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TIME SERIES REGRESSION WITH A UNIT ROOT

By P. C. B. PuiLLips!

This paper studies the random walk, in a general time series setting that allows for
weakly dependent and heterogeneously distributed innovations It is shown that simple
least squares regression consistently estimates a unit root under very general conditions 1n
spite of the presence of autocorrelated errors. The limiting distribution of the standardized
estimator and the associated regression ¢ statistic are found using functional central limit
theory New tests of the random walk hypothesis are developed which permit a wide class
of dependent and heterogeneous innovation sequences. A new limiting distribution theory
1s constructed based on the concept of continuous data recording. This theory, together
with an asymptotic expansion that is developed in the paper for the unit root case, explain
many of the interesting experimental results recently reported in Evans and Savin (1981,
1984).
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1. INTRODUCTION

AUTOREGRESSIVE TIME SERIES With a unit root have been the subject of much
recent attention in the econometrics literature. In part, this is because the unit
root hypothesis is of considerable interest in applications, not only with data
from financial and commodity markets where it has a long history but also with
aggregate time series. The study by Hall (1978) has been particularly influential
with regard to the latter, advancing theortical support for the random walk
hypothesis for consumption expenditure and providing further empirical
evidence. Moreover, the research program on vector autoregressive (VAR) model-
ing of aggregate time series (see Doan et al. (1984) and the references therein)
has actually responded to this work by incorporating the random walk hypothesis
asa Bayesian priorin the VAR specification. This approach has helped to attenuate
the dimensionality problem of VAR modeling and seems to lead to decided
improvements in forecasting performance (Litterman (1984)).

At the theoretical level there has also been much recent research. This has
concentrated on the distribution theory that is necessary to develop tests of the
random walk hypothesis under the null and the analysis of the power of various
tests under interesting alternatives. Investigations by Dickey (1976), Dickey and
Fuller (1979, 1981), Fuller (1976), and Evans and Savin (1981, 1984) have been
at the forefront of this research. Related work on regression residuals has been
done by Sargan and Bhargava (1983) and by Bhargava (1986). Recently, attention
has also been given to more general ARIMA models by Solo (1984) and by Said
and Dickey (1985).
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typing the manuscript of this paper. The research reported here was supported by the NSF under
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All of the research cited in the previous paragraph has been confined to the
case where the sequence of innovations driving the model is independent with
common variance. Frequently, it is assumed that the innovations are iid (0, o)
or, further, that they are iid N(0, 0°). Independence and homoskedasticity are
rather strong assumptions to make about the errors in most empirical econometric
work; and there are good reasons from economic theory (as shown in Hall (1978))
for believing them to be false in the context of aggregate time series that may be
characterized as a random walk. For both empirical and theoretical consider-
ations, therefore, it is important to develop tests for unit roots that do not depend
on these conditions.

One aim of the present paper is to develop such tests. In doing so, we provide
an asymptotic theory for the least squares regression estimator and the associated
regression t statistic which allows for quite general weakly dependent and
heterogenously distributed innovations. The conditions we impose are very weak
and are similar to those used recently by White and Domowitz (1984) in the
general nonlinear regression context. However, the limiting distribution theory
that we employ here is quite different from that of White and Domowitz (1984).
It belongs to a general class of functional limit theory on metric spaces, rather
than the central limit theory on Euclidean spaces that is more conventionally
used in econometrics (as in the excellent recent treatment by White (1984)). Our
approach unifies and extends the presently known limiting distribution theory
for the random walk and more general ARIMA models with a single unit root.
It would seem to allow for most of the data we can expect to encounter in time
series regression with aggregate economic series. A particularly interesting feature
of the new test statistics that we propose in this paper is that their limiting
distributions are identical to those found in earlier work under the assumption
of iid errors. Thus, we discover that much of the work done by the authors cited
in the earlier paragraph (particularly Fuller (1976), Dickey and Fuller (1979),
and Evans and Savin (1981)) under the assumption of iid errors remains relevant
for a very much larger class of models. |

Another aim of the paper is to present a new limiting distribution theory that
is based on the concept of continuous data recording. This theory, together with
the asymptotic expansion that is developed in Section 7 of the paper for the unit
root case, help to explain many of the interesting experimental results reported
in the recent papers by Evans and Savin (1981, 1984) in this journal.

2 FUNCTIONAL LIMIT THEORY FOR DEPENDENT HETEROGENEOUSLY
DISTRIBUTED DATA

Let {y,};=, be a stochastic process generated in discrete time according to:
(1) =yt (t=1,2,...);
(2) a=1.

Under (2) we have the representation y, = S,+y, in terms of the partial sum
S, = Z; u, of the innovation sequence {u,} in (1) and the initial condition y,. We
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may define S,=0. The three alternatives commonly proposed for y, are (c.f.
White (1958)):

(3a) yo=1¢, a constant, with probability one;
(3b) ¥o has a certain specified distribution;
(3¢) Yo=yr, Wwhere T =the sample size.

Equation (3c) is a circularity condition, due to Hotelling, that is used mainly as
a mathematical device to simplify distribution theory (c.f. Anderson (1942)). (3b)
is a random initial condition that is frequently used to achieve stationarity in
stable models (Ja|<1). In this paper, we shall employ (3b). This permits the
greatest flexibility in the specification of (1). It allows for nonstationary series
(with |@|=1) and it includes (3a) as a special case (and, in particular, the
commonly used condition y,=0).

Our concern in this section will be with the limiting distribution of standardized
sums such as:

(42.) (]_1)/T$T<J/T (jzls"'aT)a

1 1
Xr(r) =~ 7Te St = 7To S-1»

1

() Xr()=—=Sn,

where [ ] denotes the integer part of its argument and o is a certain constant
defined later (see Assumption 2.1 below). Observe that the sample paths X, (r) €
D = DJ0, 1], the space of all real valued functions on [0, 1] that are right con-
tinuous at each point of [0, 1] and have finite left limits. That is, jump discon-
tinuities (or discontinuities of the first kind) are allowable in D. It will be sufficient
for our purpose if we endow D with the uniform metric defined by || f—g| =
sup, |/(r) — g(r)| for any f, g € D.

X1(r) is a random element in the function space D. Under certain conditions,
Xr(r) can be shown to converge weakly to a limit process which is popularly
known either as standard Brownian motion or the Wiener process. This result is
often referred to as a functional central limit theorem (CLT) (i.e. a CLT on a
function space) or as an invariance principle, following the early work of Donsker
(1951) and Erdos and Kac (1946). The limit process which we denote by W(r),
has sample paths which lie in C = C[0, 1], the space of all real valued continuous
functions on [0, 1]. Moreover, W(r) is a Gaussian process (for fixed r, W(r) is
N(0, r)) and has independent increments ( W(s) is independent of W(r)— W(s)
for all 0< s <r=<1). We shall denote the weak convergence of the process X(r)
to W(r) by the notation X+(r)= W(r); and, when the meaning is clear from the
context, we shall sometimes suppress the argument r and simply write Xr=> W.
Here and elsewhere in the paper the symbol “=" is used to signify the weak
convergence of the associated probability measures as 7 1c0. Note that many
finite dimensional CLT’s follow directly from this result (e.g., the case in which
r=1 yields the Lindeberg-Lévy theorem when the u, are iid (0, o%)). The reader
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is referred to Billingsley (1968) for a detailed introduction to the subject and to
Pollard (1984) for an excellent recent treatment.

