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An Everywhere Convergent Series Representation of
the Distribution of Hotelling’s Generalized 73

P. C B. PHILLIPS
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Communicated by P R Krishnaiah

A new scries representation of the exact distribution of Hotelling’s generalized T3
statistic 15 obtained Unlike earlier work, the series representation given here 1s
cverywhere convergent Explicit formulae are given for both the null and the non-
central distributions Earlier results by A G Constantine (Ann Math Staust 37
(1966). 215-225) which are convergent on the interval [0, 1), are also derived quite
simply from our formulae The paper therefore provides a solution to the long
standing problem of the caact distribution of the T3 statistic in the general case

987 Academic Press, Inc

1. INTRODUCTION

Let S, (mxm) and S, {(mxm) have independent Wishart distributions
with n;, n, degrees of freedom, respectively, and the same population
covariance matrix 2 S, may be noncentral and we denote the noncen-
trality matnix by € The generalized 77 statistic [17 1s then defined by

T=T2/n,=tr(S, S 1)

Since 1ts introduction by Lawley [12] and later by Hotellng [8, 97 in con-
nection with wartime problems of multivariate quality control, the dis-
tribution of this statistic has attracted a good deal of theoretical interest
among statisticians. A fundamental contribution was made by Constan-
une [1], who found a zonal polynomial series representation of the dis-
tribution of T However, Constantne’s series converge only for 0 < T < 1
In subscquent research, Davis [2] discovered a linear homogeneous dif-
ferential equation that is satisfied by the density of T in the null case
(2=0) This approach has facilitated the numerical computation of per-
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centage points of the null distribution, and m a series of articles [3, 4, 5]
Davis has provided tabulations of the upper 5 and 1% points of the dis-
tribution of 7 for dimensions m = 3 through 10. Pillai and Young [197] and
Pillai, Young, and Sudjana [207] have also worked on the problem and
found some specialized results for the case where m <4 and n, 15 small
Additional contributions have been made by Krishnaiah and Chang [ 10]
and Krishnaiah, Chang, and Chattopadhyay [ 10]. These authors obtained
exact expressions for the density of 7 1n terms of linear combinations of
inverse Laplace transforms of the products of certain double integrals, but
no explicit reductions or series representations of these expressions were
provided Readers are referred to the articles by Pillai [17,18] for a
detailed review of the field

When m =2 Hotelling [9] denived a very simple formula for the null dis-
tribution of 7" This formula may be written as a Gaussian hypergeometric
series and 1s everywhere convergent in 7 [1] ' Hotelling’s formula has been
the source of conjectures by Constantine [ 1], Pilla1 [17], and others con-
cerning possible general forms of the density However, until the present,
no progress has been made on the analytic derivation of the exact density
in the general case even for the null distribution of 7.

The purpose of the present paper 1s to offer a fresh approach to the
problem of the distribution of 7. We shall give general formulae for the
exact density (pdf) of T in both the null and the noncentral case. Unlike
carher work, the series representations we obtain are everywhere con-
vergent in 7" Our results, therefore, provide a solution to the long standing
problem of the distribution of 7 1n the general case

2. THE NULL DISTRIBUTION OF T

Since T 1s invariant under the transformations S, -2 '*§,2 '~ and
S, X728, 5712 we set the common population covariance matrix
2'=1 Now let S, =XX" where the mxn, matrix X1s N, (M, I,,) We
write T=1tr(S, S, ")=x"([,®S, ') x where v =vec(X) and vec( ) denotes
vectorization by columns. Conditional on S,, 7 1s distributed as a
quadratic form 1in normal variates. In the nuli case M =0, Q=MM'/2=0
and wc have the density

T'mm/zf 1 |Sz|n1/2
(2r)"™"2(mn,)2)

pdf(T'|S,) = oFo —(1/2)U® S,), T), (1)

"'Thcre appears to be a minor crror in the expression given by Constantine [1] and later by
Dawvis [2] The correct formula has an additional factor of § Phillips [15] provides a new
derivation of this formula
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where

o o(=(12)U® S,), T)=JV etr(—(1/2) T(U® S,) hh'(dh) (2)

Here V' 1s the Stiefel manifold (he R™ h'h=1) and (dh) represents the
normalized invariant measure on V. Using (1) and (2) we deduce the
unconditional density of T as follows:

T'mm/fl 1
(T)= _
pd ( ) 2”1(”| + ng)ur(n,ml/z) F,]’(”Z/Z)JSJ>() JV

xotr(—(1/2) Syl + TQ)) |5+ 7~ 12 (dh) S,

_ I'.((n,+n5)/2) /2l
© T(mn,2) T, (n,/2)

[ TQIm @), 3

where

n

0=Y hh (4)

1=1

and 4, (1=1,..n,) are the m-vectors taken from the partiion of
h'=(h\, hy, , h,)nto n, component vectors.

