature satisfy this
property.

Nevertheless, for an optimality result it is desirable to
avoid any restriction on the class of estimators, if possible.
If one wishes to include the median-biased estimators of
Kariya in an optimality result, one can proceed as follows:
Consider the estimators of theorem 1 of Andrews (1986)
where the assumption A1l is relaxed by requiring the de-
fining function r of the estimators to be even in only its
first argument rather than its first three arguments. Call
the collection of such estimators ¢,. The class ¢, contains
€. One can show that for f, € RX and £(uy) € Sy the
GLS estimator f is the best estimator of f, in the class ¢,
in the sense of uniformly minimum risk for any symmetric
convex loss function (see Andrews and Phillips 1985).
This result generalizes Kariya’s, because it considers much
wider classes of loss functions and estimators (although
it imposes slightly different error assumptions).

Comment 6. The result of Theorem 1 can be extended
to allow homogeneous or nonhomogeneous linear restric-
tions on f, and to allow less than full rank X matrix (pro-
vided that identifying linear side conditions on f, are spec-
ified). If f, is subject to inequality constraints, however, .
then Theorem 1 no longer holds, but a restricted GLS
estimator can be shown to possess similar strong optimality
properties, as the next section illustrates.

Comment 7. As stated, Theorem 1 does not cover the
standard multivariate regression model. It is not difficult,
however, to use the proof of Theorem 1 to establish an
analogous result for this model. Such a result is important,
since the multivariate regression model is of considerable
interest in econometrics because of its application to de-
mand systems, among others.

The multivariate regression model consists of T obser-
vations on g equations and can be written as

Y Z A() + U,
(Txg) (Txm@mxg (Txg)

where Y, Z, Ay, and U are matrices of dependent vari-
ables, regressors, unknown parameters, and errors, re-
spectively. The parameter matrix A, may contain zeros
and redundant elements and hence is assumed to satisfy
vec(Ayg) = SPy, where S is a gm X p known selection
matrix (with p < gm), f, is the vector of basic unknown
parameters, f, € R?, and vec(-) denotes the row-by-row
vectorization operator. Equivalently, this model can be
written asy = Xf, + u, wherey = vec(Y), X = (I, ®
Z)S, and u = vec(U). Write U = (uy, . . . , ur)'. Suppose
that the error vectors u,, . . . , ur are independent across
observations and each error vector u, has some elliptically
symmetric distribution with g X g full rank characteristic
matrix {2, and no probability mass at the origin. (The vec-
tors uy, . . . , ur need not be identically distributed.) Let
B denote the GLS estimator of f, given by Equation (2)
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with 3, = diag(Qy, . . . , Q7). The aforementioned class
of distributions of u does not equal 8,7, and hence Theo-
rem 1 does not apply. Nevertheless, it is straightforward
to alter the proof of Theorem 1 to show that the optimality
results (a) and (b) of Theorem 1 hold for the GLS esti-
mator f§ in this multivariate regression model.

Comment 8. Two examples of situations in which non-
normal elliptically symmetric error distributions may arise
are the following: First, consider the classical regression
model based on an agricultural experiment. Suppose that
the dependent variable is crop yield, and the independent
variables include fertilizer treatment. The error may be
composed of several factors, including differential land
quality. The seed for each plot is taken from the same
stock. The quality of this stock may be viewed as the
outcome of a random draw (with different points in time
or different geographic origins of the stock yielding dif-
ferent draws). Conditional on the stock of seed used, it
may be reasonable to assume that the errors have a normal
distribution. Different stocks of seed may interact differ-
ently with the environment to yield different conditional
variances of the errors. To make inferences that are valid
for the population of seed stocks, then, one needs to treat
the errors as a variance mixture of normal distributions.

Second, consider a regression model with economic vari-
ables where the observations correspond to different firms
in an industry observed at the same point in time. Suppose
that the errors are identically distributed across firms and
the state of the macroeconomy affects the size of the error
variance for each firm. It may be reasonable to assume
that the errors have a normal distribution conditional on
the state of the macroeconomy. If so, then one needs to
treat the errors as a variance mixture of normals if one
wishes to make inferences that are valid for different points
in the business cycle.