The conditions under which X=> W are very general indeed and extend to a
wide class of nonstationary, weakly dependent, and heterogeneously distributed
innovation sequences {u,}7". Billingsley (1968, Ch. 4) proves a number of such
results for strictly stationary series satisfying weak dependence conditions. His
results have recently been extended by many authors in the probability literature
(see Hall and Heyde (1980, Ch. 5) for a good discussion of this literature and
some related results for martingales and near martingales). Amongst the most
general results that have been established are those of McLeish (1975a, 1977)
and Herrndorf (1983, 1984a, 1984b). We shall employ a result of Herrndorf
(1984b) in our own development because it applies most easily to the weakly
dependent and heterogeneously distributed innovations that we wish to allow
for in the context of time series such as (1).

To begin we must be precise about the sequence {u,}T of allowable innovations
in (1). In what follows we shall assume that {u,}7 is a sequence of random
variables that satisfy the following Assumption.

AssuMPTION 2.1: (a) E(u,)=0, all t; (b) sup, E|u,|? < for some B>2; (c)
o’=limr,. E(T'ST) exists and o*>0; (d) {u,}7 is strong mixing with mixing
coefficients w,, thar sarisfy:

O
(5) Y alt¥E <o,
1

These conditions allow for both temporal dependence and heteroskedasticity
in the process {u,}7. For the definition of strong mixing and the mixing coefficients
o, that appear in (d) the reader is referred, for example, to White (1984).
Condition (d) controls the extent of the temporal dependence in the process
{4,}7, so that, although there may be substantial dependence amongst recent
events, events which are separated by long intervals of time are almost indepen-
dent. In particular, the summability requirement (5) on the mixing coefficients
is satisfied when the mixing decay rate is a,, = O(m™) for some A > B/(B—2).
The summability condition (5) also controls the mixing decay rate in relation to
the probability of outliers as determined by the moment existence condition (b).
Thus, as 8 approaches 2 and the probability of outliers rises (under the weakening
moment condition (b)) the mixing decay rate increases and the effect of outliers
is required under (5) to wear off more quickly. This tradeoff between moment
and mixing conditions was first developed by McLeish (1975b) in the context of
strong laws for dependent sequences. Condition (b) also controls the allowable
heterogeneity in the process by ruling out unlimited growth in the Sth absolute
moments of u,.

Condition (c) is a convergence condition on the average variance of the partial
sum Sr. It is a common requirement in much central limit theory although it is
not strictly a necessary condition (see, for example, Herrndorf (1983)). However,
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if {u,} is weakly stationary, then

(6) o’=E(u)+2 ¥ E(uu)

k=2
and the convergence of the series is implied by the mixing condition (5) (see
Ibragimov and Linnik (1971), Theorem 18.5.3). Even in this case, however, we
still require o> 0 to exclude degenerate results. Once again, this is a conventional
requirement.

Assumption 2.1 allows for a wide variety of possible generating mechanisms
for the sequence of innovations {}7. These include all Gaussian and many
other stationary finite order ARMA models under very general conditions on the
underlying errors (see Withers (1981)).

We shall make extensive use of the following two results in our theoretical
development. The first is a functional central limit theorem that is due to
Herrndorf, and the second is the continuous mapping theorem, which is given
a very thorough treatment in Billingsley (1968, Section 5).

Lemma 2.2: If {u,}7 satisfies Assumption 2.1, then as T1 o0 Xr=> W, a standard
Wiener process on C.

LEmMmA 2.3: If X;=> W as T1o and h is any continuous functional on D

(continuous, that is, except for at most a set of points D;, < D for which P(W € D,) =
0), then h(X7)=>h(W) as T1co.

3 LARGE SAMPLE (T 1) ASYMPTOTICS

We denote the ordinary least squares (OLS) estimator of « in (1) by &=
ZIT YY1/ er y2_,. Appropriately centered and standardized we have

(7) T(é—l)={T"‘;y,_l(y,—y:—l)}/{ T'zgyf—l}

and we shall consider the limiting behavior of this statistic as T10co. We shall
also consider the conventional regression ¢ statistic:

T 1/2
(8) t,,=(2y%~1) (@—1)/s
1
where

9) sS=T'Y (y,—&y,)>

-4

Both (7) and (8) have been suggested as test statistics for detecting the presence
of a unit root in (1). The distributions of these statistics under both the null
hypothesis @ =1 and certain alternatives « # 1 have been studied recently by
Dickey and Fuller (1979, 1981), Evans and Savin (1981, 1984) and Nankervis
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and Savin (1985). The work of these authors concentrates altogether on the special
case in which the innovation sequence {u,}¥ is iid (0, o?). In related work, Solo
(1984) has studied the asymptotic distribution of the Lagrange multiple (LM)
statistic in a general ARIMA setting. His results are also established under the
assumption that iid innovations drive the model.

Our approach relies on the theory of weak convergence on D. It leads to rather
simple characterizations of the limiting distributions of (7) and (8) in terms of
functionals of a Wiener process. The main advantage of the approach is that the
results hold for a very wide class of error processes in the model (1).

THeorReM 3.1: If {w)T satisfies Assumption 2.1 and if sup, E|u,|P*" <o for
some m >0 (where B >2 is the same as that in Assumption 2.1), then as T1 co:

1
(a) T ETi yia=o’ J W(r)* dr;
1 0
T
(b) T_I;yr—l(yr—yr-1)=>(0'2/2)(W(l)z—aﬁ/oz);

(¢ T(& —1)=>(1/2)(W(1)2—0i/02)/j W(r)* dr;
(d) a—1;

4
1 1/2
(e) ta=>(0/20u)(W(l)z—tfﬁ/az)/” w(ry? dr} ;
where
T
o= ;grolo T7'Y E(u)),

o’ =lim E(T'S%),

T->©

and W(r) is a standard Wiener process on C.

When the innovation sequence {u,}{ is iid(0, o) we have o2 = o7, leading to
the following simplification of part (c) of Theorem 3.1:

(10) T(c?—l)=>(l/2(W(1)2~1))/jl W(r)? dr.

