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ABSTRACT

This paper initiates a research program to provide computer function
routines that can be used to deliver critical values or significance levels
for statistical tests. These routines are easily integrated into existing
econometric software and can be made available on a user call basis. The
mathematical formulas underlying these approximants belong to the family
of extended rational approximants (ERAs) introduced in [15)]. The first
part of this paper extends the algebraic theory of ERAs to distribution
function approximation. Composite functional approximants are also
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developed to treat the parameter multidimensionality that is common in
practical applications. The second part of the paper reports a detailed
application of the approach to the distribution of the serial correlation
coefficient under spherical Gaussian errors. The formulas we extract are
error-corrected Edgeworth approximants that yield at least three decimal
place accuracy over the entire distribution for all sample sizes (T = 4).
These approximants can be used to mount a variety of tests, including
tests for serial correlation and unit roots. Further extensions of this work
to higher order serial correlation coefficients that are used in the Box-
Jenkins model identification process are discussed in the conclusion.

1. INTRODUCTION

Recent advances in exact sampling and asymptotic expansion
theories have produced general formulas for the probability density
functions (p.d.f.’s) and cumulative distribution functions (c.d.f.’s)
of many commonly employed econometric test statistics and
estimators. These formulas are auspicious developments for
applied researchers who wish to report the small sample properties
of their statistics and estimators. Despite the promise of these
theoretical developments for the conduct of applied research,
however, there have not been many explicit attempts to use for-
mulas from the finite sample literature in empirical work. There
appear to be two major reasons why these formulas have not been
used more frequently in applied research. First, the exact finite
sample formulas often involve very complicated mathematical
expressions.! Second, the reliability and accuracy of numerical
results from asymptotic expansion formulas (and even exact p.d.f.
and c.d.f. computations) is open to question (see [13] and [16]).

Because of the difficulties involved with the computation of
exact distributions and unease over the reliability of approxima-
tions derived from asymptotic expansions, many econometricians
have resorted to_alternative numerical algorithms (for example
Imhof’s [9] routine) in order to calculate density and distribution
functions. These algorithms are generally regarded as highly accu-
rate. Unfortunately, the complexity and expense of these routines
has for the most part limited their integration into econometric
packages. Moreover, another level of computational complexity
enters into the use of these routines for testing in that they require
additional solution algorithms in order to deliver the appropriate
critical values for Neyman-Pearson tests.



Testing for Serial Correlation and Unit Roots 3

In the absence of simple, cheap, and accessible means for
computing exact p.d.f. and c.d.f. values, econometricians and
statisticians have resorted to longhand ways of summarizing distri-
bution functions. The conventional means for presenting this infor-
mation is a series of tables that report grids of probability values
indexed against a set of parameters that control the shape of the
distribution function (for example, sample size, degrees of free-
dom, and the concentration parameters). In situations where the
distribution function depends upon only one or two of these shape
parameters, these tables are easily developed. The ¢, F, and x>
tables in the back of econometric texts are familiar examples. In
situations where there are several parameters that determine the
shape and location of the distribution (for example, the Durbin-
Watson statistic) or where some of the parameters vary con-
tinuously, clever ways of summarizing tabular information have
been devised. Inevitably, these alternative methods sacrifice pre-
cision in the grid of reported values because of space limitations.
The resulting sacrifice of information can be substantial, par-
ticularly if certain parameters take on a continuum of values and
parts of the distribution (such as the tail areas) are sensitive to
small changes in these parameters.

There is some hope that with the continuing technological
advances in mainframe and personal computing and the increased
availability of sophisticated numerical software, applied research-
ers will be able to overcome many of these computational problems
and space constraints. Currently, we have the means with which
we can carry out moderately complicated c.d.f. and p.d.f. calcula-
tions as well as the ability to store large volumes of statistical
tables in computer banks. As the advance in computing technology
continues to expand our capacities to store, calculate, and retrieve
information on p.d.f.’s and c.d.f.’s, a question arises as to which
means will be the most efficient for introducing finite sample results
into applied work. The suggestion that we should begin incorporat-
ing numerical routines (such as Imhof’s routine) directly into
econometric packages has been advocated by some researchers
(for example, Sargan and Bhargava [22]). This approach has
distinct advantages over other options such as storing statistical
tables on disk. On the other hand, the integration of numerical
routines directly into econometric packages also has its drawbacks,
as indicated earlier. Not the least of these is the substantial start-up
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cost entailed with programming and storing the routines in one
easy-to-use package. In addition to these start-up costs, there can
be non-trivial variable costs associated with each use of these
routines.

In this paper we develop and illustrate an alternative approach
to computing probability values for c.d.f.’s. This approach is based
upon Phillips’s ([15], [18] and [19]) earlier work on functional
approximation of p.d.f’s. Phillips’s functional approximation
approach seeks to strike a middle ground between direct computa-
tion methods and the tabular form for p.d.f.’s and c.d.f.’s. Its main
attractions are that it requires very little storage space, it is cheap
to use, it is flexible enough to consider a variety of mathematical
and Monte Carlo information on the c.d.f., and it is easy to
program. The formulas delivered by this approach provide high
accuracy and can be carried in a function routine designed to yield
outputs corresponding to a variety of possible user choices. Thus
the user may call for the probability level that is associated with
a calculated statistic, the critical region for a given test size, or
even power function evaluations for well-specified alternatives.

The present paper draws its motivation from this general
research strategy. Its immediate purpose is quite specific: to illus-
trate the usefulness of these approximation techniques by provid-
ing programmable formulas that can be used to mount exact tests
of serial correlation or unit roots for any sample size. The formula
we extract belongs to a family of extended rational approximants
(called ERASs). This family is developed for general purpose c.d.f.
approximation and is related to the family of p.d.f. approximants
introduced in [15]. This formula is ready to be hard-wired into
existing econometric software packages. Its implementation
requires only a few lines of computer code and its CPU (central
processing unit) requirements are negligible. It thus liberates the
applied investigator from the detailed tables or numerical calcula-
tions that must now be used in order to perform these tests.

There are of course practical questions and drawbacks raised
by this alternative. These are addressed and extensively discussed
in Sections 2 and 3, and the Appendix of this paper. Among the
issues we will consider are: What form should a numerical
approximant take? Is it possible to produce highly accurate sig-
nificance level values over wide families of ¢.d.f.’s? And, are there
systematic methods available for straightforwardly computing
these approximants?
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The plan for the remainder of this paper is as follows. Section
2 develops the algebra and theory behind our ERAs. Its main
purpose is to extend the theory of ERAs to cumulative distribution
function approximants and to composite function approximants.
These latter approximants are designed to treat the multi-
dimensionality of the shape parameters that index c.d.f.’s. A
detailed application of these ERAs to the distribution of serial
correlation coefficients is given in Section 3. Our final formulas
are reported in Section 3.4. The Appendix to the paper deals with
computational issues.

2. CDF AND COMPOSITE FUNCTION
APPROXIMATION

2.1. Foregoing Research

The use of hard-wired computer function routines to efficiently
compute statistical significance levels is not new. Statisticians (such
as Fisher) have for years sought simple approximations to distribu-
tions that cannot be expressed in closed form. Hastings [7] was
one of the first in a series of investigators who systematically
devised polynomial and raticnal function approximants to some
of the more commonly used distributions (such as the standard
normal distribution). These approximations are continually
being refined and improved. Many are now so simple that they
can be programmed on hand calculators. Zelen and Severo [26]
provide collections of some of the most commonly employed
approximants. Indeed, a number of these are currently hard-wired
into econometric packages enabling the user to automatically check
for the significance of F and chi-squared statistics. There are
two main limitations to these simple distribution function
approximants. First, they are confined to relatively simple distribu-
tion functions that are indexed by one or two parameters. Second,
they are constructed in a largely ad hoc fashion and there is no
guarantee that they will have a uniform degree of accuracy over
their entire range.

These limitations have been overcome in a series of recent papers
by Phillips, who introduced a family of extended rational
approximants and provided a theoretical framework to justify their
use in distribution theory. In particular, [15] introduced mechan-
isms for approximating p.d.f.’s within Cg§[—00, +00], the class of
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continuous, positive-valued functions that vanish at +o0o. That

article suggested the following family of (nonreducible) ERAs of

maximal degrees m and n for p.d.f. approximation:
era(x; y) = s(x)[m, n](x; y)

Yot yix+ -+ ymx"

= s(x)

1
1+‘Ym+IX+"'+‘Ym+nxn’ ()

where v is a vector of rational coefficients (the v,), and s(x) is a
coefficient function chosen to embody relevant analytic (or experi-
mental) information about the true p.d.f. This family of ERAs
works well for density approximation when s € Cg[—00, +00] and
no poles occur in the denominator of (1). The main role of the
rational coefficients y in [m, n] is to build on the strengths of s(x)
as a primitive approximant. As an arbitrary real function, s(x) is
flexible enough to permit the direct use of leading terms from
small sample theory, numerical information on the p.d.f., and
asymptotic expansion information such as that provided by an
Edgeworth expansion.