Formula (3) 1s an extremely simple representation of the exact null dis-
tribution of 7' It may be used to derive 1n a straightforward way the series
discovered by Constantine [1] in 1966 First, we give the following useful

integral

LrmMa 2 1
J| CLtan =1 Catln) 5)
Proof We note that
[ €1, ©2) ') dh) = L, @ Z)/Call)
s 2.C2) o

(mny/2),
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But the left side is also equal to:

| @z )N = (1r(ZQ)) ()

(Z)
—ZA T J'C )dh) (7)

Equating coefficients of C,(Z) in (6) and (7) we obtain the stated result. ||

To obtain Constantine’s [1] senies from (3) we now simply expand
|+ TQ| " *™V2 n its usual zonal polynomial series (which 1s valid for
0< T < 1) and ntegrate over V' by using (5) This gives

Fm((n] +n" /2 YWI)II L (— T)k
Iimn, [2) T, (ny/2) 7, K'(mn,/2),

«x (") (%) e ()

which 1s convergent for 0< T < 1

Formula {3) may also be used to obtain an alternative serics represen-
tation of the density which 1s everywhere convergent over T>0 Given
heV we introduce an mn, x (imn, — 1) matrix K for which H=[K, A] 1s
orthogonal We partition X conformably with # as K'=[K}, K5, . K, ],

where the component matrices x, are m x (mn, — 1) Define P=3%" K K|
Since K,K,+hh,=1, (1=1,.., n;) we deduce that

pdi(T) =

e (9)
and
CUPN < Cll) (10)
We now write
[HTOl = (L T) = (T (L TY) P
and thus
pdf(T) = Io((ny +n2)/2) T ]

[(mn2) T, (n z/~)(1+n,T)”'("w+n:>/2
s A
X T/Hnm) Z(” +”’> | cupan

The series 18 everywhere convergent in 7 >0 by majorization in view of
(10).
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J C ( )(.._.) %/ ( ) 2 a r(”l/ ) } C,\(1 )5 (1“)
" N 1 an 2 ; ( /2) A 2 T \ A

where the a,  are Constantine’s coefficients gwen n [ 1]

Proof We use the binomial expansion [17,

C(P)=n{ C,(I—(1/n,) Q)

A \

(= 1/m) $a, CAQYCUL,) ) Cul,)
0 T /

=

and the result follows by integration from (5)

We deduce the following explicit series representation of the density of 7,

r)n((nl +n2)/2) T””l/: !
Imn, j2) T, (na/2)(1 4, T 7202

(T/ULHIT))AZ<”]+HZ>
x%/ k (-1)’rllf"

z Wzalxr(nl/z)z} c.(1) (13)

pdf(T) =

X
.
I
<

=0

which, Iike (11), 1s everywhere convergent in 7> 0

3 THE NONCENTRAL DISTRIBUTION OF T’

Since T=tr(XX"S, ') we start with the jomnt density of (X, S,),

[2mun s Ry 20 (g /2y Vetr{ — (120X — MY (X — M)’}
xetr{ —(1/2) S,}|S,|m m=12
= [t m2gmn 2 (g012)] etr(— Q) etr{ —(1/2) XX etr(— XM')
xetr{ —(1/2)S,} S, m- 12 (14)

T 1s nvanant under the simultaneous transformations X — HXJ,
S, —> HS,H where He O(m) and Je O(n,). Hence, making these sub-
stitutions n (14) and ntegrating over the (normalized) orthogonal groups
we have
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[2mrtm)l 2gmm 20 (n,/2)]7 tetr(— Q) etr( —(1/2) XX}

oy [ 11 | . { (m w12
x o F) T’XXX’Q etr{ —(1/2)S,}]S,|"™ B (15)

We now transform X — S, Y2X= Y n (15) giving

[2ment 2y 2 (n,/2)] etr(—Q)etr| —(1/2) S, YY"}

ny 1
X(‘F(lml<71~§S2 YY', Q) etrl——Sz}{S |()1|+u —m—1)/2

We write y=vec(Y)=hT"?, where heV and then T=yy=
XUI® S, ")x=tr(XX'S, ') The measure transforms according to

dy=15T""2 " dT(dh), where (dh) represents the invariant measurc on V
We deduce that

pdf( T) — [2111(n| o) anm/zl ’” }’12/2 etr Q) T’””l/z 1
! 1
% etr — || U+ TQ) S5,
fl Lz/.() { (2) ( Q) )