Result (10) was first given by White (1958, p. 1196), although his expression is
incorrect as stated since his standardization of & is g(T)(& —1) with g(T) = T/V2.
Unfortunately, this rather minor error recurs at several points in the paper by
Rao (1978, pp. 187-188). Lai and Wei (1982) and Lai and Seigmund (1984) also
give (10) as stated above.

Theorem 3. 1 extends (10) to the very general case of weakly dependent and
heterogeneously distributed data. Interestingly, our result shows that the limiting
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distribution of T(& —1) has the same general form for a very wide class of
innovation processes {u,}7.

The differences between (¢) of Theorem 3.1 and (10) may be illustrated with
a simple example. Suppose that the generating process for {u,} is the moving
average

u,=¢g,+ 6, (t=1,2,...),
with &, iid(0, 02). Then

T

ol =g_1im T 'Y ui=(01+6%02,
-0 1

o’= lim T'E(ST)=(1+6)%07,

and we have
2

T
Ty y,_,u,=>%m+ 8)*W(1)*—(1+ 6%)],
1
which can also be verified by direct calculation. In this case
1
T(&-1)=(1/2)[W(1)* - (1+6%)/(1+ o)ﬁ/j W(r)? dr,
0

generalizing (10) and, of course, reducing to it when 6 =0.

Part (d) of Theorem 3.2 shows that, unlike the stable AR(1) with |a|<1, OLS
retains the property of consistency when there is a unit root even in the presence
of substantial serial correlation. This extremely simple result seems not to have
been derived at this level of generality before, although closely related results
for ARIMA models have been obtained recently by Tiao and Tsay (1983) and
by Said and Dickey (1984). The robustness of the consistency of & in this case
is rather extraordinary, allowing for a wide variety of error processes that permit
serious misspecifications in the usual random walk formulation of (1) with white
noise errors. Intuitively, when the model (1) has a unit root, the strength of the
signal (as measured by the sample variation of the regressor y,;) dominates the
noise by a factor of O(T), so that the effects of any regressor-error correlation
are annihilated in the regression as T .

Part (e) of Theorem 3.1 gives the limiting distribution of ¢,. This distribution,
like that of the coefficient estimator, depends on the variance ratio o2/0”. We
note that in the Lagrange multiplier approach (c.f. Evans and Savin (1981) and
Solo (1984)) we would employ the variance estimator s>=T7' Y. (y, ~y,_,)? in
the test statistic, using the null h¥pothesis (2). Writing the Lagrange multiplier
statistic as LM =t where t'= (Y, y7_,)"/*(& —1)/s’, we deduce from part (e) of
Theorem 3.1 that

(11) LM=(0/20,)[W(Q1)*- ai/oz]z/J w(r)* ar.

Solo (1984) derived the special case of (11) in which o= o2,
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Theorem 3.1 provides an interesting example of a functional of a partial sum
that does not necessarily converge weakly to the same functional of Brownian
motion. To show this, it is most convenient to replace X (r) as defined by (4)
by its close relative, the random element

Tr—[Tr]

Yr(r)= “Tte

Sirat Ui+, (J-D/Tsr<j/T

(j=1,...,7),

1
VTo

1
Yr(1)=m S,

which lies in C[0, 1]. In fact, Yr(r)= W(r) under the same conditions as those
prescribed earlier for X-(r) in Lemma 2.2. However, the sample path of Y (r)
is continuous and of bounded variation on [0, 1] so that we may define and
evaluate by partial integration the following Riemann Stieltjes integral:

1
(12) J Yr(r) dY(r) =1 Yi(N]o=3Yr(1)".
0

The corresponding integral for the limit process W(r) must be defined as a
stochastic integral, for which the rule of partial integration used in (12) does not
apply. Instead, we have the well known result (see, for example, Hida (1980, p.
158)):
(1
(13) Wdaw =(1/2)(W(1)’~1)
JO

which may be obtained directly from the Ito formula. On the other hand, we
deduce from (12) and Lemma 2.3 that
1
(14) YrdYr=>(1/2) W(1)%
JO
The problem arises because all elements of C[0, 1] except for a set of Wiener
measure zero are of unbounded variation (Billingsley (1968, p. 63)). In particular,
the sample paths of W() are almost surely of unbounded variation and thus the
integral jo WdW does not exist in the same sense as the integral {5 YrdYr. It
follows that the latter integral does not define a continuous mapping C[0, 1] and
we cannot appeal to the continuous mapping theorem to deduce that [ YrdYr=
f Wdw when Yr=>W. In fact, as (13) and (14) demonstrate, the result is not
correct.

We may, however, proceed as in the proof of Theorem 3.1 in the Appendix.
Alternatively, since dYr(t) =vTu,dt/o we find by direct integration that:

3T 1 u2
YrdYr=—sS _ju+——
J:FW L Y e

and summing over j=1,..., T we deduce that

T
(15) T"IZS,A,u,-—*UZJ-
1

0

1 T

YrdYr =Y w2/2T=(0?/2)W(1)* - 03/2,
1
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as given by part (b) of Theorem 3.1. Note also, in view of (13), that the sum (15)
converges to o [ WdW if and only if o2 = o”.

4. ESTIMATION OF (o2, 0%

The limiting distributions given in Theorem 3.1 depend on unknown parameters
o2 and o These distributions are therefore not directly useable for statistical
testing. However, both these parameters may be consistently estimated and the
estimates may be used to construct modified statistics whose limiting distributions
are independent of (02, 0°). As we shall see, these new statistics (given below
by (21) and (22)) provide very general tests for the presence of a unit root in (1).

As shown in the proof of Theorem 3.1, T 'Y u?- 02 as. as T1o. This
provides us with the simple estimator

(16) s2=T7"1

=~

T
W= y)?=T7' Y ui,
1

which is consistent for o under the null hypothesis (2). Since &—;1 by Theorem

3.1 we may also use 'Y (y,— &y,_,)* as a consistent estimator of o2.

Consistent estimation of o =limy_ ., E(T™'S%) is more difficult. The problem
is essentially equivalent to the consistent estimation of an asymptotic covariance
matrix in the presence of weakly dependent and heterogeneously distributed
observations.” The latter problem has recently been examined by White and
Domowitz (1984). A detailed treatment is also available in Chapter VI of White
(1984).

We start by defining

or=var (T 2S;)

T T-1 T
=T7'YEw)+2T' Y ¥ E(uu._,)

T=1 t=71+1

and by introducing the approximant

T 1 T
on=T'LEu)+2T"' L % E(uu,_,).
1 T=11=7+1
We shall call I the lag truncation number. For large T and large I < T, 0%, may
be expected to be very close to o7 if the total contribution in &% of covariances
such as F(uu,_,) with long lags 7> 1 is small. This will be true if {,}T satisfies
Assumption 2.1. Formally, we have the following lemma.

LEMMA 4.1: If the sequence {u,}T satisfies Assumption 2.1 and if 11 as T 1,
then 05— o~ 0 as T1 .

