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THE EXACT DISTRIBUTION OF THE WALD STATISTIC

By P. C. B. PuiLLIps!

This paper derives the exact finite sample distribution of the Wald statistic for testing
general linear restrictions on the coefficients in the multivariate linear model. This general-
izes all previously known results, including those for the standard F statistic in linear
regression, for Hotelling’s T? test, and for Hotelling’s generalized T2 test. The results
presented here encompass both the null and the non-null distributions. They also yield in
a simple and elegant way the asymptotic distribution theory and related higher order
asymptotic expansions. Various specializations of our general result are presented, including
a computable formula for the null distribution in the case of a test of single restriction.
Conventional classical assumptions of normally distributed errors and nonrandom
exogenous variables are employed.

KEYWORDS: Asymptotics, exact distribution, fractional calculus, linear model, Wald
statistic.

1. INTRODUCTION

ONE FIELD IN WHICH ECONOMETRIC DISTRIBUTION THEORY would appear to be
in a particularly well developed state is the linear model with normally distributed
errors. In this model we have an established battery of exact statistical tests for
practitioners. The most well known of these are the commonly used ¢ and F ratio
test statistics. Also well known, but less commonly used, are Hotelling’s T?
statistic and Hotelling’s generalized T test. Other test statistics for which distribu-
tional results have been obtained in the linear model are the likelihood ratio
statistic, Pillai’s statistic, and Roy’s largest latent root test. Muirhead (1982)
contains a detailed review of existing analytical results in this field including
both exact formulae and asymptotic expansions. All the above mentioned statistics
may be used for testing linear hypotheses about the coefficients in the multivariate
linear model.

In spite of the extensive research in this field (exemplified by Chapter 10 of
Muirhead (1982)) there are still major unsolved problems. One of these, which
is particularly interesting to econometricians, is the distribution of the Wald
statistic for testing general linear restrictions on the coefficients. In special cases
where the coefficient matrix in the restrictions takes on a Kronecker product form
(corresponding to the GMANOVA and classical MANOVA models in multivari-
ate analysis) the Wald statistic reduces to the generalized T statistic and known
results for the distribution of this statistic apply. However, when the coefficient
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matrix is not of the Kronecker product form, none of the presently available
results are applicable. Important practical examples arise in applied demand
analysis in econometrics where the Slutsky symmetry condition leads to simple
linear across equation restrictions which cannot be formulated in a Kronecker
product representation.

The purpose of the present paper is to provide a unified and comprehensive
general solution to the distribution of the Wald statistic in this multivariate linear
model setting. More specifically, the paper derives the exact probability density
function (pdf) of the Wald statistic for testing the null hypothesis of quite general
linear restrictions on the coefficients. The most general result we present applies
both to the null distribution of the statistic and to the non-null distribution which
obtains under a generally specified alternative hypothesis. Various specializations
of our general result are considered in detail. These include the regression F
statistic, Hotelling’s T? statistic, and the important special case in which only a
single restriction is under test. For the latter case, a formula for the null distribution
which can be readily computed is also presented. The analysis that leads to the
non-null distribution of the Wald statistic involves the derivation of the density
of a noncentral positive definite quadratic form in normal variates. This density
should be useful in other work as well.

We also provide a simple and novel derivation of conventional asymptotic
theory as a specialization of our general finite sample results. This approach may
be extended to generate the formulae for higher order asymptotic expansions.
Thus, the results of the paper provide a meaningful unification of conventional
asymptotics, higher order asymptotic expansions, and exact finite sample distribu-
tion theory in this context.

The analytical methods employed here rely on the fractional matrix calculus
developed by the author in other recent work (Phillips, 1985). The reader is
referred to Phillips (1985) for an introduction to these techniques and for another
application of them in econometric distribution theory.

2. THE MODEL AND NOTATION
We write the multivariate linear model in the form:
1 ¥ = Ax,+u, (t=1,..., 7).

¥ is a vector of n dependent variables, A is an n X p matrix of parameters, x, is
a vector of nonrandom independent variables, and the u, are i.i. N(0, £2) errors
with £ positive definite. The hypothesis under consideration takes the general
form

2) Hy: DvecA=d, H,:DvecA-d=b#0,

where D is a g X np matrix of known constants of rank g, d is a known vector,
and vec (A) stacks the rows of A.
From least squares estimation of (1) we have

3) A*=Y'X(X'X)™", N*=Y'(I-Px)Y/N,
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where Y'=[y,...,yr), X' =[x1,...,xr], Px =X(X'X)"'X', and N=T-p.
We take X to be a matrix of full rank p< T and define M =(X'X)™".