Phillips [15] studied the properties of these ERAs in the uniform
error norm and established existence, uniqueness, denseness, and
characterization theorems for a best rational approximant. The
critical result of that work is the proof of the following alternation
(oscillation) property of the best approximant in normal (that is,
nondegenerate) situations:

THEOREM 1 (ERROR ALTERNATION OF THE BEST APPROXIMANT).
If the number of alternations of the error curve e(x)=
pdf(x) — era(x) (that is, the number of consecutive points at which
e(x) attains a maximum with alternate changes in sign) is at least
N = n+ m+ 2, then era(x; v) is the best approximant to pdf(x)
in the family defined by (1).

The importance of this theorem is that it extends the classical
Tchebycheff approximation theorem to density approximation
over the entire real line. In so doing, it provides a simple means
for identifying the best approximant in applications.

Practical procedures for implementing ERAs in the family (1)
have been considered in both [15] and [18]. The practical tech-
niques used to construct the ERAs in those papers rely largely on
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modifications of the multiple point Padé approximation that
remove unwanted poles (and zeros) in conventional Padé
approximants. These methods produced impressive precision in
the several examples that were attempted. In particular, they
demonstrated how ERAs can yield substantial improvements over
alternative procedures such as Edgeworth approximations even
when low-order rational functions are used (usually [3/3]’s and

[4/4]s).

2.2. C.D.F. Approximation

We now introduce a new family of approximants that facilitate
the direct approximation of cumulative distribution functions and
tail probabilities. This family has the form:

Era(x; y) = S(x)[n/n](x; v)
Yo+t nix + -+ yx"

= 5(x) =
Yone1F Yo X T YoX

(2

where n is even, S(x) is a primitive c.d.f. (perhaps of the form
{* . s(¢) d(t)) with the properties that S€ C,ST1asx1, S0
as x| —oo, and S(x) > 0 for all x. In the proofs and numerical
work that follows, two different normalizations will be used. The

first is
2n+1

T ov=1, (3)
J="1i1

which is useful in the theoretical development; the second is
Yant1 =1, (4)

which is more convenient in practical work. The parameter space
of these rational coefficients, based upon the first normalization
and pole elimination condition, is

2n+1
r= {y : Y v} =1 and the denominator of (2) > 0

Jj=n+1
for all x € (—o0, 00)} (5)

and is a subset of ®°"*'. If we wanted to insist on the correct
asymptotic behavior in (2) as x 1 00, we could impose an additional
restriction in (5), namely, that v, = ¥,,.
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We now proceed to develop some useful notation and
definitions. We denote by (Ci[—, ] the class of continuous
functions F over (—c0, o) for which F1 1asx 1 o, F | 0as x | —o0,
and F(x) =0 for all x. We denote the uniform error norm by
lle(x)|| = sup.|e(x)|. Following the developments in [17], we may
now develop a theory of best approximation to c.d.f’s in
oC1[—0, ©]. The following results form the basis for this theory.

THEOREM 2 (EXISTENCE AND UNIQUENESS).  If edf(x) € (CT[—0,
o0] then there exists a unique best approximant to cdf(x) in the class
of ERAs defined by (2) and (5).

Proor. The proof follows the existence proof given in [18].
Uniqueness follows from the arguments in [1], pp. 56-57. 1}

THEOREM 3 (DENSENESS).  Suppose cdf(x), S(x) € (Cy[—, ],
S(x) > 0 for all x € (—0, c0), and let € > 0 be given. Then there
exists an ERA in the class defined by (2) and (5) for which | cdf(x) —
Era(x)| < e.

PrRoOOF. We start by considering the function defined by the
difference between the c.d.f. and the primitive, cdf(x) — S(x). This
function is contained in Cy[—00, c0], the space of continuous real
functions defined over (—oc0, ) that vanish at plus and minus
infinity. The following three functions are also contained in this
space:

[1+x7]
[1+x*7

[1+(x-1)]
[1+x*

S(x)[1+ x*17", S(x) and S(x) (6)

Let B be the set of all functions generated from these primitive
members by pointwise addition, pointwise multiplication, and
multiplication by real numbers. Note that % is an algebra of
real-valued functions that vanish at infinity. It is therefore a
sub-algebra of Cy[—00, ®]. In fact, B is dense in Cy[—00, ©]. To
prove denseness we note that if {x,, x,} € (—00, ) with x; # x,,
then either S(x;)[1+ x}] # S(x,)[1 + x3] or S(x)[1+x7]"' =
S(x,)[1 + x3]7". In the latter case we deduce that either

[1+ x7] [1+x3]

D" S g

§(x) [1+ x3]
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or

[1+(x — 1)%]
[1+ x7]

[1+(x,—1)°]

§(x) [1+x1]

# S(xz)
Thus, % separates points of (—00, ). Moreover, because S(x)[1 +
x*]7'> 0 for all x € (—o0, ), it follows that at each point of
(—00, 00) there is a function in % which does not vanish. Thus,
using a generalization of the Stone-Weierstrass theorem ([23], pp.
166-167), B is dense in Co[—00, 0]. We also note that & is an
algebra with respect to pointwise S-multiplication, where S-multi-
plication is defined by the operation: b,by(x) = S(x)b,(x)by(x),
for b, = S(x)by(x) € B and for b, = S(x)by(x) € B.

Now let « be the set of functions generated from the primitive
members (6) by pointwise addition, multiplication by real numbers
and pointwise S-multiplication. Here / is an algebra of real-valued
functions on (—oo, ) that vanishes at infinity; < is also a subal-
gebra of 9. But, because & separates points of (—c0,) and
contains a function that does not vanish there, & is dense in %.
It therefore follows that & is also dense in Cy[—00, 00].

To prove the theorem we note that given £ > 0, there exists an
ac o for which |cdf(x) — S(x)— a(x)| < e. Because S(x)—
a(x) is an extended rational function of the form (2) the theorem
now follows.

THEOREM 4 (ERROR ALTERNATION). Suppose cdf(x), S(x)e
0CT[—00, 0], with S(x) > 0 for all x € (—0,00). Let

’Yo+ YIx +--+ ‘yn—,u,xrl H (7)
1+ ‘le+1x +-e-t 72n~vx"_v

Era(x;y) = S(x)

be the best approximant in the family of [n/n] defined by (2). Then
(7) is completely characterized by the property that the number of
alternations of the error curve

e(x) = cdf(x) — Era(x) (8)
is at least N =2n — v + 2.

PrRoOOF. By the number of alternations of e(x) we mean the
number of consecutive points of the interval (—0c0,c0) at which
e(x) takes on its maximum absolute value with alternate changes
in sign. Because S(x) 11 as x tends to infinity, we note that any
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degeneracy in the rational fraction [n/n](x) must follow the pat-
tern u = v if e(x) is to be bounded at infinity. Hence, when
degeneracy occurs in the best approximant the numerator will be
at least as degenerate (in degree) as the denominator. Under these
conditions on degeneracy, the classical proof of error alternation
applies as in [1]; and a necessary and sufficient condition for best
approximation is that the number of alternates of the error curve
be at least N = 2n — v + 2 as stated in the theorem. §

2.3. Composite Function Approximation

The functional approximation theory developed above is essen-
tially univariate in character. Most practical problems, on the other
hand, are inherently multidimensional, either because we are deal-
ing directly with multivariate distributions or because we wish to
allow for parameter variation in a univariate distribution. The
second source of multidimensionality will be our main source of
concern, although the methods discussed below do apply in the
former context. Since most influential procedures rely on univariate
statistics whose distributions are parameter dependent, this choice
of emphasis is thought to be more appropriate for the practical
application of our methods.

We begin by considering a general approximation problem in
which a given c.d.f. in (C][—00, 0] is parameterized by a scalar
T, which we will regard as the sample size in what follows. We
denote the parameterized distribution by cdfr(x) and define T
over the integer point set 7, = {T|T = T,} for some (usually small)
value of T,. Approximation of cdfr(x) is now a bivariate problem
over the product space # x 7, and the family (2) might be exten-
ded to allow for bivariate rational functions in (x, T). But this
form of extension of the theory is not the most promising. In fact,
best uniform norm approximants to multivariate continuous func-
tions do not always exist and when they do they are usually not
unique. Moreover, the characterization theorems of univariate
problems (such as Theorem 4 above) do not generalize to multivari-
ate situations. The main difficulty is the lack of Tchebycheff sets
of multivariate functions. These issues are discussed in detail by
Rice [20], chap. 12.

Fortunately, there is an alternative and more natural approach
to handling the multidimensionality of the approximation problem.
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This is to use the concept of a composite functional approximant.
The idea of a composite functional approximant can best be
explained in the context of the approximation of cdfr(x). First,
let S;(x) be a primitive c.d.f. that is indexed by T and suitable
for use in Eq. (2). Next, let

Era(x; y(T)) = Sr(x)[n/n)(x; y(T)) 9

be the best uniform approximant to cdfr(x) for a given T, where
v(T) denotes the relevant vector of rational coefficients that vary
over the integer point set 7,. We call Eq. (9) the first-stage ERA
for cdf+(x).