2 This 1s most easily seen by noting that S;-/vT=> N(0, o%), according to the invariance principle
Lemma 2.2.
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This Lemma suggests that under suitable conditions on the rate at which /1o
as T1 o we may proceed to estimate o from finite samples of data by sequentially
estimating o3, The problem is explored by White (1984, Ch. 6). We define

T ! T
(17) sH=T' 2T Y ¥ uuy,.,.
1

T=11=7+1

The following result establishes that s%, is a consistent estimator of o”.

THeEOREM 4.2: If (a) {u,}Y satisfies Assumption 2.1{a), (¢), and (d), and part
(b) of Assumption 2.1 is replaced by the stronger moment condition: sup, E|u,|** <
o, for some B >2; (b) I1c0 as T1 o0 such that I = o(TY*); then s%—,-;) o? as T 1 co.

According to this result, if we allow the number of estimated autocovariances
to increase as T oo but control the rate of increase so that /= o(T"*) then s%,
yields a consistent estimator of o°. White and Domowitz (1984) provide some
guidelines for the selection of I Inevitably the choice of I will be an empirical
matter. In our own case, a preliminary investigation of the sample autocorrelations
of u, = y,—y,_, will help in selecting an appropriate choice of L Since the sample
auto-correlations of first differenced economic time series usually decay quickly
it is likely that in moderate sample sizes quite a small value of I will be chosen.

Rather than using the first differences u, =y, — y,_, in the construction of s%,
we could have used the residuals #, = y, — &y,_, from the least squares regression.
Since &—p)l as T1oo this estimator is also consistent for o under the null
hypothesis (2). Moreover, this estimator is consistent for o under explosive
alternatives to (2) (i.e. when @ > 1) and may, therefore, be preferred to s, when
such cases seem likely.

We remark that s%; is not constrained to be nonnegative as it is presently
defined in (17). When there are large negative sample serial covariances, s3; can
take on negative values. In a related context, Newey and West (1985) have
recently suggested a modification to variance estimators such as s, which ensures
that they are nonnegative. In the present case, the modification yields:

T ! T
(18) S@H =7 > u$+2T_l L Wa Y u,
1

=1 t=7+1
where
(19) wa=1—1/(I+1).

It is simple to motivate the weighted variance estimator (18). When {u,}7 is
weakly stationary, o”=27f,(0) where f,(A) is the spectral density of u,. In this
case, (1/ 27)5§%, is the value at the origin A =0 of the Bartlett estimate

1+1

200  AM)=Q/27) ¥ [-ld/d+D)IC(r) e,

T=—1-1

T
C(n)=T" ¥ wuu._

r=|7]+1
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of f,(A) (see, for example, Priestley (1981, pp. 439-440)). Since the Bartlett
estimate (20) is nonnegative everywhere, we deduce that §%;= 0 also. Of course,
weights other than (19) are possible and may be inspired by other choices of lag
window in the density estimate (20).

5. NEW TESTS FOR A UNIT ROOT

The consistent estimates s> and s% may be used 1o develop new tests for unit
roots that apply under very general conditions. We define the statistics:

(21) Z,= T(&—1)—(1/2)(S2T1—S.24)/(T_2iyf—l)
1
and
T 1—2 T 1/27-1
(22) Z,=<Zy?_l) (@=1)/sn—(1/2)(s%—s2) [Sn<T“ZZy?_l) ] .

Z, is a transformation of the standardized estimator T(&—1) and Z, is a
transformation of the regression ¢ statistic (8).

The limiting distributions of Z, and Z, are given by:

THEOREM 5.1: If the conditions of Theorem 4.2 are satisfied, then as T},

(WQ)y’-1)/2

(a) Ze= Wiy dt
and
(b) Z= (W)’ -1)/2

{Js w(e) dey'?
under the null hypothesis that a =1 in (1).

Theorem 5.1 demonstrates that the limiting distributions of the two statistics
Z, and Z, are invariant within a very wide class of weakly dependent and possibly
heterogeneously distributed innovations {u,};". Moreover, the limiting distribution
of Z, is identical to that of T(&—1) when o2 = o (see (10) above). The latter
distribution has recently been computed by Evans and Savin (1981) using numeri-
cal methods. These authors present tabulations and graphical plots of the limiting
pdf and their article also contains a detailed tabulation of the limiting cdf, which
is suitable for testing purposes. Since Evans and Savin work with the normalization
g(T)(&—1), in which g(T)= T/+?2, the modified statistic
(23)  Z,=(1/V2)Z,
may be used to ensure compatibility with their published tables. Fuller (1976, p.
371) provides a tabulation of the limiting distribution (10) for the standardization

T(&—1), so that his table may be used directly in significance testing with our
statistic Z,.
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The limiting distribution of Z, given in Theorem 5.1 is identical to that of the
regression ¢ statistic when o® = o (see Theorem 3.1). This is, in fact, the limiting
distribution of the ¢ statistic when the innovation sequence {1} is iid (0, o).
The latter distribution has been calculated using Monte Carlo methods by Dickey
(1976) and tabulations of percentage points of the distribution are reported in
Fuller (1976, Table 8.5.2, p. 373).

Theorem 5.1 shows that much of the work of these authors on the distribution
of the OLS estimator & and the regression ¢ statistic under iid innovations remains
relevant for a very much larger class of models. In fact, our results show that
their tabulations appear to be relevant in almost any time series with a unit root.
To test the unit root hypothesis (2) one simply computes (21), (23), or (22) and
compares these to the relevant critical values given by Evans and Savin (1981)
and Fuller (1976).

6 CONTINUOUS RECORD ASYMPTOTICS

In certain econometric applications a near-continuous record of data is avail-
able for empirical work. Prominent examples occur in various financial, com-
modity, and stock markets as well as in certain recent energy usage experiments.
Undoubtedly, trends in this direction will accelerate in the next decade with
ongoing computerizations of banking and credit facilities and electronic monitor-
ing of sales activity. Moreover, financial and foreign exchange markets, in par-
ticular, now offer empirical researchers the opportunity of working with data
recorded at many different frequencies (weekly, daily, hourly or even minute by
minute in some cases). For these reasons, it is of intrinsic interest to study the
behavior of econometric estimators and test statistics as the time interval (h)
between sampled observations is allowed to vary and, possibly, to tend to zero.
When k)0, we obtain in the limit a continuous record of observations over a
finite time span, comparable to a seismographic recording. We shall call
asymptotics of this type continuous record asymptotics.’