The Wald statistic for testing the hypothesis (2) is
(4 w = (D vec A*—d){D(2*® M)D'}"\(D vec A*~d)

= NI'B|,

where 1= Dvec A*—d is N(b, V) under H, with V=D(2@M)D’, and B=
{D(C®M)D'}"". C=Y'(I-Px)Y is central Wishart with covariance matrix 0
and N degrees of freedom.

We define y = I'Bl and write y in canonical form as

() y=2g'Gg,

where g=V~'2l is N(mL), m=V~"%, and G '=VViD(C®
M)D'}V"*= D(C®M)D’ with D=V~"?D,

3. THE GENERAL NONCENTRAL DISTRIBUTION OF W

We start with the canonical variate y as givenin (5). The conditional distribution
of y given C is that of a noncentral positive definite quadratic form in the
normally distributed random vector g. Our first task is to derive this conditional
distribution.

We define z = G'/?g. Then y=2z'z and
(6) pdf (z| C) = (27) " ¥*(det G)™"/* exp (—m'm/2)

-exp (-2'G'z/2) exp (G *zm’).

Note that y is invariant under z - zk where ke 0O(1) (i.e., k*=1). Making this
substitution in (6) and integrating over the (normalized) orthogonal group 0Q1),
we have:

) (27)"*(det G) V' exp (—m'm/2)
-exp (-2'G™'z/2),Fi(3, 122G "’mm'G™V?z).
We now transform z- (h, y) according to the decomposition z = hy'/? where

y=2z'z and he V,, (that is, the unit sphere h'h=1). The measure changes
according to

dz=(1/2)y¥*"" dy(dh)

where (dh) denotes the (unnormalized) Haar measure on the Stiefel manifold
V..o It follows from this decomposition that the required density of y conditional
on C is

(8) pdf (y|C)=2"92"17"92 exp (—~m’'m/2)y*'*'(det G)™/*
. etr (—~yG'hh'/2)oF,(&, syh'G ™ *mm'G™"/*h)(dh)
= 2"";;[T (g/2)17" exp (—m'm/2)y¥* ' (det G)™V/?
. jv etr (—yG~'hh'/2),F,(3, 1yh' G~V mm' G™"2h)(dk)

where (dh) denotes the normalized measure on V,, (that is, IV.,., (dh)=1).
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Series representations of the factors in the integrand of (8) are as follows:

= (~y/2
9) etr(-—yG"hh’/Z)=)§o( };,/ yc(j)(G—lhh'),
1 L2 2y (y/9)* V2t G-V 2y
(10) oFiG, syh'G™ ' ’mm’'G h)—kzo___k'(l/Z) Ci(G*mm'G h')
= . k

in terms of top order zonal polynomials C,,( ) where (j) denotes the partition
(j,0,...,0) of j with only one nonzero part, Formulae for C(,)( ) are given in
James (1964).

We substitute (9) and (10) into (8) and integrate term by term, which is
permissable in view of the absolute and uniform convergence of the series. The
integral

(lla) J CU)(G_lhh')C(k)(G_”2mm'G-”2hh')(dh)
Vig

=J Ci;)(G™'HE\ H')Cyuy(G™*mm’'G ™"/ HE,,H')(dH)
O(q)

= L CPM(GT, GV mm' GV CPM(E, En)/ Coll,)

ee(g)(k)
(11b) =CHMUG™, GV *mm'G™%)/ C s (1,)
(11c) =CPY(G™, G 'mm")/C(,(1,).