X ]F(lm) <_;_12__ E 57 Q7 Q> |S2|(nl+ng— e 1)2 (l'Sz(dh)

= [2 ) 22 P 12)]

xetr(—£) T"*? ff ctr{ <>1+TQ }
Sy>0

T
x()”l””(%»’z“S:Q» Q)‘SQWIMZ m bR dS,(dh). (16)

where Q s given by (4)
Performing the integration over S, >0 in (16) we obtain

rm((”] +}’l2)//2)etr(_9) Tuv”j i

pdf(T) = L(mn./2)),(n5/2)

() }’l1+f’lv n] 1
XJV,F, < =5 TU+TQ) Q.2

x |1+ TQ| =" """ (dh) (17)

which generalizes (3) to the noncentral case.
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Constantine’s [1] series for the noncentral case may be deduced quite
simply from (17) We use the casily established expansion

[-Z] “ F"(a,y+p:B, —Z(I-2Z)) '= Y 3 ; - (18)

where B>0, |Z]| <1, y> —1, p=(m+1)/2 and L;( ) denotes Constan-
tine’s generalized Laguerre polynomial of matnx argument Equation (18)
was given by Murhead in [13, Ex. 720, p 290], although his result as
stated contains an error his exponent for |/—Z| should read “—a” as
given above

Nowlet Z= —TQfor0<T<1.B=Q, a=(n,+n,)/2, and y+ p=n,/2
We find from (17) and (18) the series

pdf(T) = {fm((ﬂl +my)/2)/T(mn 12) Tfna/2) } etr(—Q) T2

I /
oy Sy (M) e/ (G) )] conan
A=0 kN [N

which 15 vahd for 0 < T <1 Using Lemma 2.1 we have immediately

pdf(T)= ! I ((n, + n5)/2)/T(mn,/2) I',,(n5/2)} etr(—Q) T !

¢ (—7) ny~—ny L .
X/\Z“/\,l(’n”!/z);\;( A >‘ L;\(Q)? 7—(n1_m_1)/2 (19)

s

This 1s the series given by Constantine in [ 1] for the noncentral case when
0< Tl

To obtain an everywhere convergent series we proceed as follows Using
(9) we write I+ TQ = (14+n,T)[— TP and (16) becomes

[2111 nytony mnl/Z 1;1(”2/2)] 1 etr(fQ) T/mn 2 1

JJ etr!f — Y1 +n,T)S,) etr |3TS, P,Orw”<”2 25,0, Q>
S>>0

% |S2|(111+uz—m— 1)/2 dSz(@)

This expression 1s invariant under the simultaneous transformations
(Q—- L'QL, P— L'PL) wherc Le O(m) Thus, transforming S, —» LS, L
and mtegrating over the normalized orthogonal group we obtam
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pdf(T) = [2""* "2 F(mn,/2) I,,(n5/2)] " etr(—Q) T2 !
J J etrl_% l+n]T)Sg)iS?_|(”l+’h mo )72
V2 vS>0

(772)"+'C,(Q)
Z Z/\’l' (n,/2), C:(1,)

Ad=0 K,/
057 Cy(S,) CLA(P, 2,
dh 20
¢§; C¢(1,,,) Sa(dh) (20)

(4 m3)/2) etr( = Q) /2= 1
 I(mn,)2)T,(ny/2) (1 +n, Tyt 7

& T/ 4 THEH!

A0 k’['
C,(Q iy <n1+n2>
A S 057 | —=—
LG, e ,,,)E) 2 ),
x| Cyp o)) (21)

In the above formula Cj“ 1s an invanant polynomial in the elements of
is  two matr1x arguments. These polynomials and the constants
Oy =Cy(1,,1,)/Cyl,) were introduced by Davis [6,7] In (20) and
(21), ¢ 1s a pdrtlthH of the integer / = k + [ into <m parts x 18 a partition
of k into <m parts and 4 1s a partition of / into <m parts The notation
der A which 1s defined in [6]. relates the three different partitions 1n the
summation

Wnting P=n,[, —Q as before we now use the binomial expansion
given by Dawvis [6. Eq (6 6)].