As we shall show below, there is a very interesting relationship, at least in
certain cases, between the behavior of the statistics we have been considering
when the sample size T1 c0 and when the sampling interval h | 0. This relationship,
together with the results of Section 7, help to explain many of the recent Monte
Carlo results reported by Evans and Savin (1981, 1984). Moreover, continuous
record (h|0) asymptotics have an additional advantage in that they bring into
prominence the role of initial observation conditions. Such conditions can be of
considerable importance in the statistical behavior of certain econometric
estimators and tests in finite samples of data. Yet their effects normally disappear
entirely in conventional large sample ( T} 0, h fixed) asymptotic theory. We shall

3 Note that earlier work on continuous time econometric modeling (see, for instance, Bergstrom
(1984) and the articles published 1n Bergstrom (1976)) used small sampling interval (h}0) methods
in a different context: viz, to compare various esttmation procedures by considering how their
conventional (7 {co) asymptotic properties differed as h 0.
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illustrate the effects of such initial conditions in the context of autoregressions
such as (1) in the presence of a unit root.

We start by considering a triangular array of random variables {{y,.}/z:}5=,
defined as follows. Given n, the sequence {y..}{" is generated by the random walk

(24) ym=ym——l+um (t=1,~-,Tn;J’no=)’(0)),
where the innovations {u,} 7=, are iid (0, c*h,) are independent of y(0), and
T,h, = N is a fixed positive constant for all n. Moreover, as n 70 we shall require
T4 and h, |0 so that T,h, = N remains constant and T, € Z". The sequence
{{u,.} T} will be called a triangular array of iid (0, oh,) variates and {{y,.}1"}%
will be called a triangular array of random walks.

Each row of the triangular array {{y,}{"}} may be interpreted as a sequence
of random variables generated by a random walk in discrete time with a sampling
interval = h,. The array itself represents a sequence of random walks with
sampling intervals that decrease (h,|) as we get deeper (n 1) into the array. The
convergence of the sampling interval h,|0 as nto0 and the requirement that
h,T,= N be fixed are the only connections that link the random variables in
different rows of the array. The interval [0, N] may be regarded as a fixed time
span over which we observe the random walk at discrete points in time determined
by the sampling interval h,. The triangular array {{y,} 75} then provides a formal
framework within which h, may vary and by means of which we may investigate
limiting behavior as h, | 0.

Let S, = Zj'zl u, (1<i=<T,) with §,,=0 as usual. We form the random
function

Y. (r)=07'S,_,, (i-1)/T,<r<i/T, (1=1,...,T,),
Yn(l) = 0'_1 nT,s
and observe that Y, € D. As n1 Y,(r) converges weakly to a constant multiple
of a standard Wiener process. Specifically, we have the following lemma.

LEMMA 6.1: If (@) {{u.}1"}Y is a triangular array of iid (0, o°h,) variates; (b)
T,eZ"*, T,1, and h,|0 as n}© in such a way that the product T,h,= N>0
remains constant; then Y,(r)=>N'">*W(r) as n1c where W(r) is a standard
Wiener process.

T

N n

a, = z yntynf—l/
1

be the coefficient and

Let

2
Va1

-

n

1/2
tﬁ,.=<2 y§n~l) (&n-l)/sn
1

be the associated ¢ ratio in a least squares regression on (24). Here,

T" 1/2
Sp = { T;l Z (y"' - a"ym—l)z}
1
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is the standard error of the regression. The limiting behavior of these statistics
as h,| 0 is given in our next result.

THEOREM 6.2: If {{y..}{"}T is a triangular array of random walks for which the
innovation sequence {{u,}{"}y satisfies the conditions of Lemma 6.1, then as n 1 00:

TII
(a) by Y Yu1=>
1
1

1
N3g? {J W(r)? dr+2(y(0)/aN"?) I

0 0

W(r) dr+y(0)2/0'2N};

(b) 2 Ynis (V= Yu)=> (N 2{ W(1)* = 1+2(3(0)/ aN V) W(1)};

(c) hy'(d,—1)=>(1/N) “ W(r)* dr+2(y(0)/oN"?)

0

1 -1
. j w(r) dr+y(0)2/0'2N]

0

[(/2)(W(1)* =D+ (»(0/ N W(1)];

1 1 -1/2
(d) ta"=>H W(r)* dr+2(y(0)/acN"?) j W(r) dr +y(0)2/0'2N]
0

[(1/2)(W(1)*-1)+(y(0)/ oNV) W(1)];

where W(r) is a standard Wiener process.

Theorem 6.2 shows that for small A, the distribution of &, and that of t,, may
be approximated by suitable functionals of Brownian motion. These functionals
involve the initial condition y(0), which may be either constant or random. If
y(0) is random then it is independent of the Wiener process W(r) that appears
in the functionals given in parts (c) and (d) (recall that y(0) is independent of
innovation sequence {{u,};"}7). For large N the distributions may be well
approximated by:

(25) h'(d,~1)~N""' U W(r)zdr] [(1/2(W(1)*~1D];

1 -1/2
(26) ta,,~H W(r)zdr] [(1/2)(W(1)*~1)].

(25) and (26) correspond, as we would expect, to the conventional large sample
(T1o0) asymptotics and are special cases of our earlier results in Theorem 3.1
with o? = o2.
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When the time span N is not large, (25) and (26) may not be good approxima-
tions. Theorem 6.2 suggests that the initial value y(0) or, more specifically, the
ratio ¢ = y(0)/o plays an important role in the determining of the adequacy of
these approximations. Thus, when c is large the effect on the limiting distributions
given in parts (¢) and (d) of Theorem 6.2 is substantial. In fact as ¢} o it is easy
to deduce from these expressions that:

(27) hy' (&, —1)~(1/eNY%)W(1)= N(0,1/¢’N);
(28) 1, ~ W(1)=N(0,1).

Theorem 6.2 helps to explain several of the phenomena discovered in the
experimental investigation of Evans and Savin (1981). These authors found: (i)
that the finite sample distribution of & was very well approximated by its
asymptotic distribution (using conventional large sample (71 00) asymptotics
with h fixed) even for quite small samples when the initial value y(0)=0; and
(ii) that changes in ¢ = y(0)/ o precipitate substantial changes in the distribution
of &; specifically, the distribution of T(& —1) noticeably concentrates as ¢
increases.

Observation (ii) is well explained by Theorem 6.2, which shows that ¢ is an
important parameter in the limiting distribution of 4, (&, —1) as h, | 0 over finite
data spans [0, N]. This is to be contrasted with the usual (T4 0c0) asymptotic
theory, which obscures the dependence of the distribution of @ on y(0)/o. The
second phenomenon noted by Evans-Savin, that the distribution of T(&—1)
concentrates as ¢ increases, is directly corroborated by (27). Thus, using N = T,4,,
we deduce from (27) that:

T.(&,—1)~(N"?/c)W(1)= N(0, N/cz)—;O, as cloo.