In the above expressions C{Y*) denotes an invariant polynomial in the elements
of its two argument matrices. These polynomials were introduced by Davis (1979,
1980) to extend the zonal polynomials and the reader is referred to his articles
for a detailed presentation of their properties. ¢ is a partition of the integer
f=Jj+k into <gq parts and the notation ¢ € (j) - (k), which is defined in (Davis,
1979), relates the two sets of partitions that appear in the summation. In the
present case only top order partitions appear in the summation since, from (11a),
E,,= e e} where e, is the first unit vector. Moreover, C5*(E,,, E;;) =1, leading
to (11b). Finally, for any two integers a and b

(12) tr {(G"HY (G V2 mm'G™ )} =tr (G (G 'mm")*}

and (11c) follows because distinct products of powers of traces such as (12) form
a basis for the invariant polynomials (Davis, 1979). To simplify notation in what
follows we shall use C#*( , ) in place of CZ5*( , ).

From (8)-(11) we deduce that

(13)  pdf (y|C)=2"9[I'(g/2)]"" exp (~m'm/2)y*'*"'(det G) />

5 (=1y(1/2y(1/4)%y'
FTTIRVEN

CH(G™, G'mm")/ CipI,).
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It is worthwhile to remark that (13) provides a general expression for the pdf of
a noncentral positive definite quadratic form in normal variates. Interestingly,
this density does not seem to have been derived before in the statistical literature.
Note that when m =0 only terms for which k =0 are nonzero, leading to

= y/2)’

(14)  2797[T'(q/2)]'y"*7\(det G)"”Z Ci(G™/ CiplLy)

=292[I'(g/2)]"'y¥* "(det G)"’ zoFo(—%G‘ ,¥)

which is the density of a central positive definite form in normal variates, as
given in James (1964).

In the present case (13) and (14) are conditional densities given G or,
equivalently, C the random Wishart matrix upon which G depends. In fact,
G™'=D(C®M)D' is linear in the elements of C. Our second task in finding
the unconditional density of y is to average the conditional distribution weighted

by the density of C.
Since
_etr (—027'C/2)(det )N ""1/2
pdf(C) =" (N2 dee )
we find that

pdf(y)=JC pdf (y| C) pdf (C) dC
2"'/ I(q/2)] exp (—m'm/2)y?*!
2"N2F(N/2)(det D)V
. (—1)'(1/2Y(1/4)yj _o-
E TN DRCr(ly) Jeno T A C/D
- (det C)(N="=172 det (B(C ® M) D')"/2C%*
-(D(C®M)D', (D(C® M)D')mm") dC.

Term by term integration of the series is justified by a theorem of Hardy (see
Titchmarsh, 1939, p. 47). The series may be shown by majorization to be absolutely
convergent for 0<y<1.

Using the theory of matrix fractional calculus developed in Phillips (1985) we
now write:

(16)  det (D(C®M)D)*Ci*(D(C®M)D', D(C®M)D’'mm’)
=[det (D(6Z® M)D")*C*(D(3Z® M) D', D(3Z® M) D'mm’)
-etr (CZ)]z=0

where Z is an auxiliary matrix of dimension nx n and 4Z denotes the matrix
differential operator 3/3Z In (16)C}* is a polynomial in the elements of the
matrix operator 4Z and is well defined in the sense of conventional calculus. The
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operator det (D(3Z®M)D')"/? in (16) is a fractional matrix operator which is
to be understood in the sense of the definition provided in Phillips (1985). Thus,
if f(Z) is an analytic function of the matrix of complex variables Z and if u is
any complex constant, we define:

a”n det (D(®Z@®M)D")f(Z)
=(rq(a))“‘J [etr{—D(3Z® M)D'S} det (D(3Z®M)D')"f(Z)]
$>0

- (det )= ~*12 gg

provided the integral is absolutely convergent. In (17) a is a complex quantity
for which Re(a)>(g—1)/2 and m is a positive integer; they are selected so that
#=m—a. When f(Z) =etr (CZ) we find by a simple evaluation that det (D(3Z®
M)D")?etr (CZ)=etr (CZ) det (D(C @ M)D')"/? as required for the validity
of (16). The reader is referred to Phillips (1985) for a detailed development of
the theory and the rules for the manipulation of fractional (and possibly complex)
matrix operators such as (17). Note that, with this interpretation, (16) provides
a linear pseudodifferential operator representation of the function on the left
side of the equation.
Using (16) we write (15) in alternate form as:

exp (—m'm/2)y?*" (-1/2Y (1/4)%y’

2@V (/D) (N Dot B B IR DCop 1)

pdf (y)=

. J [det (D(3Z® M)D")'/?
Cc>0

- CH(D(BZ@®M)D', (D(3Z®M)D')mm’)
cetr {—((1/2)27" = Z)C}z—o(det C)N""V/2 4C.

