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LARGE DEVIATION EXPANSIONS
IN ECONOMETRICS
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ABSTRACT

The role in econometrics of the modern branch of probability theory known
as the theory of large deviations is discussed. In this theory, the argument in
the distribution function or probability density of a standardized statistic s
allowed to vary and, in particular, is allowed to grow with the sample size.
The theory therefore provides a convenient mechanism by which the limiting
tail behavior of econometric statistics may be studied. This paper develops
an associated asymptotic expansion, which we call the large deviation
expansion. This expansion is developed for statistics which may be expressed
as quite general functions of the sample moments of the data, and it is therefore
of rather wide applicability. The new expansion is related to more conventional
asymptotic expansions of the Edgeworth type. An application to tail probabil-
ity expansions in the AR(1) is presented.
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[. INTRODUCTION

The problem of approximating finite sample distributions by Edgeworth
series expansions has attracted a good deal of attention over the past decade.
Important advances have occurred in mathematical statistics and in
econometrics. In particular, useful general results and algorithms have been
established by Chambers (1967), Sargan (1976), Phillips (1977b) Bhat-
tacharya and Ghosh (1978), and Sargan and Satchell (1986). Reviews of
some of this research are given in Bhattacharya and Rao (1976), Phillips
(1980, 1983), and Rothenberg (1984). In addition to providing more informa-
tion than simple asymptotic theory about the finite sample behavior of
various econometric estimators and facilitating comparisons between
different estimators, Edgeworth expansions can be used to try to improve
statistical testing in econometrics by providing second order size corrections
to conventional asymptotic tests. Higher order analyses along these lines
using Edgeworth expansions are given by Rothenberg (1982) and by Akahira
and Takeuchi (1981).

Series expansions of the Edgeworth type can be viewed as extensions of
the limit theorems which give us the asymptotic distribution of our estimators
and test statistics. As such, they belong to the same branch in the theory
of probability as the classical central limit theorem. Moreover, they share
a common limitation with classical central limit theory: namely, that they
are often not very informative about the tails or limiting tails of a statistic
of interest. To clarify this remark it is helpful to refer to the simplest case
of a standardized sum Z; of T independent and identically distributed
random variables {X,: t = 1,..., T} with a common distribution such that
E(X,) = 0 and E(X?) = ¢°. Then classical theory tells us that

x

Fr(x) = P(Zy = x) > I(x) = J J—;_;_e-f/z dt,  as Tto, (1)

which is of interest when x = 0(1) as T - co. But when the argument x is
allowed to vary with T, the statement of the above theorem can appear
trivial. For instance, if x > —o0 as T} oo, then both sides of (1) tend to zero.
In such cases, what we are often really interested in is the behavior of the
limiting tails of Fr(—x) and 1 — Fr(x). It is more useful in this case to
consider the ratios of tail probabilities

Fr(=x) g L=F®)

an
I(—x) 1-I(x)
under the assumption that x - o0 as T1 0. If the limiting tails are normal,

then these ratios will converge to unity as 71 00. Clearly, the rate at which
x - oo with T determines how deep in the tails we are concentrating. When
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x = O(VT), as T > o, a number of important results have been obtained
and these constitute the theory of large deviations. Possibly the best single
reference work in the field is the treatise by Ibragimov and Linnik (1971),
which contains an extensive survey of research on large deviations up to
the late 1960’s. Serious work in the field commenced with a paper by Richter
(1957), but the ideas may be traced back to Cramér (1938). Chernoff (1956)
also pointed out the relevance of this type of limit theory in applications
where x may be quite large relative to T.

The large deviation theorem for tail probabilities of standardized sums
corresponding to the classical result (1) tells us that if x > 0 and x = O(V'T)
as T —» o, then (Petrov, 1968):

"l ) o

o ol S ol o

W(z) = o+ iz + iz’ +- -

and

where

is a power series whose coefficients ¥,(i = 0, 1, ...) depend on the cumulants
of X, and which converges in a neighborhood of z = 0.

Although this theorem is clearly stronger than (1), it also depends on the
stronger condition that

E{exp(a|X,|)} < o (4)

for some a > 0 so that the moment generating function of the underlying
variates exists and is analytic in a strip of the imaginary axis. The main
import of (2) and (3) is that the limiting tails of Z, are normal only if x
does not tend to infinity with T too fast [to be precise x = o(T"®)]. For
if x tends to infinity as fast or faster than a constant multiple of TV® then
the limiting tails of Z; are not normal, but will depend on the coefficients
in the power series W(z). Thus if x > 0 and x = O(T"*) as T > o, it is
easy to see that

P(Zr>x)=(1- I(x))exp{%?x_; + q;lx—;}(l + o(\/—’%)) (5)

and, more generally, if x > 0 and x = O( T****?) for some positive integer
k, then

P(Zy>x)=(1- I(x)){exp j—%w[k](%)}(l + o(%)) (6)
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where ¥*(z) represents the first k terms of the series ¥(z). Similar results
hold for the negative tail.