We now construct a composite rational approximant to cdfr(x)
by replacing y(T) in Eq. (9) with a suitable vector of coefficient
function approximants defined in terms of T. In our application
we choose to approximate y(7T) over a finite point set such as
J,={Te Z|T,< T =< T°. Note that 7, has an upper bound.
Such a bound is appropriate when it is known that the primitive
approximant is adequate for T > T°. We will treat this case
explicitly in the following section under asymptotic refinements.

Let y; be a vector of suitable approximants to the coefficient
function y(T) over the point set .. Then

Erar(x) = Era(x; yr) (10)

will be called the second-stage ERA for cdfr(x). Determination
of yr will involve a choice of coefficient function form and numeri-
cal computation based upon the first-stage results. The most
suitable choice of form of y; will be problem specific. Several
possibilities, all of them simple to employ, will be considered
below. Our application in Section 3 will illustrate the operational
features of these different choices.

The simplest way to reproduce first-stage ERA accuracy in Eq.
(10) is to use spline functions for the elements of y, each construc-
ted with a sufficient number of knots to achieve the desired
accuracy. The process can be demonstrated by taking an arbitrary
element, say y,(7T), of the first-stage coefficient vector. Let us
assume that the first-stage ERA, and hence v,(T), are known on
the mesh of integers 7, ={To<T,<Th<---<Ty=T%
Define ordinates y, = v,(T,)(j =0,..., N) on this mesh and let
d, = T, — T, denote the grid spacing. We may now solve the
following system of equations that ensure continuity in the first



12 P. C. B. PHILLIPS and P. C. REISS

derivative of the spline and yield coefficients m, (j =2,..., N — 1)
that are needed in formula (13) below:

Am=z (11)
where A is the symmetric tridiagonal matrix
2(d;+ d,) d,
dZ 2(d1 + d?_) d3
dN——2 2(dN—Z+ dN—l)

and

m' = (my, my, ..., my_y)

Z, = (Zla Z3yeeny ZN——I))
where

Yo ") 6yj ~— Y=
q d,
We set m, = my = 0 and then the natural cubic spline function

that interpolates the values {y,} at the points {T,}(j =0,..., N)
is given by

z=6

(12)

T.,.-T
(1) = {(1= Ty + LD (1o 1Ty - )
J
(d; + T~ T)m + (d+T-T)m,,
' 6d (13)
7

over the interval [ 7,, T,.,]. We use the index i in Eq. (13) to indicate
that s¢,(T) is the spline approximant to v,(7T). Replacing y; by
s¢(T) in Eq. (10), we now have a second-stage ERA that repro-
duces first-stage accuracy.

The representation (13) for the cubic spline is the one most
suited for computational purposes [6]. In cases where there are
many knots it is worth using an efficient algorithm (relying on the
tridiagonal nature of the matrix A) to solve (11) (see [2], pp.
14-15). The choice of the natural spline function (13) with mg =
my = 0 allows for linear extensions of (13) to the regions {7 <
T,, T > Ty} outside the mesh. This choice may be conveniently
changed to accommodate other end point information by appropri-
ate modification of the equation system (11).



Testing for Serial Correlation and Unit Roots 13

Choice of the mesh, {T}}, will also play an important role in the
performance of the spline function approximant. Intuition and
experience from the practical application we will report later
suggest that use of a fine equispaced mesh in regions where the
coefficient functions y(T) display most variation (typically small
T) will perform best. This may be combined with the use of a
coarse mesh in those parameter regions where the behavior of
v(T) shows little variation. When y(T) is defined so as to ensure
compatibility with asymptotic theory, our experience suggests that
v(T) displays a slow monotonic approach to its natural asymptote
as T becomes large. In this region a coarse grid yields an economi-
cal and effective spline which can be readily spliced into the
asymptote for suitably large values of .

An alternative method of generating coefficient function
approximants vy, for (10) is to use polynomial or rational functions.
More specifically, we introduce the general family

ai0+ a1 +-- 4 a:r”)'
1+3il7’+' : .+31S7,S

of rational coefficient function approximants for y;(7T). In Eq.
(14), n = T” is a suitably chosen power of 7. Note that when
s =0, Eq. (14) reduces to a simple polynomial approximant.
Typically v can be chosen to accommodate the asymptotic behavior
of the approximant and the spacing of the coefficients. We have
found 7 = T~"? to be a good choice in our applications.

As before, let the integer point set 7 be the domain of approxi-
mation. On such a finite point set we may consider the possibility
of extracting a best approximant to v,(7T) in the family defined
by Eq. (14). When we restrict our attention to these polynomial
approximants, the Tchebycheff theory of best uniform approxima-
tion applies directly (see [20]). Thus, given y;(T) defined on 7,
there exists a unique best uniform approximant in the family (14)
with s = 0. Let [r/0],, denote this approximant. Then the usual
characterization theory for polynomial approximants also applies.
Specifically, the error function y,(T) —[r/0];r will possess an
alternating set of r + 2 points of I (see [20], p. 33 for the details).
We now use the notation [r/0]r to denote the vector of best
uniform approximants to the elements of y(7T) over J. Then the
second-stage ERA given earlier by Eq. (10) has the explicit form:

Erar(x) = Era(x;[r/0]7) (15)

[r/s)(n) = (14)
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and is called the best composite (or best product) approximation
to cdfr(x) over x € (—00, o) and T € J. Best product Tchebycheft
approximations were first introduced by Weinstein [24] in the
context of polynomial families. Extensions to rational functions
were made in Henry and Weinstein [8] and the concept of best
composite approximation was introduced in [4] as a principle of
unification.

A theoretical difficulty prevents the automatic extension of best
composite approximation of the form (15) to general rational
functions such as (14). The difficulty arises because of the absence
of an existence theory for a best approximant to y,(7T) over I
within the family (14). In fact, best uniform rational approximants
on finite point sets do not necessarily exist and the alternation
theory for rational approximants also fails. Some examples which
illustrate these failures are given in [20], pp. 130-131. Fortunately,
although the theoretical development is impaired by these difficul-
ties, rational functions still provide excellent approximations on
finite point sets. As with interval approximation, these often pro-
vide substantial improvements over polynomial approximants of
the same degree. In this case some of the improvement is purchased
by the presence of discontinuities in the regions which bridge the
discrete points of the domain of approximation. In view of these
problems, the search for an adequate approximant in the rational
family (14) is less formalized than in the case of polynomials. Our
approach, therefore, is to select an approximant because of its
performance rather than because of characteristics which distin-
guish it as best in the Tchebycheff sense. Let [r/s],7 be such an
approximant to y,(7T) which is well defined for all T € J. Then
the second-stage ERA

Erar(x) = Era(x; [r/s]r) (16)

is a composite rational approximant to cdf(x).

2.4. Preservation of Asymptotic Properties

Composite functional approximants such as (10), (15), or (16)
may be formulated in such a way as to preserve the validity of
asymptotic approximations, including second, third, or higher-
order approximations. The simplest procedure involves the
refinement of Edgeworth asymptotic series to improve their perfor-
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mance in regions of the distribution where they possess inherent
weaknesses ([19] provides some recent illustrations). To fix ideas,
suppose we have a statistic ar for which TV*(ar — a) has a
limiting normal distribution and admits a valid Edgeworth series
under general conditions at least to O(7™"). We may then write

Py~ =6 20 T (2) + 7n(2))

z z
o o
+o(T™), (17)

where o represents the asymptotic standard error, ® is the c.d.f.
of a N(0, 1) random variable, and p, and p, denote the appropriate
Edgeworth polynomials. Then

Edr(x) = <I>< T‘/z(x—;g—)—+ T—l/zpl(Tl/z (_’f_ﬂl)

g

+ T-‘p2< T2 u)) (18)

ag

is the associated approximation to the distribution of a.

Now let Sr(x) = Edr(x) be the primitive approximant in Eq.
(9). The resulting first-stage ERA for the distribution of ar has
the general form:

Erar(x; y(T)) = Edr(x)[n/n](x; y(T)). (19)

As usual, n is an even integer (say n = 2m). We note that since
expression (19) is a best approximant, [n/n] is a bounded rational
function over & and has no real poles. Hence, we may decompose
[n/n] into partial fractions as follows:
. _ o[ (1) &(T)

[n/m)(x; ¥(T) = (T + T {x S Tr Ry T
where ¢, is a real scalar, ¢, = ¢, + ic;p, d, = d,; + id),, and the bars
over letters are used to denote complex conjugates.

The decomposition of (20) implies a new parameterization of
the approximantin terms of ¢, ¢, and dy (j =1,...,m; k =1,2).
This reparameterization is useful in the development of composite
approximants that preserve asymptotic behavior. We will therefore
have occasion in what follows to replace the coefficient vector
v(T) with the alternative coefficients {c(T), d(T)}. Coefficient

} (20)
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function approximants for the components of ¢(7T) and d(T) may
now be developed in any of the families considered in the previous
section.