The integral over C in the expression above is absolutely and uniformly conver-
gent for all Z satisfying Re (Z) < el, where € is any positive quantity less than
the smallest latent root of £27'/2. We may therefore take both the operator
involving 8Z and the evaluation at Z =0 outside the integration, yielding:

exp (—m’'m/2)y?*™! (=1/2Y (1/4)y’
2@ NIF(g/2)(det 2)N2 5% j1kN(1/2)k
- [det (D(3Z® M)D")'?
- CH(D(BZ®M)D', (D(3Z® M)D')ymm')
- det(27'/2-2)"N"] 20
_exp (-m'm/2)y*>" . (-1/2Y(1/4)"y”
©2T(q/2)  3j%N(1/2)CipvT,)
-[det (D(3Z®M)D")*C}*
(D(OZ®M)D',(D(3Z®M)D')mm')
- det (1-202Z) "N,

pdf (y)= Cinlly)
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Transforming Z - 202'/2Z0"/* = X and using the easily established rule of trans-
formation that 8Z = 202"%3X0"?, we obtain:

exp (—m'm/2)y¥* 7 (1Y (/)7
I'(q/2) 137K/ 2)Cipy(1)
- [det (L@X®I)L)"?
 CHMLEX® DL, (LEX®I)Lymm') det (I1-X)™*]x

(18)  pdf(y)=

where
L= V—I/ZD(01/2®MI/2) = (D(ﬂ@ M)D')_1/2D(01/2®M‘/2).
The series (18) is certainly convergent for 0= y <1. Moreover, as we shall see
from several examples in the next section, the domain of convergence may often
be extended by analytic continuation to the entire interval 0 < y <o after a simple
manipulation of the series.
Since W= Ny we deduce from (18) the following expression for the density
of W(0< W<N):
exp (—-m'm/2)w¥?' _ (~1Y(1/2)*(w/N
N*?I(q/2) ;& j'k1(1/2uCip(1y)
-[det (LGX®I)L)"?
- CLBX®DL, (LX®I)L'Ymm') det (1 -X)" N o

Alternative formulae for these densities which are everywhere convergent may
be obtained by proceeding directly from (8) rather than (13). The derivations are
omitted and we give only the final expression here:

(200 pdf (»)=[I'(a/2)] " exp (-M'M/Z)y“”"’[det (LGXx®NL)"

. j exp {—yh'L(3X ®I)L'h}
V)

laq
- oF1(4, 3yh' L(3X ® I) L'mm'h)(dh) det (I —X)'N“]
X =0
The corresponding formula for the density of W = Ny follows by transformation.

4. SPECIALIZATIONS

4.1, The Regression F Statistic

When n=1, the model reduces to the general linear model, {2 is a scalar
parameter (o, say), the hypothesis (2) becomes Hy: Da=d and 94X becomes
the scalar operator 8x = d/ dx. Since LL' = I, we find that the density (18) reduces
to:
exp (—m'm/2)y¥*™! (-1Y(1/2)%y’

Ir(q/2) 2k J1kN1/ 20 C (1)
- CH*(I, mm")[9xV* (1-x) "N ]eeo.

(21)  pdf(y)=
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Note that by the rules of fractional differentiation developed in Phillips (1985):

I'(g+u)

(22) x“(1-x)"P= T'G)

(1-x)"""%, Re(B)>0, Re(B+p)>0,

and from Davis (1979):
(23) C4*(I, mm") = C p(1,)(m'm)*/ Co(1y).
Now using the fact that

! (4
(3), cwt=(9),

we deduce from (21), (22), and (23) that
exp (—m'm/2)[ (N +q)/2)y**"!