The fact that the asymptotic (71 00) distribution of & is a very good approxima-
tion in finite samples when y(0)=0 and the innovations are iid (Evans-Savin
observation (i) above) is also well explained by our analytical results. In particular,
Theorem 6.2 shows that the asymptotic distribution applies not only as T1 in
the conventional sense with & fixed (our Theorem 3.1(c) with o= o) but also
as h, |0 with a fixed data span N (our Theorem 6.2(¢) with y(0) =0). Thus, the
limiting distribution theory operates in two different directions with identical
results when y(0) = 0 and the innovations are iid. Moreover, this limiting distribu-
tion is actually the finite sample distribution of the least squares continuous
record estimator when the (continuous) stochastic process is Gaussian.

To show this we observe that the natural limit of (24) as n 1 0 may be regarded
as the stochastic differential equation

(29) dy(t)=0y(2) dt+{(dt) (0=st<N)
with 8 =0. In (29) y(¢) is now a random function of continuous time over [0, N]

and {(dt) is a o-additive random measure which is defined on all subsets of the
real line with finite Lebesgue measure such that:

(30) E(¢(dr))=0, E(((dr)) =0 dr
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(see, for example, Rozanov (1967, p. 8)). The stochastic integral L’, £(dr) has zero
mean, variance = o’t, and uncorrelated increments. We note that (24) may be
regarded as a random walk in discrete time that is satisfied by equispaced
observations over intervals of length h, generated by (29) with 8 =0. Then we
may write, for example,

th,
Up = I £(dr)

th,—hy,
and {u,} ! is an orthogonal sequence with common variance o’h,. If we go
further in the specification of (29) and require that the increments of {; {(dr) be
independent, then the continuous stochastic process y(t) defined by (29) is
Gaussian and o' [ £(dr) (0<t< N) is a Wiener process on C[0, N]. This is
proved by Billingsley (1968, Theorem 19.1, p. 154) and is also a consequence of
our Lemma 6.1. In particular, from Lemma 6.1 we have Y,(r)=>N"?W(r)
(0<r=<1) as n}. Now set t=Nr (0<t=N), y,(t)=0Y,(t/N) and define
V(t)= NY*W(t/N). Clearly, V(t) is a Wiener process on C[0, N]. Moreover,
asnto, y,(1)=>aV(t)=y(t) (0=< t < N), where “=""signifies equality in distribu-
tion. Thus, the triangular array {{y..}1*}7 (T,h, = N, y.o=0) converges weakly
as n1oo to the continuous Gaussian process y(t) (0=<t= N) generated by the
stochastic differential equation (29) with 6§ =0, y(0)=0.

If we now consider the problem of estimating the parameter 6 in (29) from

the continuous record {y(t); 0<¢< N} least squares suggests the criterion

N

(31) min, J (y—8y)*dt

0
Here we write y = dy(t)/dt in a purely formal way since this is all that is needed
for our present purpose. (31) leads to the estimator:

“ N N N N
(32) 0=I yydt/j y? dt='[ ydyJ' y2 dt.
0 0 (4] 0

Provided the integral [’ y dy in the numerator of (32) is interpreted as a stochastic
integral it is not necessary to be more specific about the interpretation of y as a
generalized stochastic process.

The estimator 6 was originally suggested by Bartlett (1946). Its properties were
subsequently studied by Grenander (1950) and more recently by Brown and
Hewitt (1975) and by Feigin (1979). As our next result shows the distribution of
6 can be simply expressed in terms of the initial value y(0) and a standard Wiener
process.

TueoreM 6.3: Ify(t) (0<t< N) is generated by (29) where {(dr) is Gaussian
and independent of y(0), then 6 has the same distribution in finite samples (i.e.
finite N) as the functional
1

(33) (1/N) “ W(r)zdr+2(y(0)/UN‘/2)I w(r) dr+y(0)2/02N]—

0
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[(1/2)(W(1)* = 1)+ (p(0)/ eNV) W(1)]
of the standard Wiener process W(r).

This verifies the result we stated earlier: viz., the limiting distribution of
h;'(&,~1) as n} oo (Theorem 6.2(c)) is the same as the finite sample (fixed N)
distribution of the continuous record estimator 6. Since the triangular array
{yn}1}Y converges weakly to the Gaussian process y(t) as n o and since both
estimators &, and @ are obtained by least squares, this is a result that may well
have been anticipated. Interestingly, while the limiting distribution of h,,'(&, —1)
and the distribution of 6 are equivalent, the distribution of &, is degenerate in
the limit as n {00, In fact, &,,71 as nto and h,|0. 8, on the other hand, is a

consistent estimator of 6 =0 only as N 1c0. The consistency of &, is explained
by the fact that, although there is not an infinite span of data (N is fixed), there
is, in the limit as n% 00, an infinite amount of independent incremental data on
the random walk (24) (and, hence, on the coefficient a = 1) because the triangular
array {{u,,}*}3 has iid innovations in every row. This is sufficient to ensure that
&, —lasn 1 00.

7. AN ASYMPTOTIC EXPANSION OF THE DISTRIBUTION OF T(&—1)

A general refinement (to higher order) of the functional central limit theorem
discussed in Section 2 does not yet appear to be available in the probability
literature. However, it is relatively easy to develop asymptotic expansions in
special cases such as the limit Theorem 3.1. In order to proceed one needs to
endow the random sequence {}] with somewhat stronger properties than those
of Assumption 2.1. To facilitate our analysis here, we shall consider the special
case in which the u, are iid N(0, o). In this case it is easy to see that, for fixed
ref0,1], Xr(r) is N(0,[Tr]/ T). In fact, when r =0 we have X;(0)= W(0)=0
and when 0<r=<1 we have:

Xr(r)=W()([Tr]/Tr)"?

(34) = W(r){1—(Tr=[Tr])/ Tr}"?
1 Tr=[T _
Ew(r){1-5—' T[r ’]}+o,,(T 2),

where, as before, “=" signifies equality in distribution. Equation (34) provides
a simple asymptotic expansion for the finite dimensional (in fact, one dimensional)
distribution of X(r) with r fixed. Note that, since W(r)/r — 0 as rl 0 (see, for
example, Hida (1980, p. 57)), the expansion (34) remains well defined in the
neighborhood of t=0. Higher order finite dimensional distributions of Xr(r)
may be treated in a similar way. The error on the approximation Xr(r)~ W(r)
is seen to be of O,,(T”‘) in (34). This suggests that certain functionals of Xr(r)
may be expected to differ from the same functionals of W(r) by quantities of
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the same order. In particular

1 1
(35) j Xr(r)? drEj W(r)?dr+ O, (T
0 0

and this expansion may be verified directly by developing an expansion for the
characteristic function of [§ X7(r)? dr. Since the algebra is lengthy we shall not
report it here.

Qur main concern is to develop an expansion for the distribution of T(& —1).
We therefore consider next the numerator of this statistic, viz.