In practice, we are frequently concerned with approximating the tails of
the distribution of a test statistic whose exact distribution is unknown. In
such cases, where x may be quite large relative to v/ T, it is known that the
Edgeworth approximation can lead to unsatisfactory results, including
negative probabilities. An alternative which should be available in many
cases is to use the first few terms in a large deviation expansion such as (5)
or (6). Note that these expansions have the advantage that they are positive
for all x (although not necessarily less than unity) and might be expected
to do well at least for a certain region in the tails.

One limitation, however, to the immediate application in econometrics
of large deviation limit theory and its associated expansions is the fact that
virtually all the results available so far seem to have been established for
standardized sums of independent random variables (or vectors). One
exception is the theorem in Phillips (1977a) which gives a general result
for large deviations of multivariate statistics which are more general than
standardized means but which depend on the sample size 7 in much the
same way as T 10o. The present study goes further and deals with rather
general functions of such multivariate statistics. The results should be
sufficiently general to be of wide applicability in regression and time series
settings. In view of the generality of the problem our approach here will
involve some sacrifice of mathematical rigor. In particular, we shall concen-
trate on obtaining the final large deviation formulas by formal methods of
asymptotic expansion. We shall relate these formulas to known results on
Edgeworth expansions in this general case. The formulas are then applied
to the coeflicient estimator in an AR(1).

II. THE LARGE DEVIATION EXPANSION

This section is concerned with deriving general formulas for large deviation
expansions such as (5) and (6) when we are interested in approximating
the tails of the sampling distribution of statistics which can be represented
as quite general functions of the first and second sample moments of the
data. Thus our starting point will be the same as that in earlier work by
Chambers (1967), Sargan (1975, 1976), Phillips (1977b), and Sargan and
Satchell (1986). The formulas we derive should apply in rather a wide range
of different models, including those where lagged endogenous variables
occur or where there are nonnormally distributed errors.

Our notation here is based on that of Phillips (1977b). In particular, we
let g denote an m-vector of primitive variates which will usually comprise
suitably standardized errors in the sample moments of the data. Our main
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focus of attention will be the function e;(q) of these primitive variates.
Most commonly, er(q) will represent the error of an estimator, say & — a,
where the estimator & = a(q) is a function of the primitive variate qg. We
introduce the standardized statistic t = v Te(g), which, under conventional
conditions, will converge weakly to a normal variate. The statistic ¢t = t(q)
may be a suitably standardized and centered estimator such as =
VT(& —a) or a t-ratio type test statistic. Qur main requirement is the
following:

AssUMPTION 2.1: (a) The error function er( ) satisfies er(0) =0, is
analytic in a neighborhood of the origin in q space, has derivatives which are
uniformly bounded in this neighborhood as T} o, and if €° = de(0)/dq then
the Euclidean length ||e°|| is bounded above zero as T1 .

(b) The mean vector of q is zero and all higher order cumulants of Tq exist
and are of O(T) as T1 . If Vr(x) is the distribution function of Tq, then
there exist positive numbers A, lr, and L1 such that

J s J e~ dVy(x)

for all z in the sphere (z*2)"/* < A, where z* represents the complex conjugate
transpose of z.

Ir<

=Ly (7)

Condition (a) mirrors similar conditions in Sargan (1976), Phillips
(1977b), and Bhattacharya and Ghosh (1978). But it goes further in requiring
er( ) to be analytic rather than just continuously differentiable to a certain
order. The first part of Condition (b) also corresponds with assumptions
in Sargan (1976) and Phillips (1977b). The second part of (b) goes further
and implies that the moment generating function of Tq is analytic in the
sphere (z*z)Y? < A (cf. Lukacs, 1970). In the simplest case, where Tq
represents the sum X, + - - - + X of the independent and identically dis-
tributed random quantities X,, we observe the close link between (7) and
(4). In particular, we have from (4):

E{exp(a|X,|)} = L <;
and thus

= [[E{exp(zX)}1"| = L”

J e dV(x)
when |z| < a. The lower bound follows in this case since E{exp(zX,)} is
continuous and equal to unity at the origin.

We now let F(g) be the distribution of § = v Tq. We have the following
Taylor representation of ¢(g) (we use the tensor summation convention and
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write derivatives of er( ) at the origin as, forinstance, e, = ’er(0)/ aq, 9qx):

t= ﬁ{equ + § l(qk(.,_z—k) eT(O)}

j:zj!