Let us suppose that Edy(x) delivers sufficient accuracy as an
approximant of cdfy(x) for T > T° and that the first-stage ERA
(19) applies over x € ® and I = {T, = T < T°}. Spline function
coefficient approximants would now take the form

cor = sbo(T), Gk = S(;k(T), d_]kT = s(m-i-j,k(T) (21)

(where j=1,...,m;k=1,2), over T € J and would be hooked
into the following set of linear extensions:

cor =1, Gkr = 0, d;rr =0, d;z’r =€ (22)

(where j=1,...,m;k =1,2), over T € (T°,0) and where ¢ is a
small positive scalar. With this second stage, the composite
approximant

Erar(x; y(T)) = Era(x; cr, dr) = Edr(x)[n/n](x; ¢r, dr) (23)

preserves the asymptotic behavior of Ed(x) as T | o0 and modifies
the primitive Edgeworth series (approximant) in the domain {T, <
T = T°. Similarly behaved composite approximants may be con-
structed using polynomial or rational coefficient approximants.

2.5. Higher-Order Composite Approximation

The process of constructing composite functional approximants
that was outlined in Section 2.3 may be extended to problems of
higher dimension. Consider for example a distribution that is
indexed by two variables, c¢dfr(x; a), where a is a scalar parameter
in &. Given « and T, we let

Era(x; y(e, T)) = Sr(x; @)[n/n](x; y(e, T)) (24)

be the best uniform approximant to cdfr(x; o). Equation (24)
extends Eq. (9) by allowing the primitive approximant, Sr(x; ),
to be parameter dependent (as, for instance, an Edgeworth series
approximant would be) and by functionalizing the rational
coefficient vector y = y(a, T) on both « and T.

We now develop a sequential composite approximant for y with
approximants at each level. Thus, when « and T are fixed we
have y = y(a, T) as given in Eq. (24). Then, as we allow « to
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vary, we have a conditional mapping from a to y for a given T,
which we may write as y = y(a). This mapping will be continuous
at a, provided that cdfy(x; a,) is normal for [n/n] approximation.
By this we mean that the best approximant to cdf;(x; a,) is not
of degenerate degree. The continuity of yr(a) at @ = @, then
follows from Theorem 1 of [8]. In fact, if the degree of [n/n]
(x; y(a, T)) is constant over the domain of @, then y;(a) is
continuous throughout this domain (Theorem 2 of [8]). In view
of the continuity of yr(a), we may now develop best uniform
approximants to yr(a) in the following family of rational func-
tions of a:

gotgat:---+gal
L+ gpma+ -+ ga?

[p/q)(e) = (25)

When the degree of [ p/q] is sufficiently large, the error on the
approximant will be sufficiently small to ensure that the composite
approximant S;(x; a)[n/n](x; y(a, T)) has a non-vanishing
denominator. Each of the rational coefficients g, in (25) is condi-
tional on T, say g, = g(T). Now if T varied continuously and
vr(a) was nondegenerate and of order [ p/q], we could extend
the above argument to the next dimension. Because, however, T
is defined on a finite point set in our problem, we may construct
a suitable approximant to g,( T) using the spline function formulas
given in Section 2.3, Call the resulting approximant g, When a
sufficiently fine mesh is chosen for this construction the composite
coefficient function

gort &ira+ -+ gra’f
1+ g ra+ -+ gpgra?

[p/qlr(a) = (26)

will be continuous in a, say, for all T € 7. The third-order com-
posite functional approximant to cdfr(x; «) is then given by

Erar(x; y(a, T)) = Sr(x; a)[n/n)(x; y(x; [p/q]r(a))). (27)

Higher-order approximants of this type clearly involve a sub-
stantial increase in computational burden. Yet the extraction of
third-order approximants such as (27) is well within the reach of
present computational equipment; and, once found, these
approximants can be employed in applications at a negligible
computational cost.
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3. DISTRIBUTION OF THE SERIAL CORRELATION
COEFFICIENT

3.1. Objectives and Potential Applications

As in [17], we use the autoregressive model
ytzayt—1+ut (IZ"‘,‘—I,O, 1"") (28)

in which the u, are i.i.d. (identical and independently distributed)
N (0, a%). Our focus will be upon the c.d.f. of the noncircular serial
correlation coefficient

Q= (él y?_l)_l<é yyt—l) (29)

obtained from the application of least squares to (28). Our objective
will be to develop an approximant to the c.d.f. of & which delivers
sufficient accuracy for all conceivable sample sizes of relevance
in empirical work (we have chosen T = 4), which is computa-
tionally inexpensive, and which is computer-ready for incorpo-
ration in regression software.

The approximant we report below in Section 3.4 meets these
criteria. It belongs to the composite function family considered in
Section 2.3 and yields an error-corrected Edgeworth approxima-
tion which preserves the latter’s asymptotic behavior. Our
approximant has been developed for the case of @ = 0in (28), so
that it has the following direct applications:

(i) Tests for the absence of correlation (a = 0) in consecutive

observations based on the statistic @ defined in (29).

(ii) Tests for a unit root (@ = 1) in the autoregression (28)
based on the statistic & = (¥,_, x*>_,) " (T,_, xx,_;) with
X, = y, — Yi—1; other specific hypotheses such as @ = a4 in
(28) may be tested with the same statistic but with Xx,
defined as y, — agyi_;-

(iii) Tests for the absence of serial correlation in regression
disturbances through the use of BLUS residuals.

(iv) Tests for the presence of a unit root in regression distur-
bances through the use of the BLUS vector for regression
error first differences.
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Power considerations suggest that some of the above tests [in
particular the unit root tests (ii) and (iv)] will be dominated by
other tests that are more powerful for certain alternative hypotheses
and sample sizes. The tabulations of power recently reported by
Sargan and Bhargava [22] indicate that the Berenblut-Webb
statistic with exact critical values computed by numerical integra-
tion provides such a test (of a unit root). In other contexts these
test rankings are less definitive. For example, in unit root tests
against alternatives in the neighborhood of unity, say 09 = a <1,
the computations in [22] show very little difference in power among
a variety of different tests. Power against such alternatives is also
very low because the distributions of the associated serial correla-
tion coefficients are so close in the neighborhood of unity.
Moreover, Anderson [3] showed that (28) is a model for which
uniformly most powerful (UMP) tests concerning @ do not exist.
He also showed that end point (at ¢t = 1 and ¢ = T) modifications
to the density of data generated by (28) do allow such tests to be
developed. Durbin and Watson [5] utilized these end point
modifications in deriving their theory of the UMP invariant proper-
ties of the Durbin- Watson test. These modifications were also used
by Sargan and Bhargava [22] in their development of UMP
invariant tests of the random walk hypothesis for least squares
regression errors. For moderate-to-large sample sizes these
modifications will have negligible effects. But for small sample
sizes (say T = 10) the effect of the modifications on power rankings
may be more important [as, indeed, are circular modifications to
the statistic (29)]. These effects have not as yet been properly
explored. Finally, we may remark that the exact tests (iii) and (iv)
above continue to apply in regression models where the regressors
are stochastic and independent of the errors. In this respect they
differ from and are more general than the conventional bounds
and exact Durbin-Watson tests as well as the Berenblut-Webb
test used in [22].

Notwithstanding the above remarks, functional approximants
similar to the one we develop below for the distribution of & in
(29) may, of course, also be developed for other statistics of
importance in models such as (28). Thus, our example may be
taken to be illustrative of potential applications as well as
operational with regard to tests such as (i)-(iv). We note also that
the approximant may be further extended to allow for variable a
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by using the method of Section 2.5. These extensions are not
needed, however, for the tests discussed above.

3.2. Formation of the First Stage ERAs

Earlier experience from [18] suggested that an Edgeworth
approximation to O(T™') might provide a suitable leading
coefficient function in this problem. For the c.d.f. of & the
Edgeworth approximation to O(T™") is given by [14]:

Edr(x) = cb( T’x + 7 Tl, 7 (x + Tx3)). (30)

This particular representation of the Edgeworth approximation is
chosen because Edr(x) satisfies the requirements stipulated for
S(x) in Eq. (2), namely, that Edr(x)e C,71 as x1 00, 0 as
x | —oo, and > 0 for all x € (—0, ). Compared to similar applica-
tions where the Edgeworth can be a poor initial approximant (see
[13]), in this particular situation the Edgeworth yields a good
initial approximant for modest sample sizes (see Figures 2 and 4).
For small sample sizes between 3 and 14, however, the accuracy
of the Edgeworth approximation may not be suitable for empirical
work. In this range the Edgeworth typically understates the true
size of the test. For instance, when @ = 0, T = 5, and the true size
is 0.05, the Edgeworth is off by more than 20%. Although this
is not nearly as large a percentage error as that which results from
using the asymptotic distribution, we shall show below that sub-
stantial improvements in accuracy and the uniformity of errors
are possible if ERAs are used to refine the Edgeworth approxi-
mation.