T T
(36) T ; Y= yi) = (0?/2) Xz (1)’ — 2T ; u; + yo,

using formula (A3) from the Appendix. We shall confine our attention to the
case where the initial value y,=0. Since X(1)>= W(1)’+0,(T™"), (36) becomes
(in distribution):

(a?/2)(W(1)’-1)—(1/2T) ; (u}—-0’)+0,(T™)

=(’/(W(1)* = 1)~ (a*/V2T)E+ O (T ™)

where £= N(0, 1) and is independent of the Wiener process W(r). The distribu-
tion of ¢ follows directly from the Lindeberg-Levy theorem. Note that £ is
dependent on a quadratic function of the u,, whereas W(r) depends on partial
sums which are linear in the u,. Hence, £ and W(r) are uncorrelated and, being
normal, are therefore independent. We deduce the following result.

THEOREM 7.1: Ify, 1s generated from the random walk (1) with a = 1 and initial
value y,=0 and if the u, are iid N(0, 0*), then
_1/2) W)’ -1)-(1/vV2T)¢

Jo W(r) dr

(37) T(a—-1) +0,(T™)

where W(r) is a standard Wiener process and £ is N(0, 1) and independent of W(r).

(37) provides the first term in the asymptotic expansion of the distribution of
T(& —1) about its limiting distribution. We observe that the term of 1/v/T in this
expansion contributes no adjustment to the mean of the limiting distribution.
This is to be contrasted with the expansion of the distribution of v T(& — @) when
|| <1 that was obtained in earlier work by the author (1977). In the latter case
the mean adjustment of the O(1/v/T) term in the expansion was substantial for
a less than but close to unity.

The expansion (37) suggests that the location of the limiting distribution should
be an accurate approximation in moderate samples. This is confirmed in the
results of the sampling experiment in Evans and Savin (1981). It will be of interest
to discover the extent to which (37) improves upon the asymptotic distribution
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of & at various finite sample sizes. The numerical computations that are necessary
to explore this question will be performed at a later date.

8 CONCLUSION

The model (1) and (2) that we have considered above is much more general
than it may appear. It applies, for example, to virtually any ARMA model with
a unit root and even ARMAX systems with a unit root and with stable exogenous
processes that admit a Wold decomposition. In the former case, we may write

(38) a(L)(1-L)y,=b(L)e,

for given finite order lag polynomials a(L) and b(L) in the lag operator L. Then,
upon inversion, (38) becomes

(39) V=Yt iy, u,=a(L)'1b(L)e,,

and u, will satisfy the weak dependence and heteroskedasticity conditions of
Assumption 2.1 under very general conditions on the innovations and lag poly-
nomials of (38). In the latter case, we may write

(40) a(LY(1-L)y,=b(L)x,+c(L)e,
with
d(L)x,=f(L)v,
and then upon inversion we have
yi=Yyi+tu, uw=a(Ll)'e(L)e,+a(L)'b(L)d(L)"'f(L)v,

which is once again of the form (1) with u, satisfying the required assumptions
under general conditions on e,, v,, and the lag polynomials.

Our results show that in quite complicated time series models such as (38) and
(40) it is not necessary to estimate the model or even to identify the model in
order to consistently estimate or test for a unit root in the time series. One needs
only to construct the first order serial correlation coefficient and associated test
statistics (21) or (22) and use the appropriate limiting distributions given in
Theorems 3.1 and 5.1 for statistical testing. This approach applies under conditions
that are of even wider applicability than the models (38) and (40). In a certain
sense, this general idea is already implicit in the Box-Jenkins modeling approach.
However, none of the traditional theory in this research (given, for example, by
Box and Jenkins (1976) or Granger and Newbold (1977)) allows for estimation
or testing procedures that have anything approaching the range of applicability
of the approach developed here.

The research reported in this paper is currently being extended in various ways.
First, the methods that we have developed make it very easy to perform
similar analyses on models like (1) with a drift and a time trend. The new tests
for the presence of a unit root given here may also be extended to such models.
Second, multivariate generalizations of time series models such as (1) may also
be studied by our methods. This generalization opens the way to a detailed
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asymptotic analysis of nonstationary vector autoregressions, spurious regressions
of the type considered by Granger and Newbold (1974, 1977), and co-integrating
regressions of the type advanced recently by Granger and Engle (1985). Third,
the asymptotic local power properties of the tests developed herein and those of
other authors such as Dickey and Fuller (1976, 1981) may be studied by procedures
which are entirely analogous to those devised here but which allow for local
departures from unit root formulations. Finally, the methods outlined in Section
7 for the refinement of the first order asymptotic theory may be extended to apply
in quite general time series models with a unit root. All of these extensions are
currently under investigation by the author.
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MATHEMATICAL APPENDIX
PROOF OF LEMMA 22 See Herrndorf (1984b, Corollary 1, p. 142).
PROOF OF LEMMA 2.3: See Billingsley (1968, Corollary 1, p 31)

PrROOF OF THEOREM 3.1 To prove (a) and (b) we write each statistic as a functional of X1 (r)
on DJ[0, 1]. Thus, 1n the case of (a), we have
T T [1-1 2
(A1) T?Yyl,=T7?3% ( Y “J"‘,Vo)
1

=1 \y=1
T

=T z (S.Z—l +2y08, 4 +Y(2J)
1

T (/T 7 (/T
UZZJ (1/ To?) Stry dr+2yuaT_‘/22J- (l/ﬁa)S[T,] dr
tJda-1yr LJa-n/T

+y5/ T

1 1
=02I XZ(r) dr+2y0ar“‘/zj Xr(r)dr+y3/ T
0 0

1
:>02J W(r)?dr. as Tt
0

by Lemmas 2 2-2 3. Note that (A1) holds whether y, is a constant (see (3a)) or 1s random (see (3b))
In the above derivation

(A2) o?=lim E(T™'S%)

as n part (a) of Assumption 2.1.
To prove (b) we have.

T T
(A2) T ; Ve (¥ = yi-) = le (/NT)S, -1+ yo)(w,/VT)

T!

-5

Sy, + yoit
T
= (27')‘1 Z (512‘ sz—l - “.2)+}’0'7
H
T T
=(a*/2) L[ X (V18T 7~ QT) ™' T ud+ yoi
1 1

(A3) =(0?/2)X7(1)*~(2T)""! %ufﬂ’oﬁ
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Under the conditions of the theorem (in particular, the requirement that sup, E|u,|#*" < co for some
B>2 and 7 >0) we deduce that: :

. T T
(A4) T'Yul—s zri——'Tlim T'Y E(ud)
: as. oo ;
and
(AS) i—0

by the strong law of McLeish (1975b, Theorem 2.10 with condition (2.12). Now X(1)= W(1) by
Lemma 2.2. It follows from (A3)-(A5) and the continuous mapping theorem (Lemma 2.3) that as T} oo,

(A6) T i Vit =0/ )W)~ (03/2) = (e*/{W(1)* -0/ %},

proving (b) of the theorem.
In view of (A1) and (A6), result (c) of the theorem is also a direct consequence of the continuous
mapping theorem. Part (d) of the theorem follows immediately from result (c).
To prove part (e) we first write
T T T

SS=T' Sy =y, =T ' S ul-2a- DT 'Yy u+(E-1’T' Lyl ,.