pdf(y)= I'(a/2T(N/2)
¢ (=YY (m'm/2)% (N +q)/2),
& j'k!(q/2)x
_exp(=m'm/2)y"*"!
"~ B(q/2,N/2)
g m'm/ DY (N +9)/ )i o (CyY (N + 9)/2+ k),
¢ k'q/2): it

j !
_exp(-m'm/2)  y¥*! F (N+q q m'm( y ))
B(q/2, N/2) (1+y)N+o2100 1y 22’ 2 \1+y//)
The final line of this derivation uses the series representation of (1+ y)~(N*9/2-k
which is convergent for 0 < y < 1. However, by analytic continuation this condition
on y may be relaxed and the stated formula represents the density over the entire
interval {0, o0).
It follows by inspection that;
F=Ny/q= F,n(5")

as in standard regression theory. The noncentrality parameter is 8°=m'm=
b'V'b=(Da-d)(DMD')"(Da-d)/ o>

4.2. Hotelling’s T*

In this case the null hypothesis takes the form H,: D,Ad,=d sothat D= D,®
d; for some p-vector d, and gXx n matrix D, of full rank g<n. Setting E =
(D, 2D})"2D,N"? we find that (18) is

exp (=m'm/2)y?>™" _ (=1Y(1/2)%”
df (y) =
pdf(y) Ta/?)  EjWN1/2:GT)
- [det (E 8XE')'>C}*(E XE', E XE'mm’)
~det (I -X)"N?x0
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We construct an n X n orthogonal matrix P'=[E’ . K'] and, transforming X -
PXP'= 2, we find

exp (—m'm/2)y¥* ' . (=1Y(1/2)%y’

T'(q/2) 2 J K11/ 20 Cy (1)
- [(det aZu)l/zC?k(aZu, 0Z,, mm'") det (J "Zu)_N/z]z"-o
where Z,, is the leading g x g submatrix of Z. Now

(29)  pdf(y)=

- I,(N+1)/2) -
1/2 _Z. N2 _ (N+1)/2
(25) (det 8Z,,)*det (I -Z;,) T.(N/2) det (I - Z,,)
and
(26) [C?k(azlla 0Z,ymm’") det (I - Zu)_(NH)/z]leo

=[Tq((N+1)/2)]“I etr (-S)
$>0
- (det )NVt eik(S Smm') dS
_LUN+D)/2,f) ,
= 1’;((N+ l)/Z) Cf (I, mm)

where the final expression follows from one of the Laplace transforms given in
Davis (1979) and I,((N+1)/2,f) is the constant introduced by Constantine
{1963). In the present case

L,((N+1)/2, /)] T,(N+1)/2) = ((N +1)/2)y.
From (24)-(26) and (22) we deduce that:
exp (—=m'm/2)I((N +1)/2)y"*""!
I'(g/2)T4(N/2)
o (Y (m'm/ DM EN+1)/2),
by’ Jkq/ 2
_exp(=m'm/2)[ (N+1)/2)y**™
T T(g/DT((N-q+1)/2)
_ (m'm/z)"y"((N+1)/2)kz(—yY<(N+1)/2+Q
k ki(q/2) ; J!
_ exp (-m'm/2)y?*"
" B(g/2,(N-g+1)/2)(1+y) V72

) F(N+l g’m’m( y )
VI 2’2 2 +y/)

Thus, using analytic continuation as before, we find that
N-g+1

pdf (y)=

F= yqu,N—q-O-l(az)’
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where the noncentrality parameter is
8=m'm=b'V'b=(FAg- d)(FQF')"'(FAg—-d)/g'Mg.

4.3. The Case of a Single Restriction

If g=1 we have a test of a single restriction Hy: d'vecA=e say,and L=1]'=
(d'(R®M)d)™"2d"(2"*@ M"/?). 1t will be convenient in what follows to set
I'= Ki, where K is the commutation matrix? of order np, and to partition this
vector as I'=(T},..., ) where I, is nx 1. Define Q=X} II". The density (19)
is in this case:

(21 pdf(w)=

e ™22 5 (=1Y/2)*(w/NY .
N7TG) 5w, "

- [(tr (3XQ)Y™"/* det (I-X)""1x o
Now
(tr (3XQ)Y* ' det (1 -X) N2 = L C(3XQ) det (1-X)™N72

-3(%)_ c-xro

det (I-X)~N2

where the summation is over all partitions @' of the integer f+1 into <n parts.
Moreover