In Figure 1 we have plotted the c.d.f. of & for various sample
sizes. This figure shows that the c.d.f. changes smoothly with T
and that for large values of T there is a good deal of curvature
that needs to be captured in the approximant. Also, we note that
because the distribution of & is symmetric, we need only consider
constructing the ERA so that it approximates the c.d.f. over the
positive real line.” Following the approach to composite function
approximation outlined in Section 2.3, our first task is to construct
a series of first stage ERAs that are indexed by the sample size T.
As a practical matter, we must first decide on the mesh of inte-
gers, 7,, over which we will construct our first-stage rational



Testing for Serial Correlation and Unit Roots 21

PROBABILITY

2.08 B.25 . 58 B.75 1.00 1.25
ALPHA

Figure 1. Serial Correlation Coeflicient CDF.

approximants. Three practical considerations entered into our
selection of 7. First, it is expensive and computationally burden-
some to compute c.d.f. values for all feasible sample sizes. On the
other hand, because the second stage ERAs are being fit over a
mesh, the grid must be fine enough to pick up any rapid changes
that occur in the composite function. Second, after a sample size
of 40, the Edgeworth yields an approximant that is accurate to
four decimal places. Third, the Edgeworth approximant is very
inaccurate for sample sizes less than four. These considerations
led us to set Ty =4 and T° = 36. We then selected sixteen inter-
mediate sample sizes for our mesh (T =5, 6, 7, 8, 9, 10, 12, 14,
16, 18, 20, 22, 26, 28, 30, and 32). The mesh is finer for small
sample sizes because the c.d.f. changes most rapidly for sample
sizes between 5 and 10.

The next practical consideration in constructing the first-stage
ERA is the question of how to choose the degree of the rational
approximant. As a general rule, parsimony is important in specify-
ing the first-stage coefficients because the number of second-stage
computations rapidly increases with the number of first-stage
coefficients that are estimated. We elected to fit a [2/2] rational
function because of the smoothly changing nature of the c.d.f. Our
experience suggests that in general the best way of proceeding is
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to select the degree so as to minimize pole problems in the
denominator (that is, choose n even and not too large) and yet
allow sufficient flexibility in the denominator in order to trace out
sharp changes of direction and preserve (near linear) asymptotic
behavior as x 1 o (see Figure 1).

The final practical issue in the development of the first stage
ERAs centers on the estimation strategy for the rational function
coefficients (the y’s). In Phillips [15], and [18], multiple-point
Padé methods were used to estimate the coefficients. These
approximants were constructed by selecting 2n + 1 points of inter-
polation to estimate the 2n + 1 rational coefficients. The main
computational drawback in this approach to estimating the rational
coefficients is that the points of interpolation must be chosen by
trial and error (see [18]) so as to smooth out the error curve. In
other words, the multiple-point Padé technique does not take into
account how the error function is behaving at points intermediate
to the points of interpolation. Although this may not be a serious
problem in the first-stage approximation of functions that are
smoothly changing over their domain, when we come to estimate
second-stage ERAs based upon our first-stage values of the
coefficient function (that is, y = y(T)), the selection of points of
interpolation at the first stage turns out to have important con-
sequences for the shape and regularity of the coefficient functions.
In particular, the arbitrariness of the formal Padé procedure leads
to coefficient functions that can have rapid changes. This led us
to explore an alternative first-stage procedure that systematically
produces a near-best approximant and yields coefficient functions
that have slowly changing behavior. This latter property is what
facilitates second-stage estimation.

In the spirit of trying to incorporate more information about
the behavior of the error curve into the estimation of the rational
coefficients, our procedure relaxes the Padé requirement that we
only interpolate the approximant at 2n + 1 points. Instead, we
chose to fit the function over a much finer grid of points. This
refinement obviously no longer guarantees that there is just one
set of rational coefficients associated with the points of interpola-
tion. We are therefore forced to specify a criterion for selecting
rational coefficients that will produce an oscillating error curve
similar to that possessed by a best approximant. Our preferred
procedure works as follows. First, we compute the exact c.d.f.
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values over a 0.01 grid between 0 and 1.5 using an extension of
the Imhof density algorithm.> Next, we fit the rational coefficients
using a number of alternative estimation techniques. Finally, we
select a set of first-stage coefficient estimates based upon two
criteria: (i) whether they had a smoothly, equioscillating error
curve; and (i1) whether the coefficients changed smoothly enough
so that a second-stage ERA could easily be fit to the first-stage
coefficients.

The main computational differences among these alternatives
are based upon the norm in which they minimize the error devi-
ations of the rational approximant. The methods that we have
extensively tested depend upon the following representations of
the basic ERA:

cdfr(x) = Edr(x)[n/n](x) + e(x)

_ P(x)
= Ed(x) 700 ) + e(x), (31)
_cdfr(x)  P(x) 1

yr(x) (x), (32)

“Ed(x) 1+ Q(x)  Edr(x)°
and

1+0(x)
Edy(x)

Given at least 2n+ 1 observations on the c.d.f., the rational
coefficients in (31) and (32) can be estimated by nonlinear least
squares or generalized least squares, and the coefficients in (33)
by ordinary least squares, generalized least squares, or least
absolute error regression. As a practical matter, the main differen-
ces among these alternative techniques arise from the properties
of their error terms. Alternatively, the differences can be viewed
as arising from the different functions that the right-hand side
must approximate. Our experience has been that no matter which
equation is used as a basis for fitting the first stage ERAs, all of
these techniques generate error curves, e(x; ¥), that are smoothly
oscillating about zero. Occasionally, poles will occur at points that
may be within or outside the domain of approximation. For a pole
within the domain, we suggest oversampling the grid near and at
the pole so as to force the minimum error techniques to improve
the ERA in the neighborhood of this point and eliminate the pole.

yr(x) = =yr(x)Q(x) + P(x) + (x). (33)
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For poles that occur outside the domain of approximation, the
domain of the approximation can be extended. In our application,
these techniques enabled us to construct first stage ERAs without
poles.

In experimenting with fitting our first-stage ERAs via these
alternative methods, we also found that their error curves generally
possess at least 2n + 1 point of alternation (the requisite number
for an error curve to qualify as a best approximant). The techniques
differed, however, in the magnitudes of their error curves at their
points of alternation. This is not surprising in view of the fact that
the estimation methods used to estimate the rational coefficients
in (32) and (33) are minimizing criteria that have heteroscedastic
error terms.

Following our constructive approach to fitting the first stage
ERAs, we experimented with a variety of alternative heteroscedas-
ticity corrections to (31), (32), and (33) in an attempt to equilibrate
the magnitudes of the error alternants. In the end, the most effective
means by which we flattened the error curve was to oversample
on the grid of ordinates at points where the error curve was highest
(in absolute value). Oversampling tends to penalize these minimum
norm techniques for not fitting these regions of the c.d.f. as well
as to effectively ““pull” down the error curve at these points.
Although this discussion suggests that a major amount of tinkering
may be necessary to generate a first-stage error curve with the
desired equioscillation property, in practice we found that starting
from an equispaced grid, it took only one or two trials in order
to produce a nearly optimal approximant.

For computational and practical reasons we chose to develop
and report first-stage ERAs that are based upon nonlinear least
squares applied to Eq. (32).* Figures 2 and 3 graph the basic
function that the nonlinear least squares routine is trying to fit.
For small values of T, this ratio has an undulating character that
cannot easily be captured by a low-degree polynomial. It appears,
however, that as T increases the ratio becomes better behaved and
that there is less work for nonlinear least squares to do in fitting
a rational (or polynomial) approximant. Figure 3 shows, however,
that this smoothing does not mean that the ERA has no curvature
to capture.

In Figures 4(a) and (b) we have plotted examples of our first-
stage ERA error curves. These error curves have alternating
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Figure 5. ERA and Edgeworth Errors.

properties that are much closer to those of the best approximant
than those that have been obtained using Padé or other conven-
tional uniform approximant methods (see for example [20] and
[10]). In Figure 5 we have plotted for comparison the error curve
on the primitive approximant against that of the first-stage ERA.
Note that the original downward bias in the Edgeworth has been
corrected and the absolute accuracy of the Edgeworth approximant
has been considerably improved.

3.3.  Formation of the Second Stage ERAs

When all of the first-stage ERAs have been found, work on the
second-stage ERA can begin using the techniques discussed in
Section 2.4. Our first step is to transform the first-stage rational
function to the following form:

a)(T)x + ay(T)
1+ Bi(T)x + Bo(T)x?
which is more amenable to the preservation of asymptotic behavior
as T 1 co. However, the form of (34) does not preclude the occur-

rence of poles in the second-stage ERAs. In our trials we encoun-
tered several (noninteger) poles using the above formulation. To

[2/2])(x; ¥(T)) = c(T) + (34)
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overcome this difficulty, we therefore rewrote Eq. (34) in partial
fraction form (cf. (20)) as

eo(T) , &(T)

[2/2](x; e(T), d(T) = &(T) + 2 0s+ 20 9)
(¢1 = ¢y + icy,, dy=dy +id,,)
_ 2fi(T)x + £>,(T)
=Dt S Dx+ @ (T + a0 O
_ ay(T) _ _ ax(T)
(f‘m BT XES R R X T))

and we used these representations to develop our second-stage
ERAs. Both the spline and the composite rational function tech-
niques discussed in Section 2.3 were used to construct coefficient
function approximants. The representation (35) was found to be
the most adequate for the composite rational functions and the
representation (36) was used for the splines.