1 1 1
Then, in view of (A4) and parts (a), (b), and (d) of the theorem we deduce that 52—; o? as T1oo.

Thus, it is of no consequence in the limiting distribution whether we use s” or s>=T"'Y (y, = y,_,)*
(as in the LM approach) in the construction of the t, statistic (8). Part (e) of the theorem now follows
directly from the continuous mapping theorem using parts (a) and (c).

PROOF OF LEMMA 4.1: The proof follows the same line as the proof of Lemma 6.17, pp. 149-152
of White (1984). We need only note that, since {u,} is strong mixing and sup, E|u,|® <o, the
following inequality:

[E(uu, )| < ca;™?

holds for some constant ¢ (see, for example, Ibragimov and Linnik (1971, Theorem 17.2.2, p. 307)).
Thus

T-1 T T-1
2T ¥ Y E(uu,_)|[<2cT" ¥ (T-n)a;f
=141 t=7+1 T=1+1
and the right side of this inequality tends to zero as T 10 since /10 and ¥} a}, */# < c0. We deduce
that 02 —0% > 0as T1oo.

PROOF OF THEOREM 4.2: The proof follows the same lines as the proof of Theorem 6.20, pp.
155-159 of White (1984), although we have no need to treat estimated residuals here. We first note
that the assumptions of the theorem ensure that the conditions of Lemma 4.1 hold. Thus, o3 —0% >0
as T1co. Next we have

T ! T
Sgl‘l _Ugl‘l =7 ; {u%_ E(“f)}-"ZTVI Y ¥ {wu_—E(uu_,)}

s=11=5+1
and
r
Ty {u; - E(u)}——0, Tl
1 a.s.
as in the proof of Theorem 3.1. Writing Z,=uu,_,—E(uu, ), it remains to show that

T! Zi:] Z,T:SH Z,S—;O as T1oco. But this part of the proof follows as in the proof given by White

(1984, pp. 155-157). It is necessary, however, to correct the error that occurs on page 156 of White
(1984) in the use of his Lemma 6.19. When one allows for the fact that s may increase with T, the
conclusion of Lemma 6.19 should be amended to

E< £ Z,v\.)$s(T—s)B<sTB

t=s5+1
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for a suitable constant B It follows that (see p. 156 of White (1984) for details):
P[

which tends to zero if I=o(T"*). We deduce that s?,-,—; o? as required.

i T
T'Y ¥ Z,

s=1 t=5+1

'
?e]s sTBI?/T?
s=1

=BP(1+1)/2e?T

PROOF OF THEOREM 5.1: By Theorems of 3.1 and 4.2 we have as T1cc:

. (/W) -a7/d?)
T@-n= L w(r)? dr ’

T
T2Lyi =02 fo W(r) dr,
1

and s2—o>.
P

SZTI“’ o?
»
Part (a) now follows directly by the continuous mapping theorem In the same way we deduce that

(W) -0i/a?)/2  (*=02)/2
T {iw a3 W(r)? dry?

Z,
and part (b) follows as required.
PROOF OF LEMMA 6.1 Define £&,, =0 'h;"?u,, Then

—1
Y, (r)=hY? ¥ &, -DT,<r<iyT, =1, .,T,)
1

“NBTRY g,
1
But {{¢,,}{} is a triangular array of 1id (0, 1) variates so that
=1
W, (N=T""7% &, (-1)/T,<r<iyT,
1

= W(r)
as n oo (see, for example, McLeish (1977, Corollary 2 11)). It follows that as n1 oo Y, (r)=> N2 W(r)

as required.
PROOFOF THEOREM 6.2: Using(24), Lemma 6.1, and the continuous mapping theorem, we obtain
T, T, {1-1 2
b 2 Yua=(N/T,) DR +y(0)}
1
Tn
=(N/T,) L{S%-1+29(0)S,,-,} + Ny(0)*
1

= No? J‘ Y, (r)? dr+2Noy(0) J. Y, (r) dr+ Ny(0)*
0 0

1 1
:NZaZJ w(r) dr+2N3/za'y(0)J W(r) dr+ Ny(0)?
0 Q

as nfoo This proves part (a).
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To prove part (b) we write:
T

T, it
; Vre1(Vnr = Y1) =§ { Ell U, +y(0)} Uy

T

n

i—1 T,
= hnvzg ( El) §n,> £a+ay(0)h,? Zl) &nn

No? ¥ (T;'” bl gm) (T;72%,)+ oy (ONA T2 ¥ ¢,
=(No?/2) X ALW, (N 7= T &3+ 0v(O) NV W, (1)

=(No?/2)W,(1)> - (Na?*/2)T;! LTX £,

=(Na?/2) W(1)* - (Na?/2)+ ay(0) N2 W(1)

by the strong law of large numbers, Lemma 6 2, and the continuous mapping theorem.
Part (c) follows directly from the expression

T, T, >
8= 1= % Vo1Vt = Y1) ; Yo
1

and parts (a) and (b) above.
To prove part (d) we note first, after a simple calculation, that

Tn Th Trl
(1/h)sh=0> T Y £, +2(hy/NY1= &) T Yurothn, + (ha/ NY@, =1 L ¥y
1 1 1

—g?

4

as nToo. Then
T, 172
ty, = (h,. P yf,,-l) (1/h) (&, —1)/(h;V3s,)
1
=[(1/2)(W(1)2 = 1)+ (y(0)/ eNV) W(1)]
1 ! 1/2
) U Wn* dr + 2(/(0)/ N [ w(r) dr+)’(0)2/a'2N]
° 0

as required.

PROOF OF THEOREM 6 3* From the solution of (29) we have (under the null hypothesis 6 =0)
y(1) =4 {(dr)+y(0) Thus,
y(0)/ao=V()+y(0)/c

Since [§ (dr) is Gaussian by assumption V(1) 1s here a Wiener process on C[0, N] Transform
t-> Nu=1t with u€[0,1]. Note that V(1)= V(Nu)= N(0, Nu) so that we may write V(Nu)=
N'2W(u) where W(u) 1s a Wiener process on C[0, 1]. Now

N

I y2d1=¢rZJ' V(t)2d1+2oy(0)j V(1) di+ y(0)>*N
0 0 0

1 1
=g’ N? J W(u) du+20y(0) N2 J' W (u) du+ y(0)°N
1] 0

and

N N N
J ydy=azj Vdv+ay(0)J dav
0

0 0

1
=o?N J W dW +ay(0) N2 W(1)
0
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=(a*N/2){W(1)* =1} + ay(OINV2W(1)

and the required result follows
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