These examples suggest that there are a number of sit-
uations in which it may be reasonable to assume that the
errors have nonnormal elliptically symmetric distributions.
Of course, there are many additional situations for which
the assumption of normality is appropriate.

Comment 9. As a final remark, we mention that the
restriction to unbiased estimators (whether mean- or me-
dian-unbiased) is more difficult to justify with asymmetric
loss functions than with symmetric loss functions [e.g., see
Jones and Rothenberg (1981) and Zellner (1986)].

3. OPTIMAL ESTIMATION WITH A RESTRICTED
PARAMETER SPACE

In this section we discuss optimal estimation of ¢’, when
fo is subject to certain nonlinear restrictions. In particular,
we consider the case in which ¢'f, is known to lie in an
interval (possibly infinite) that does not depend on f,, and
certain linear combinations of £, denoted by ¢}f,, . . .,
ckfo, are restricted in any fashion not involving ¢'f,. A
simple example is when we wish to estimate some element
of ff, subject to the sole constraint that this element is
positive or lies in [0, 1].
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Suppose that the only restriction on f, is that 'S, lies
in a nondegenerate interval strictly contained in R. The
best estimator of ¢’'ff, from a subclass of mean-unbiased
estimators is the GLS estimator that ignores the con-
straints, according to the Gauss—-Markov theorem, Kari-
ya’s (1985) results, or various generalized UMVU results.
The reason is that any attempt to improve the GLS esti-
mator to take account of the constraints results in a mean-
biased estimator. In this context, the mean-unbiasedness
condition is overly restrictive.

On the other hand, estimators J of ¢'f, that are median-
unbiased when no constraints are present can be adjusted
quite naturally to take advantage of the restriction that
¢'Py lies in an interval, or any subset of R, without losing

‘their property of median-unbiasedness. Whenever § lies

outside the parameter space of ¢’f,, set the adjusted esti-
mator () equal to the closest value in the closure of the
parameter space; otherwise leave the estimator as is. The
resultant estimator ($); is median-unbiased for the re-
stricted parameter space and lies in its closure. Thus the
condition of median-unbiasedness is a relatively attractive
condition for restricting the class of estimators when the
parameter space of ¢'f} is restricted.

We now define the linear combinations (¢;f, - . - . ckfo)
of ff, that may be subject to additional restrictions beyond
that on ¢'f,. Let X = 312X, Since X is full rank K, ¢’
is proportional to some linear combination of the rows of
X. Say, ¢’ « dj X, where d, is an orthonormal N-vector.
Take any K — 1 orthonormal N-vectors d,, . . . , dg that
are orthogonal to d; and are such that (d;, . . . , dx) span
the column space of X. Then, the vectors q(j=2,...,
K) are givenbyc, = d;/ X forj = 2,..., K. As asimple
example, suppose that 3, = Iy, ¢/ = (0,...,0, 1), so
¢'fy = fox, and the Kth column of X is orthogonal to its
other columns. In this case, (fy, . . . , fox-1) can be re-
stricted in any way (not involving fyx) without affecting
the optimality of the best median-unbiased estimator of
Pox-

The main result of this section gives a strong optimality

. property for the restricted GLS estimator (¢'f)x:

Theorem 2. Consider the model y = Xf, + uy, when
£(un) € Sy, X has full rank, ¢’f, lies in a known (possibly
infinite) interval I, that does not depend on f,, and the
linear combinations (¢;f, . . . , cxfo) of B, are restricted
in any fashion not involving ¢’f,. Then, the restricted GLS
estimator (c'f})y is the unique best median-unbiased esti-
mator of ¢’f, in the sense of uniformly minimum risk for
any monotone loss function. Equivalently, it is the unique
stochastically best median-unbiased estimator of ¢’ for
given ¢ € RX.