(28) (tr (3XQ)Y V2 det (I - X) N2
= (tr (X Q))™'(tr (8XQ)Y " det (I - X)™N/2

=1 (‘I;) ,(r (0XQ))™*Co (1 - X)7'Q) det (I - X) N/
=;(%) r(%) roetr(-—taXQ)Cp'((I"X)'lQ)
. det (I_X)—N/2t—1/2 dt

_‘ o
=z(i"-) r(l) J V2C,(I+1Q-X)™Q)
e \2 ¢ 2 0
~det (I+1tQ-X)"N? 4,

After substitution of (28) in (27) we obtain;

oM 2y =12 (—1Y(m%/2)*(w/NY
29 pdf (W)= W jkN1/2),

'z (“Iz!) I ) 2 (1 +1Q) ™ Q) det (I+1Q) M2 dr,
o' JO

Py

* Specifically, K =Y, I}, Hy® H| where H, is the n x p matrix with 1 in the ijth position and
zeros elsewhere.
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A somewhat simpler expression for this density may be obtained by working
from (20) rather than (19). The details of the derivation are omitted and we give
only the final formula:
e—mz/zw-1/2 Z (m2/2)k(w/ N)k

NVArG? % kN1/2)

Z(%) 'J‘w'_‘”Cx-(o[1+(w/n)o+tO]"

-det[I+(w/N)Q+1tQ1 N'*dt
where the summation ¥, . is over all partitions ' of the integer k+1 into <n parts.

(30)  pdf(w)=

4.4. The Null Distribution in the General Case

When m =0 only terms for which k =0 in (18) are nonzero. Since C(A, B)=
C(,(A), (18) becomes:

y it e (Y
31 df (y) = ;
(31) pdf (») F(4/2):§11!C(»(1q)
- (L(dX®I)L') det I-X)"Mx 0
yq/Z—l
I'(q/2)
- oFo(—~LGX ®I)L', y) det (I - X) "] o
as found in Phillips (1984b) by direct methods. Note that (31) may also be
deduced immediately from (20) and the definition of the oFp function.

Thus, the null density of the Wald statistic W is:

wi/2-1

N93T(q/2)
- oFy(—L(X®I)L', w/N) det (I - X)"*1x 0.

[det (LGX®I)L)*C,,)

[det (L(3X®I)L')"?

(32) pdf (w)= [det (L(3X®I)L)"?

This is a simple and general expression for the exact density which is very useful
in analytic work. All presently known null distributions for the Wald statistic
may be deduced quite simply from (32), including the complicated formulae
obtained in Constantine (1966) for Hotelling’s generalized T? statistic. The reader
is referred to Phillips (1984b and 1984c) for a complete discussion and for
algebraic details.

4.5. The Null Distribution When q =1

Setting m =0 in (30) we immediately obtain the null density:

w'”zllvzllz Iw 12
2r(i) 0

cdet[I+(t+(w/N)QI Mt {Q[I+(t+(w/N))Q] '} dt.

(33)  pdf(w)=
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This expression may also be found from the general formula (32) for the null
density and from the alternate formula (30) given earlier for the non-null distribu-
tion when g =1.

Formula (33) may be used to compute the exact density by means of a simple
unidimensional numerical integration. Recall that the matrix Q=Y!I,l; and the
elements of I'= K/ depend on the restriction vector d, the sample matrix M =
(X’'X)™", and the nuisance parameter (2. Thus, in general, (33) depends on these
parameters also.

The most important exception occurs when n=1 and (33) reduces to:

w—l/le/z © s t ~(N/2)1
= - -+ —
ot )=, ()
NN/2w1/2—l

~B(1/2, N/2)(N+w) 7
=F.~

as otherwise expected.

4.6. Asymptotic Theory

As a first approximation to the exact density (19) in the general case we make
the replacement

det (I-X)"N2~etr (NX/2)

which is appropriate in the neighborhood of X =0. Formula (19) simplifies
immediately under this approximation to:
exp (—m'm/2)w?>™ _ (-1Y(1/2)*(w/NY
NI(q/2) & j%'(1/2)Ci(,)
[N/ CH(I, mm))

___e)q;a(—m'm/2)w"/2'1 § (=w/2Y = (m'm/2)(w/2)*
2921 (q/2) =0 J!' e k¥q/2):
N 2921 (q/2) “\2 2 \2

pdf (w) =

= x2(8%)
where the noncentrality parameter is
=m'm=b'V'b=(DvecA— d)(D(2@M)D") (D vec A~ d).