Cyr(mI—0Q,0)
=ny Cy(I—(1/n)Q, Q)

=HT{Z Y by Ce(—(1/ny)Q, Q)/C(I}C«»(/)

1 =0 tep 2

=H’F{Z Y bsiA(—1/n)T027 C(Q)/C )} Gy, (22)

1=0prep 7

In this summation p and 1 are partitions of the integers r and r + [, respec-
tively, into <m parts and the b%% ¢ are constants introduced in [6].

Using (22) and Lemma 2.1 i (21) we deduce the following series
representation of the density of 7,
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1+ 1, mn, s 2l
- MM (=) r (2 (22 ,
pdf( T) <rm < 7 ) etr( ’/ < 2 > m < 2 >> (1 +n, T)m(ln +m2)/2

T/(1+n, 7)) CiL)
kz} ﬂ1/2) A1)

L0
: nl ’ Kedflos
{Z DIV (7)}@,,(1,,,) (23)

m”l/z r+lprep 2

When ©Q = 0 the series in / terminates at /=0 and (23) reduces to the null
density given 1n (13)

Like (13), the series (23) 1s everywhere convergent in 7> 0 To see thls 1t
1s simplest to work with the equivalent series (21) Noting that P<n, [
find that (21) 1s majorized by the series

I{n, +n5)/2) etr(— Q) T2l
Pmn, j2) I (ny/2)  (L4n, Tyt 2

& T/ +m T)HST/(1+n,T))

@

; ( H +n2 [ R/
X Z ('11/2)) C/(Im) (/;; ) 9'/ < 2 )1/) JI Cr/) (Im’ Q)(@) (24)

o

m

Using
Ck/(l)n’ Q)_ {BP /C¢( )n /C } C

[7. Eq [52)] and Lemma 2 1 we write (24) as follows
I ((n,+n,)/2)etr(—£) rm/z—1
1‘(1711112) Iﬂ,,,(nl/z) (] +1, T)m(nl 2
(n, T/(1 +n, THT/(1 +n,T))
VIR K (mn,/2),
C/(Q) 4 <}’l1 +}’12>
6&,/. 2 C 1
XI\Z}C/(Im),/,eZ,\ /l( ¢ ) 2 ¢ 4/)( m)
e[r( — Q) Tm)zl/Z 1
TmnyJ2) Tlmaf2) (L4, Ty 720
(n, T/(1 +n, T)) (T/(1 + n, T))
k=0 ki'mn,/2),

()h,A 2 etr(_SHS‘(nm-nz m l)/ZC (S) dS
,1C/(Im)¢ez,<:;( ¢ ) J1$‘>0 ¢
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B etr(—Q) Trmi2=t
F(mn, [2) T (no/2) (140, Ty 0202

i n T/(1+n, T)(T/(1 +n,T))
Z k!Ymn,/2),
C,(Q
% C/((I ))J etr(—S)[ S| 20 (S) C(S)dS
K/ Ay )YS>0
_ etr(—Q) v ! Z T/t +n,T)
 T(mn,/2) T(ny/2) (L4 n, T)" 22 Imn,/2)
/ /
C.(Q .
=Y C*(([))L Oetrg—l(l+an)S}\S|(“I’* 2o DECASYdS

I, ((n,+ny)/2)etr(—€2) iz
Hmn J2) I,(ny/2)

}’l+f’l7
Xzﬂmn,/z 2Cue ( 2 )

Since (mn,/2),=(n,/2), for all m the final series above 1s majorized by

rm((”l +n2)/2) etr(_Q) Tmnl/Zfl
'nnl/z ” ’17/2)
/

T n,+n I{n,
(7). (3) e

I, ((n, +ny)/2) e tr(— Q) R ”1‘*"’17 1y
= s b F ; TQ
(mn1/2)r,n(nz/2) : 1< 2 2

which 1s convergent for all 7> 0 It follows that the series representation of
the density given by (23) 1s everywhere convergent in 7> 0.

4 CONCLUSION

This paper provides a mathematical solution to the long standing
analytic problem of the exact distribution of Hotelling’s generalized 773
staustic The formulae presented here are primarily useful for analytic pur-
poses 1n that they extend and unify existing distributional results.

The T7% statistic 1s a special case of the Wald statistic for testing general
linear restrictions on the coefficients in the multivanate linear model The
cxact distribution of the latter statistic has recently been obtained by the
author m [16] using operator methods Methods similar to those of [16]
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may also be used to treat the distmibution of the 77 statistic Such an
approach was adopted 1n the first version of this paper [14] and was the
oniginal stimulus for the present investigation
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