To find the spline function approximants to the coefficients in
(36) we computed the first-stage ERAs at T =1{4, 5, 6, 7, 8, 9, 10,
12, 14, 16, 18, 20, 22, 26, 28, 30, 32, 36, 50}. These computations
provided a native data set for the coefficient functions
{co(T), fL(T), /(T), d1(T), di»(T)}. For each of these coefficients
a cubic spline was calculated from the data using Eq. (13). The
resulting functions are displayed in Figures 6(a) to (¢). The native
data points are represented in these graphs by a cross. In each
case, the functions stabilize after T = 10 and the approach to the
asymptote as T grows large is smooth and well-behaved. The
second-stage ERA based upon these splines as coefficient functions
reproduces first-stage accuracy on the native data set and comes
extremely close to achieving first-stage accuracy at intermediate
values of T.

In fitting the second-stage ERAs to the coefficients in Eq. (35),
we chose to estimate [5/2] and [6/2] as rational functions that
employ powers of T~"/2. Our choice of the order of the second-stage
ERAs was dictated by a desire to reproduce as well as possible
first-stage accuracy. Once again, nonlinear least squares was used
to produce estimates of the rational coefficients. Plots of second-
stage fits that are comparable to those in Figures 4(a) and (b) are
provided in Figures 7(a) and (b). In Figure 7(c) we have plotted
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Figure 7(a). Second-Stage Error Curves.
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Figure 7(c). Second-Stage Error Curve (Predictions).

for comparative purposes the error curves for several sample sizes
that were not part of the mesh over which we fit the first-stage ERAs.

3.4. Final Formulas

Based upon our extensive trials we have selected the following
two rational approximants (detailed in full in Table 1 on page 36).
These rational approximants satisfactorily reproduce first-stage
accuracy and are ready to be programmed into regression software.

Note that these formulas are in a form that delivers probability
values for an estimated value of a. It is also interesting to consider
the opposite problem, which is to find a critical value of a given
a desired size of the test. As it stands, it is impossible to solve Eq.
(2) explicitly for the critical value of a. However, a numerical
routine can perform this calculation quite simply and would
require only a few extra lines of computer code for its
implementation.

3.5. Density Approximation

Phillips [15] developed the necessary formulas and procedures
for directly approximating probability density functions. These



Table 1. Final Formulas:

2fix + f> }
x?—2d,,x + (d3, + d2,)

Erar(x) = EdT(x){co +

Ed(x) = q)( T?x + 4—T11—/3 (x+ Tx3))

®(+) = cdf(N(0,1))

A. The Spline Coefficient Function
The spline coefficient functions are defined (for 4 < T =< 50) by

s6(T) = {(T— T,)y,+.+(—T%T—)&

7

(d_y + T;-H - T)m] + (d_, + T - T])mj+l}
6d,

7

~(T-T X4~ T)

over the interval 7, < T = T,,,. The constants for each coefficient function are given by

the following:

Spline for ¢4 = ¢o(T)

T Y D M
4 0.1025405D + 01 01000000D + 01 0.0
5 0.1007800D + 01 0.1000000D + 01 0.2212108D - 01
6 0.1004400D + 01 0.1000000D + 01 —0.3254305D — 02
7 0.1002800D + 01 0.1000000D + 01 0.1696145D — 02
8 0.1001800D + 01 0.1000000D + 01 0.6972678D - 04
9 0.1001200D + 01 0.1000000D + 01 0.4249483D — 03
10 0.1000900D + 01 0.2000000D + 01 0.3048016D — 04
12 0.1000500D + 01 0.2000000D + 01 —0.3914613D — 05
14 0.1000200D + 01 0.2000000D + 01 0.1351783D ~ 03
16 0.1000200D + 01 0.2000000D + 01 —0.8679855D — 04
18 0.1000100D + 01 0.2000000D + 01 0.6201592D — 04
20 0.1000100D + 01 0.2000000D + 01 —0.1126514D — 04
22 0.1000100D + 01 0.4000000D + 01 —-0.1695536 D — 04
26 0.1000000D + 01 0.2000000D + 01 0.1899865D — 04
28 0.1000000D + 01 0.2000000D + 01 —0.5081197D —~ 05
30 0.1000000D + 01 0.2000000D + 01 0.1326135D — 05
32 0.1000000D + 01 0.4000000D + 01 —0.2233420D - 06
36 0.1000000D + 01 0.1400000D + 02 0.6958635D — 08
50 0.9999985D + 00 0.0 0.0

36
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Table 1 (cont.)

Spline for f; = £i(T)

Y

—0.2426631D — 01

—0.3746400D — 02
—0.3787600D — 02
—0.1790900D — 02
—0.1164300D — 02
—0.6563100D — 03

—0.4005600D — 03
—0.1480000D - 03

—-0.5030600D — 04
—0.1544600D — 04
0.1818000D — 05
0.8654800D — 05
0.1125800D — 04
0.1180300D - 04
0.1325600D — 04
0.1232400D — 04
0.1145500D — 04
0.9990400D — 05
0.5661994D — 05

D

0.1000000D + 01
0.1000000D + 01
0.1000000D + 01
0.1000000D + 01
0.1000000D + 01
0.1000000D + 01
0.2000000D + 01
0.2000000D + 01
0.2000000D + 01
0.2000000D + 01
0.2000000D + 01
02000000D + 01
0.4000000D + 01
0.2000000D + 01
0.2000000D + 01
0.2000000D + 01
0.4000000D + 01
0 1400000D + 02
0.0

Spline for f, = £(T)

Y
—-0.2237575D - 01
—0.6880200D — 02
—0.1757200D - 02
—-0.1076000D - 02
-0.5128900D —- 03
-0.3194200D — 03
—~0.1952500D — 03
—0.9449900D — 04
—0.5347800D - 04
—0.3573100D — 04
—0.2505000D — 04
-0.1867600D — 04
~0.1445000D — 04
—0.9288800D — 05
—0.7485200D ~ 05
—0.6224200D - 05
~0.5260700D — 05
—0.3876700D — 05
~0.1631507D - 05

D

0.1000000D + 01
0.1000000D + 01
0.1000000D + 01
0.1000000D + 01
0.1000000D + 01
0.1000000D -+ 01
0.2000000D + 01
0.2000000D + 01
0.2000000D + 01
0.2000000D + 01
0.2000000D + 01
02000000D + 01
0.4000000D + 01
0.2000000D + 01
0.2000000D + 01
0.2000000D + 01
0.4000000D + 01
0.1400000D + 02
0.0

37

M

0.0

—0.3409020D - 01
0.1299414D - 01
~0.5658947D — 02
0.1421050D - 02
~-0.7369129D - 03
0.1316174D — 04

—0.5943876 D — 04

—0.7705692D — 05
—-0.3989470D - 05
—~02730429D — 05
—-0.7296141D — 06
—0.7015145D - 06
0.7213256 D — 06
—0.1154174D - 05
0.3178721D - 06
—-0.2281411D - 07
0.1203126 D — 07
0.0

M

0.0

—0.1476514D — 01
—0.3174731D — 02
0.8132645D — 03
—-0.7868675D — 03
0.1163656 D — 03
—0.9439481D — 04
0.3618143D — 05
~0.9672759D — 05
0.1618934D — 06
-0.1573814D — 05
—0.3271356 D — 06
—0.3396431 D — 06
-0.5155303D — 07
—-0.1768957D — 06
—0.5476412D — 07
-0 5029780D — 07
—0.2534953D — 07
0.0
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For T > 50,

Table 1 (cont.)