The proof of this result makes use of the theorem of
Pfanzagl (1979) (see the Appendix).

Comment. When the restrictions on f, are such that the

_interval containing c’f, depends on f,, a uniformly best

median-unbiased estimator of ¢'f, does not exist. We still
can obtain a lower bound on the risk of a median-unbiased
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estimator of ¢'fl,, however, by using the method of the
proof of Theorem 2. In particular, if we suppose that
(c3By, - - . 5 cxfy) are known, then the interval containing
¢'By is known [call it I.(fy)], and the stochastically best
median-unbiased estimator of ¢'f, is the restricted GLS
“estimator”” (c'f)g, restricted to the closure of L(f,). The
risk of (c'f)x as a function of f, gives the desired lower
bound.

4. OPTIMAL ESTIMATION OF o2

In this section we specialize to the case of linear regres-
sion with iid normal errors with mean 0 and variance a2
We consider estimation of ¢ and various monotone trans-
formations of ¢2, such as ¢ and do? for some constant
d#0.

First, we discuss the optimality properties of the most
commonly used estimators, namely, s>, s, and ds? for ¢?,
o, and dg*, respectively, where s> = (1/(N — K))(y —
XB)'(y — XB) = (1/(N — K))SSR and f is the least
squares estimator. The use of s* to estimate o2 is justified
in this context by the fact that it is the best mean-unbiased
estimator in the sense of uniformly minimum risk for any
convex loss function (see Lehmann 1983, th. 3.4.1, p. 185).
This optimality property carries over to the estimation of
da? by ds® but does not hold for the standard error of
estimate s of o, since s is biased. If ¢? is known to lie in
a nondegenerate interval strictly contained in R*, then s?
is still the best mean-unbiased estimator of ¢ for convex
loss, even though it ignores the restrictions on a2,

For squared error loss, the risk of s? is uniformly domi-
nated by that of the mean-biased estimator §2 = (1/(N —
K + 2))SSR (e.g., see Rao 1973, p. 316). This result is
not of great concern, however, since the symmetric squared
error loss function is usually quite inappropriate for esti-
mation of ¢2. For example, it implies that the maximum
loss from underestimation is bounded, whereas that from
overestimation is unbounded. Furthermore, by appropri-
ate choice of asymmetric squared error loss function, s?
dominates §2 and any other scalar multiple of SSR.

We now consider an alternative to s* and A(s?) for es-
timating ¢? and A(c?), where A(-) is any monotone func-
tion. This alternative has several desirable properties. Sup-
pose that ¢? is known to lie in an interval with endpoints
a, b where 0 = a < b < «. Define the estimator 72 by

2 =05 when SSR/my_x = b
SSR/my_x when SSR/my_x € [a, b]

when SSR/my_x < a,

®)

where my_g is the median of a chi-squared random vari-
able with N — K degrees of freedom.

The estimator t2 has the following properties: (i) 72 is
the best median-unbiased estimator of 72 for any monotone
loss function. Equivalently, it is the stochastically best me-
dian-unbiased estimator of g2. In contrast to the optimality
results for s2, this result includes bounded asymmetric loss
functions. (ii) The optimality result of (i) holds even when

=a
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fo is subject to restrictions, provided that the parameter
space of f§, has a nonempty interior. (iii) 72 takes advantage
of the restrictions on ¢2. This is a distinct advantage of ¢*
over the best mean-unbiased estimator s (iv) The esti-
mator h(z%) of h(c?) inherits the same optimality prop-
erties as 72, provided that A(-) is monotone on [a, b]. In
particular, 7 and dz? are best median-unbiased estimators
of o and da?, respectively, for any monotone loss function.
This result not only guarantees the existence of a best
median-unbiased estimator for many estimands h(g?) of
interest, it also provides very simple expressions for such
estimators. Best mean-unbiased estimators of #(¢?) do not
exist for some functions 4(-), and even when they do exist,
they are more difficult to determine than the best median-
unbiased estimator.