This provides us with a simple and elegant method for deducing the conven-
tional asymptotic distribution of the Wald statistic from the general formula (19).
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The approach may be made rigorous by noting that in (19) X is a dummy variable
and we may transform X -» NX = Z giving

exp (—m’'m/2)w¥>! (1Y (1/2)w’
I'(q/2) 2 J 1R/ 2 C (1)

- [det (L(3Z® I)L')"/?
- CH(LOGZ® DL, LOGZ® D) L'mm’) det (I - Z/N) "]z,

pdf (w) =

N/2 a5 Ntoo we

Taking the first order term in the expansion of det (I-Z/N)~
then obtain the asymptotic x%(8%) distribution as shown above.
We remark that higher order asymptotics may be obtained by an obvious

extension of this approach. The details will be reported elsewhere.

5. CONCLUSION

This paper provides a comprehensive and unified treatment of the distribution
of the Wald statistic for testing general linear hypotheses in the multivariate
linear model. All presently known special case distributions of this statistic may
be obtained from our general formulae (19) and (20). This includes the well
known formulae for the noncentral distributions of the regression F statistic and
Hotelling’s T2. Other specializations, such as that of Hotelling’s generalized T
statistic (Constantine, 1966), are discussed in detail in two related papers by the
author (Phillips, 1984b and 1984c).

Also of interest is the fact that our general expression (19) yields in a simple
and elegant way the asymptotic noncentral x* approximation to the distribution
of W. This approach to the asymptotic distribution is quite rigorous. Moreover,
it may be extended to provide a simple algorithm for the development of higher
order asymptotic approximations. Thus, our results may be said to provide a
unification of asymptotic theory, asymptotic expansions and exact finite sample
theory for the Wald statistic. In this respect, the results and the methods of this
article are quite different from those of conventional statistical distribution theory,
wherein the various branches of asymptotic analysis and sampling distribution
theory are usually quite distinct and involve quite different mathematical tech-
niques.

We remark that the null distribution of the Wald statistic given by (32) depends,
in general, on the elements of the matrix L and, thereby, on the sample precision
matrix M = (X'X)™, the restriction coefficient matrix D, and the error covariance
matrix (2. Only in very special cases, such as when D has the Kronecker structure
D = D;® D,, will the density be independent of these parameters. Since M and
D are known while {2 is not, it is the latter matrix of nuisance parameters which
presents difficulties for the use of (32) in empirical work. This is 2 manifestation
of a widely occurring problem in econometric tests. Of course, the use of
conventional first order asymptotics in empirical work bypasses the problem
entirely because, under conditions which are assumed for the application of this
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theory, 2* -, 2 as T 100 and the null distribution of the statistic W is asymptoti-
cally x2 and independent of 2. However, the use of first order asymptotics brings
with it another set of problems (see Phillips (1983) for a detailed discussion).
One of the most important of these is that, in neglecting the effect of the use of
an estimated value of £ in the computed value of the statistic W, inferences
based upon asymptotic critical values are often seriously biased towards rejection
of the null. Some idea of the extent of the bias involved in the use of asymptotic
formulae in the present context is given in the experimental results of Meisner
(1979) and recent numerical computations by the author (Phillips, 1984a). These
studies reveal that the asymptotic bias appears to be much larger than was earlier
thought and can lead to serious distortions, particularly when the ratio q/T is
not small.

An alternative procedure, which allows for the presence of nuisance parameters,
is to employ Edgeworth corrected critical values in statistical testing. Formulae
for these corrections are now known (see Phillips (1984a) and Rothenberg (1984))
and, from the computations reported in Phillips (1984a), they do appear to yield
improvements over first order asymptotics. Practical implementation of these
corrections, however, requires the use of consistent estimates of the nuisance
parameters. The results of the present paper should be useful in calibrating the
accuracy of such Edgeworth corrections. The most important special case is that
of a test of a single restriction, and here, numerical computation of the exact
distribution can be readily achieved using (33).
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