Spline for d,, = d,,(T)

Y
0.4069132D + 00
05067900D + 00
0.3380800D + 00
0.3421300D + 00
03056000D + 00
0.3010500D + 00
0.2910600D + 00
0.2810900D + 00
0.2741300D + 00
0.2652600D + 00
0.2589600D + 00
0.2522000D + 00
0.2456300D + 00
0.2335400D + 00
0.2355900D + 00
0.2312100D + 00
0.2275000D + 00
0.2225400D + 00
0.2036835D + 00

D

0 1000000D + 01
0.1000000D + 01
0.1000000D + 01
0.1000000D + 01
0.1000000D + 01
0.1000000D + 01
0.2000000D + 01
0.2000000D + 01
0.2000000D + 01
0.2000000D + 01
02000000D + 01
0.2000000D + 01
0.4000000D + 01
0.2000000D + 01
0.2000000D + 01
02000000D + 01
0.4000000D + 01
0.1400000D + 02
0.0

Sphine for d,, = d,,(T)

Y
0.9093072D + 00
0.6928200D + 00
05299400D + 00
0.4673700D + 00
0.3949800D + 00
0.3473300D + 00
0.3049200D + 00
0.2469900D + 00
0.2066300D + 00
0.1832600D + 00
0.1639800D + 00
0.1505800D + 00
0.1404300D + 00
0.1256200D + 00
0.1142500D + 00
0.1088400D + 00
0.1041600D + 00
0.9549900D - 01
0.7798729D - 01

=1 fi=f=d,=0,

D

0.1000000D + 01
0.1000000D + 01
0.1000000D + 01
01000000D + 01
0.1000000D + 01
0.1000000D + 01
0.2000000D + 01
0.2000000D + 01
0.2000000D -+ 01
0.2000000D + 01
0.2000000D + 01
0.2000000D + 01
0.4000000D + 01
0.2000000D + 01
0.2000000D + 01
0.2000000D + 01
0.4000000D + 01
0.1400000D + 02
0.0

M

00

—0.5119480D + 00
04362711D + 00
—0.1965766 D + 00
0.1065551D + 00
—03776378D —~ 01
0.1186003D — 01

- 0.1683196 D — 02

—0.6122438D ~ 03
0.1267171D — 02
—06014412D - 03
0.4485934D - 03
—0.9079323D - 03
0.2893250D — 02
—0.3401137D — 02
01066299D — 02
0.1409421D - 03
—~03347571D - 04
0.0

M

00

0.4110065D — 01
0.1572406 D + 00
—0.6820309D — 01
0.5665174D — 01
—0.9963870D — 02
0.1464374D — 01
0.1385714D — 02
0.6168405D — 02
~0.5743319D — 03
0.2263923D — 02
0.3386396D ~ 03
0.1256519D — 02
—0.1880125D — 02
0.2820215D — 02
~0 4607346 D — 03
0.1177235D — 03
0.1393219D — 03
0.0

and d,, =e.
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Table 1 (cont.)

B. The Second Stage ERA Coefficient Function

The second stage ERAs were fitted to

¢ (T) +ic,(T)

e (T) —ieyo(T)

[2/2](x; ¢(T), d(T)) = co(T) +

x = d(T) = id,(T)

according to

¢ =[5/2]

1
n =77

1

c

[5/2]

Gz = ﬁ[6/2]

1
dy = \[_T[5/2]

1
dy,= ﬁ[5/2]

Numerator:
Co 1
0 —.00375346 00303693
1 .0823311 -.0610821
2 —.711465 482070
3 3.01684 -1 85280
4 —6.22756 3.45125
5 491787 —2.48854
6
Denominator:
Co n
1 —7.38542 —5.13001
2 11.1815 6.53295

The following expressions convert these coefficients into those in Eq. (34)

Co= €y

B1=-2Bdn B

oy =2B50y o, =—(4B, B)VZepnt

€12

—.000220875
—-.0109917
.274271
~2.32525
9.52452
~19.1841
15.1337

€12

—6.21730
9.11970

1

= 2
di, +di,

dll

1.84872
—14.9849
23.1109
84.8834
—315.163
297.993

dll

~17.02527
11.0877

By
28,

x —dy(T) +1d,(T)

d12

.841728
—10.3950
60.1172
—199.104
309.302
—144 937

di

-7.12108
11.5276

39
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techniques are similar in principle to those developed here for
the c.d.f. and they have been shown to yield very accurate
approximants to the exact p.d.f. of the serial correlation coefficient.
One natural question that is raised here by our choice of
approximating the c.d.f. is whether the derivative of our ERA c.d.f.
approximant yields an accurate implicit approximant to the p.d.f.
(The parallel question could be posed for p.d.f. approximants:
Does the integral of the p.d.f. ERA discussed in [15] yield a good
approximant to the c.d.f.?) In view of the denseness property
(Theorem 3 above), the ERA can be made arbitrarily close to the
c.df. by increasing the degree of the ERA. But since the c.d.f. is
in this case smooth as well as continuous, and since the ERA is
also smooth, the derivative of the ERA should be close to the
actual p.d.f. if the c.d.f. approximant is close enough. Further, we
note that the derivative of the c.d.f. error curve is the error curve
for what we will call the implicit p.d.f. approximant and that the
best c.d.f. approximant has at least N points at which the derivative
of the error curve vanishes. Thus, the error curve of the implicit
p.d.f. approximant will have at least N + 1 points of alternation.
Our main interest is in the performance of the implicit p.d.f.

ERROR X 182-3

.85 -

T=22

o.68

8.30

-0. 87

~8. 45

-8. 83

9.88 .15 .38 8.45 D.60 B.75 ALPHA

Figure 8. Implicit p.d.f. Error Curves.
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approximant in the cases of low-degree rational approximation
that are most relevant for practical applications. Here we have
some systematic evidence from our own applications. In particular,
Figure 8 displays the error curves of several of our implicit p.d.f.
approximants. Despite the low order of the c.d.f. approximant,
these graphs show that the implicit p.d.f. approximant does very
well in approximating the p.d.f. (for comparison, see the p.d.f.
error curves in [18]).

4. CONCLUSIONS AND EXTENSIONS

This paper has extended Phillips’s ERA techniques in two impor-
tant directions. First, it has extended the algebraic theory of ERAs
to cover distribution function approximation. Second, it has intro-
duced composite functional approximants that are capable of
handling the parameter multidimensionality frequently encoun-
tered in applied problems. In Section 3 we used these techniques
to approximate the distribution of the serial correlation coefficient.
We found that we could satisfactorily approximate the c.d.f. of
the autoregressive parameter using ERAs that employed either
cubic splines or composite rational functions in the formulation
of the second-stage ERA.

In conclusion, we want to underscore the constructive nature
of the ERAs discussed in this paper. Their flexible form provides
substantial leeway in the selection of the theoretical, numerical,
and Monte Carlo information that can be embodied in the
approximant. In general, it appears that the more work the leading
coefficient function can do in fitting the c.d.f., the less the work
that is required of the rational coefficients. There are also several
other trade-offs that exist in the construction of ERAs. First, the
degree of the approximant must be selected so as to balance the
desired second-stage precision against the computational burden
of fitting composite coefficient functions that do not have poles.
Our trials suggest that for most practical applications, even very
low-degree ERAs will provide the accuracy necessary for statistical
tests (often [2/2]’s and at most [4/4]’s). A second practical con-
sideration that arises in the construction of these ERAs is the
selection of the discrete parameter grid over which the ERAs will
be fitted. Although the precise selection criteria will depend upon
the particular application, our experience has been that it is most
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important to select a more concentrated grid over those parameter
regions where the ratio of the c.d.f. to S(x) changes rapidly.

The c.d.f. approximation techniques developed in this paper
have a wide number of uses and many extensions of our own
application are now possible. The most straightforward extension
would be to functionalize the serial correlation coefficients on «
as well as T. This higher-order composite function would allow
the investigator to conduct power computations directly for some
of the tests described in Section 3.1. Another extension would be
to treat the problem of serial correlation with a fitted mean and
to functionalize the ERA on the intercept parameter. Similar ERAs
may be constructed for higher-order serial correlation coefficients.
These ERAs would enable exact tests to be performed in the
Box-Jenkins model identification process. In particular, composite
function ERASs for these serial correlation coefficients could deliver
critical values for any sample size and chosen test size.

Finally, although the methods we have used in this paper are
not the only techniques that are available for the constructive
development of distribution approximants, they do have the advan-
tage over many other methods because they readily integrate
information about the true distribution function from diverse
analytic and numerical sources. Our theoretical results also provide
a rigorous basis for the development of approximants in the ERA
family. Recently, Nankervis and Savin [12] have successfully used
response surface regressions from experimental Monte Carlo data
to correct the distribution of the “t” statistic in an AR(1). Their
approach involves an empirical search for an appropriate response
surface representation of the mean and standard deviation of their
statistic as a function of the parameters of the model. The response
surfaces are then used to correct conventional inferential pro-
cedures based upon the “t” distribution. The goal of this research
is therefore closely related to our own: to provide accurate and
easily implemented corrections to the distributions upon which
we rely in econometric inference.

APPENDIX:
COMPUTATION OF BEST APPROXIMANTS

This appendix describes a new method for constructing the best
(uniform) extended rational approximant to a real-valued, univari-
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ate, continuous function. The method is based upon least squares
techniques that use information from both critical and collocation
points of the error curve to update estimates of the approximant.
Although we have not found it necessary to apply this technique
to the distribution function of the serial correlation coefficient, in
practice this technique could readily be used to further improve
the performance of our first-stage ERAs.

1. Existing Algorithms. Existing rational approximation algo-
rithms are either based upon the equioscillation alternate property
of the best approximant or they directly minimize the maximum
alternate error via nonlinear programming techniques. The relative
performance of each of these algorithms has been studied by a
number of investigators (most notably [10]). The general con-
clusion that can be drawn from these experiments is that for small
grids of function values, the direct methods are more reliable
because they continually minimize the maximum error of the
approximation. One drawback to these direct algorithms, however,
is their slow convergence to the best approximant. Indeed, they
often require an average of between five to fifty times as much
computer time as the methods that are based upon the equioscilla-
tion theorem.