Results (i) and (ii) follow by showing that the present
problem is covered by Pfanzagl’s (1979) theorem and that
the estimator 7? is the optimal estimator defined in his
proof. Result (iv) follows from (i) and (ii) using the fact
that both A(-) and the loss functions under consideration
are monotone.

Since it is natural to compare 72 and s?, we might ask:
In what ways, and to what extent, do 2 and s? differ?
To answer the first part of this question, we note that
my_x < N — K, because my_x and N — K are the me-
dian and mean of a chi-squared random variable, respec-
tively. Hence s* < b iff s> < 72 That is, 72 is larger than
5% unless s takes a value larger than any value in the pa-
rameter space of g2

The extent to which 72 and s? differ depends on two
separate factors: (i) whether a is positive and/or b is finite,
and if so, on the proximity of the true parameter ¢2 to one
or other of the endpoints a or b, and (ii) the size of N —
K. When a > 0 and/or b < =, 7% is a censored or doubly
censored version of SSR/m_x. The closer is the true value
0 to a or b, the greater is the extent of the censoring.

Ifa = 0and b = o, the only difference between % and
s% is in the multiplicative constants 1/my_g and 1/(N —
K). AsN — K— o, (N — K)/my_x = 1%/s* —> 1, as
expected. For degrees of freedom N — K equal to 10, 20,
and 30, my_gx equals 9.342, 19.34, and 29.34, and 7° ex-
ceeds s* by 7.1%, 3.6%, and 2.4%, respectively. [See
Thompson (1941) and Pearson and Hartley (1958, p. 130)
for tables giving the medians of chi-squared random vari-
ables with degrees of freedom less than or equal to 100.]
7% is equal to s? with its degrees of freedom reduced by
.66 when N — K is in [8, 50) and by .67 when N — K is
in [50, 100]. More sizable differences between 72 and s2
occur only if the parameter space is restricted.

APPENDIX: PROOFS OF THEOREMS 1 AND 2

Proof of Theorem 1. The distribution of 372y, can be
decomposed nto a probability mass at the origin and an abso-
lutely continuous component. Since the GLS estimator equals f,
if uy = 0, we can assume that uy has no mass at the origin,
without loss of generality. Then, 22y has Lebesgue density
J @rw) =2 exp(— |lunP/2w)dG(w), where G(w) is a distribution
on (0, ») and ||| denotes the Euclidean norm on R". Let W
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denote the scalar mixing random variable with distribution G(-).
Conditional on W = w, the distribution of uy is multivariate
normal with mean 0 and covariance w3..

Condition on W = w. Let X = (1/Vw)2-12X. We can con-
struct an N X N orthogonal matrix D such that the first K rows
of D span the column space of X and the first row of DX 1s
proportional to ¢’. That is, diX = yc' for the constant y =
1d; XX df|lc|, where d, denotes the first row of D written as
a column. Transform the model by premultiplication by
(1/(yVw)) D312 to get y* = X*B, + uj, where y*= (1/
(yVw)) DLy, X* = (1/(yVw)) DL ?X, and u} = (1/
(yVw)) D32y ~ N(O, (1/9?)Iy). Define 7 = (ns, . . . , 1)’
= X*B,. By the choice of D, we have (yx.1, . . ., 7y) = (0,
...,0)andy, = e{DXPBy/y = c'By, where e, = (1,0, ... ,0)".
Thus the estimand is #;.

Consider estimation of », when the single observation y{ ~
N(m, 1/92) 15 observed and 1/y? is assumed known, where y{ is
the first element of y* = (yf, . . ., ¥¥)'. The family of densities
of y; for 7, € R forms a monotone likelihood ratio family, and
the likelihood ratios are a nondecreasing function of the contin-
uous random variable y;. Hence, by the confidence-bound re-
sults of Lehmann (1959, cor. 3, p. 80 and p. 83) for scalar pa-
rameters, the unique uniformly minimum risk median-unbiased
estumator of #, (based on observing y; only) is y¥, for any mon-
otone loss function, over the class of nonrandomized and ran-
domized estimators. [See Lehmann (1959, p. 81) for construction
of the randomized confidence bounds needed to compare the
risk of y§ with the risks of randomized estimators.]

Now, any unconditionally median-unbiased estimator 8y, X)
of ¢'f, also is median-unbiased conditional on W = w, because
the conditional distribution of uy is itself a CES distribution. We
can write (y, X) as 6(y*, X*). For purposes of comparing the
risk of (y*, X*) with that of y7, suppose that the vector (7,,

., ) is known. The independence of y{ and (y5, . . . , ¥%),
plus the knowledge of X* and the distribution of (y5, ...,
y3), mplies that 6(y *, X*) has the same conditional distribution
as some randomized estimator of 7, based on the single obser-
" vation yi. Lehmann’s result then implies that conditional on W
= w, the risk of y¥ 1s less than or equal to that of 6(y*, X*).,
Since the optimal estimator y; does not depend on y, the as-
sumption of known y is innocuous. The optimality of y; holds
for all w, so integrating out w yields the unconditional optimality
of y¥. This gives the desired result, because y{ 1s the GLS es-
timator of ¢’fy: Let § = (1/Vw) 312y, theny{ = (1/y)d; y =
(1)d; X(X'X) X'y = (X' X)X’y =B

This proof could be shortened somewhat by applying Pfan-
zagl’s (1979) theorem, instead of Lehmann’s result. This is not
done, however, because the proof given here is needed in the
proof of Theorem 2 to attain the stated generality of Theorem
2. In addition, the proof of Pfanzagl’s result 1s more complicated
than that of Lehmann, because Pfanzagl considered cases in
which the best estimator is randomized. Thus the reference to
the simpler result of Lehmann may be helpful to the reader.

The extension of Theorem 1 to include non-CES distributions
[as considered by Kanya (1985) and Hwang (1985)] is proble-
matic using the method of proof given here. Almost all elliptically
symmetric distributions can be written as variance mixtures of
multivariate normal distributions (see Chu 1973). For non-CES
distributions, however, the mixing “densities”” are somewhere
negative. The risk inequalities that hold for given varance values
are reversed for negative values of the mixing density and hence
cannot be integrated up over the range of values of the mixing
density. Fortunately, as the discussion of Section 2 indicates, the
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restriction to CES distributions is not serious. The elliptically
symmetric distributions of greatest relevance are CES distribu-
tions.

Proof of Theorem 2. Proceed as in the proof of Theorem 1
to transform the model such that 7, is the estimand. The restricted
estimators (y{) is median-unbiased and equals (c'f) by argu-
ments given previously.

Condition on W = w. The linear combinations (¢;fo, . - . ,
cxfo) equal YWw(, - . ., nx). Thus the restrictions on (c;f,,

., ¢kf}) do not affect the conditional distribution of y; or the
parameter space I, of 7,. Hence we can mimic the proof of Theo-
rem 1 and assume that w and (7, . . . , 7¢) are known for the
purposes of comparing the risk of an arbitrary (conditionally and
unconditionally) median-unbiased estimator 5(y *, X*) with that
of (y¥)z. 6(¥*, X*) has distribution equal to that of some ran-
domuzed estimator of 7, for the case in which only y{ is observed.
Thus 1t suffices to show that conditional on W = w, (y{)ris the
unique best median-unbiased estimator of ¢’fi, based on the single
observation y{ ~ N(#;, 1/9%). This follows by Pfanzagl’s (1979)
theorem and the proof is complete.

Pfanzagl’s (1979) theorem allows for nuisance parameters and
hence could be applied in the proof of Theorem 2 by treating
(2> - - ., nx) as nuisance parameters. This approach limits the
restrictions on (1, . . . , 5x), however, because 1t requires the
assumption that the restricted parameter space of (1, - . . , k)
contains a nonempty interior.

[Received September 1985 Revised October 1986.]
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