The computational complexity of the direct algorithms has
prompted a number of attempts to improve the reliability of the
more simple methods. The principal reliability problems of the
simpler algorithms, however, have yet to be adequately handled.
These problems are generally twofold: the algorithms can produce
approximants with poles or approximants with too few oscillations.
Both of these problems appear to stem from the fact that these
techniques do not use much information about how the function
is changing relative to some reference set of critical or collocation
points (see [11]). It would seem, therefore, that if any progress is
to be made in improving the behavior of these simple algorithms,
it must be done by introducing more information about the
behavior of the error curve into the approximant. The follow-
ing algorithm uses the interpolation techniques discussed in
Section 3.2.

2. Aleast Squares Algorithm. Consider an initial approximation
to cdfy(x) that has (at least) the required number of alternations
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for it to be a best approximant. For this initial rational
approximant, there are a set of equations that define the collocation
and critical points of the approximant’s error curve. These points
form a reference set, M,, to the best approximant’s i=
1,...,n+ m+ 2 (atleast) critical pointsandj =1,...,n+ m + 1
collocation points. Using the equioscillation theorem, we know
that the best approximant’s reference set, M*, is defined by the
following equations:

for critical points: cdfr(x¥) — Erar(x¥) = A(-1)" (A.1)
for collocation points: cdfr(x¥) — Erar(xF) = 0. (A.2)

When these equations are multiplied by the denominator of
Erar(x) we obtain the following system of equations in terms of
A and the rational coefficients (for any reference set M,):

—Q(x,)cdfr(x,) + Edr(x;)P(x,) + A(—1)'Q(x,)
cdfr(x) = +A(—1) + ¢
—Q(x))cdfr(x,) + Edr(x)P(x,) + &,

where the terms {e, ¢} represent errors in the approximation of
the true set of critical and collocation points M* = {x¥,..., x¥}
by M, = {x,, ..., x,}. Writing these equations as a system of v =
2(m+ n+ 1)+ 1 equations, we have

y=WA+2Zqg+ Xp+e, (A3)
where
[—x,(yy — wid) —xX3(y1—wid) ... —xT(y;— wyA)
z=| z z
i _xv(yv) _xi(yv) .o —x:(yv)
[ EdT.(xl) xlEd.T(xl) X%Edr(xl)\ ... x7'Edr(x,)
X=| : : :
B EdT(xv) vadT(xu) x?)EdT(xv) LR X:‘ EdT(xv)
-1
edf(x) 1
y= : W= :
cdfr(x,) 0
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Apart from the nonlinearity of the A appearing in Z, Eq. (A.3)
has the form of a linear regression equation. This suggests that if
we start with an initial reference set M, that is close to M*, we
can produce a new rational approximant (and a new reference
set) based upon the following procedure. Holding the A in Z fixed,
apply least squares to (A.3) so as to minimize the squared error
on the old reference set. This produces new values of the rational
coefficients and A, as well as a new reference set, M,, that can
then be used as input into subsequent revisions of the approximant.

Two natural questions arise here: why is this a sensible pro-
cedure; and why should this algorithm converge? The answer to
the first question rests in the way the algorithm includes informa-
tion about the behavior of the rational approximant’s error curve.
To see this, consider the two approximation methods that are
nested within this procedure. On the one hand, when only the
critical points are used to solve (A.3), this algorithm is a version
of the generalized Remes algorithms and the solution to (A.3) is
exact. On the other hand, when only the collocation points of the
rational approximant are included in Eq. (A.3), we have a multiple-
point Padé approximant as a special case.

The second question posed above has yet to be evaluated for-
mally. It does appear, however, that some of the local convergence
results for generalized Remes algorithms can be applied to this
algorithm. In practical applications of the least squares method,
the algorithm usually converges very rapidly to the best
approximant (provided the algorithm has a sufficiently good initial
approximant). As is the case with all algorithms based upon the
linearizations contained in Eq. (A.3), however, the algorithm is
not entirely reliable in that given a poor initial approximant, the
algorithm can produce an approximation with poles or an approxi-
mation that has too few alternants. One of the attractive features
of this algorithm, however, is that the least squares approach
suggests ways in which these degeneracies can be overcome.’

3. Numerical Examples. This section illustrates how to apply the
algorithm and reports some preliminary results on its performance.
The results described here are, however, by no means a complete
evaluation of the algorithm. There are many factors that control
the performance of the algorithm (such as the size of the initial
reference grid, interpolation formulas, and the choice of Ed;(x))
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and a great deal of work remains to be done before the significance
of each factor is known.

One final issue that must be resolved before the algorithm can
be implemented is the question of how to treat the nonlinearity
of A in Z. A wide range of strategies for coping with the nonlinearity
are possible. Only three such possibilities are considered here. The
first way of proceeding is the naive way of simply setting A equal
to some constant. The second way is to set A equal to the maximum
error on the preceding iteration’s rational approximant. The final
way is to use the least squares estimate from the previous iteration.
These schemes will be denoted A1, A2, and A3.

ExampLe 1. In this first example we approximate e* over the
unit interval by a [2/2] rational function. Ed;(x) has been set
equal to 1 for all x, N =101 and {x,x,..., X1} =
{.00, .01, ..., 1.00}. The initial approximant is obtained by applying
least squares to (A.3). This yields the following rational
approximant (whose error curve is plotted in Figure 1):

a, = 1.00000635  a, = .542098 a, = .108358
by = 1.0 b, = —457717 b, = .0648901

with critical points
{-.635, 317, —.342, .275, —.660, .865} x 10°.
This least squares approximant is extremely close to the best

approximant. Using the iterative least squares procedures
described above, we obtain the following results:

Method Al
Iteration Maximum Error x 100000
1 —-.519 395 —.414 371 —-.536 .560
5 —.456 446 —.447 .437 —.454 447
10 - 477 477 -477 477 ~.477 AT7
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Method A2
Iteration Maximum Error x 100000
1 — 582 429 —.430 366 — 484 472
5 — 477 477 -.477 477 —.477 471
Method A3
Iteration Maximum Error x 100000
1 -.57 423 — 426 .368 —.493 487
5 — 451 448 —.447 442 —.449 447
10 - 477 477 . -477 A77 —.477 477

In each case, the algorithm converges quickly to the best
approximant.® Although the method that uses the upper bound
estimate of A appears to be the most rapid method, this is not
always true. For example, if the fixed-lambda method uses a more
accurate estimate of the best approximant’s lambda, then the
fixed-lambda method generally will converge at a faster rate.

ExampLe 2. The second application of this method is to the
probability density function (p.d.f.) considered by Phillips [18].
Although Phillips did find a very accurate approximant to the
p.d.f. using Padé techniques with a [4/4] ERA, the final
approximant left room for improvement. In particular, its error
curve oscillated 14 times (four more than necessary for a best
approximant) and had a maximum error of .125X 107>
Although the error oscillations were of roughly similar magnitude,
there was enough variation to indicate that there was room for
further improvement. The application of our least squares tech-
nique to his problem yielded the following results. The critical
points of the initial, equispaced grid approximant are

{.116, —.106, .094, —.066, .045, .061, —.052,
.040, —.031, .014, —.007} X 10°.
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Note that this initial approximant alternates two more times
than is necessary for the best approximant. By applying the fixed-
lambda method (A = .00009), we obtain the following results:

Method Al
Iteration Maximum Error X 1000
1 .095 -.107 .082 —.067 072 — 081
.050 -.029 .046 —~ 050
5 .084 -.083 .082 —.087 088 —.090
.103 - 050 094 —.088
10 .085 —.084 082 —.085 .087 —-.086
.083 —.083 086 —-.087

After one iteration, the approximant reverts to the minimum num-
ber of oscillations for the best approximant. After only 11 iter-
ations, we obtain an approximant that is very close to the best
approximant.
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NOTES

1. Forexample, theytypically have leading analytic terms that are multiplied by multiple
infinite series of invariant polynomials. Although the leading terms are easily computed
(and recognizable among the most commonly encountered multivariate statistical distribu-
tions), the infinite series portion of the function normally presents computational difficulties
1n all but the simplest cases.

2. The reader may wish to prove that the distribution 1s indeed symmetric in this
noncircular case.

3. See[18]. Although this algorithm makes efficient use of symmetric matrix eigenvalue
routines, we have found that repetitive use of this program can be extremely expensive.
Fortunately, our computations here involve fixed and not variable costs.

4. Nonlinear least squares applied to equation (32) was favored over nonlinear least
squares applied to Eq. (31) because the multiplicative scaling factor of the primitive
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approximant adversely affected the convergence of the nonlinear least squares algorithm
We also found that estimating the ratio of the c.d.f. to the primitive approximant produced
more satisfactory error curves.

5. This may explain why 1n practice the Remes algorithms fail to converge for very
simple functions. For example, when a Tchebycheff reference set 1s used for Vx on the
unit interval, Remes algorithms invariably have trouble converging because most of the
critical points for the best approximant are bunched near the onigin. Other methods of
generating an initial approximant (such as multiple-point Padé) have similar defects in
that they also tend to overlook information about how the function is changing.

6. Theaverage amount of CPU time ona DEC 20 for each iteration 1s about 0 25 seconds.
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