® 1( 1 "‘( oY
= e, + —|—= d— ) er(0).
Gk ,Ezj! ﬁ) qkaqk) r(0)

The characteristic function of ¢ is given by

U(s) = J e dF(q)

1se, Gy i ool __l_lﬁl —__a_J =
= J e”ad exp{ts]§2j!(ﬁ) (Qkaqk) eT(O)} dF(q), (8)

where the integration is over the entire g space. The representation (8) is
formal, but is sufficient for the asymptotic formulas that follow. In fact,
under Assumption 2.1 ¢ is not necessarily an entire function, and the power
series representation used in (8) is valid only in a fixed neighborhood of
the origin in g space. However, as 71, the probability mass is confined
to this neighborhood with a probability that approaches unity, and the error
involved in the representation (8) may be neglected. A rigorous analysis
may be conducted as in the author’s related paper (1977a).
We now write the characteristic function of g as

0(z) = J e dF(g).

Taking the principal branch of the logarithm, we define the second charac-
teristic (or cumulant generating function) of § as

A(z) = log[6(z)].

We introduce the notation

Y(is) = U(s), 8(iz) = 6(z), riz) = \(z),

and then from (8) we have

- ; 11\ ’
P(w) = J e" CXP{WEzj_! (ﬁ) (‘jki) eT(O)} dF(q).
Noting that

11V 8y
el 5577 (950) 0}
11V o ay 4
- [“P{W,éﬁ(“r) (a ai;;) ef“’)}e‘ ]
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we deduce the representation

w00 Jenfo 3(77) (rag) wo}e], e ar
[lenl- 37 Garg) ol ara
ool 25 ) o} e ara]

1YY a o -
[exp{w A_Y”,( ﬁ) (ack ﬁ) er(0) CXP[)\(C]}]FWO- (9)

Note that the argument leading to (9) involves the removal of both the

operator
1/1YV Y a aV¥
exp{wjzzj (ﬁ) (BCk 3111) T(O)}

and the evaluation at { = we® to the outside of the integral. These steps are
justified by (7), which ensures the uniform convergence of the derived
integrand in an open ball of the origin.

Equation (9) is a very general formula from which most existing results
on asymptotic expansions may be derived. Since it involves the Taylor
representation of the function ¢ = t(q), (9) is, in fact, an asymptotic formula.
We shall use it to extract a large deviation expansion of the density and
distribution function of t.

Assuming that the density of ¢ exists and is given by p(x), we have by
inversion

”MS

<o)

pr(x) = ﬁ J e " (s) ds

—00

S -
=5— 1 e 0(w)dw,
2mi
and the path of integration in the last integral is along the imaginary axis.
We now replace w in the above by v Tu so that

pr0 =31 [ G T du (10)

Returning to (9), it is now convenient to expand A({) in Taylor series
about the value { = VT ue® as

N(L) = X(VTue®) + Ao (VTue)(t, —VTue,)

11
+ %Xab(ﬁueo)(ca - \/Tuea)(Cb - ﬁueb) +oee ( )
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We note that under Assumption 2.1 X({) has an analytic continuation to
strips in the space of complex { for which |Re({)|| = O(VT). The expansion
above then takes place within this region since, as we shall see later, u is
selected so that Re(u) = 0(1) as T1 00, Later on, we also require the Taylor
expansions of N(vTue®), A,(vVTue’), and X\, (v Tue’) about the origin. To

obtain these we note that (writing derivatives at the origin, as for instance
N =29 *\(0)/3z, 32;)

— 1 1 1
NzZ) = 2Nu22k + sNuZ 2z + 2N kimZ 2hZiZm T+

so that

- 1 i 1
)\(L) = —Ehﬂch;k +éAjle]Lk§l + Ezkjklmljckglgm +

and hence, from the order of magnitude of the cumulants of g,

4

2 3
_ u u u
ANV Tue’) = T{_Ehjkejek + 3 iT"?\ e eve + 24 T\ umeerelm + O(US)}

2
MN(VTue®) = \/T{—u)\ajej +—lf2—iT1/2)\a]kejek + O(uj)}
Nap(VTue®) = =\ + O(u).

We now have
im0 = [T 5 5] (s e
v S uj 2 j! vT 3Lk 9G °r

X exp{)_\(ﬁueo) + No(VTue®)({, —VTue,)

+lxab(ﬁ“eo)(la —VTue, ), —VTue,) + - - }]
2 L=ﬁue°

x exp{A(vVTue’)} [exp{\/_u 22 '(\/IT) (% ai) eT(O)}

x exp{xa(ﬁueo)(la ~VTue,)

+ l’Iab(\/Tueo)(Ca —VTue,) (L, — VTue,) + - - }]
2 L VTue
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= exp{MvTue’ )}[exp{ (ekl & )

0l 9L,

51 (i) o5}
3I\VT) \ ™3t ot oL, T
X exp{xa(ﬁueo)(ca —VTue,)

% Nap (VT ue®) (L, — VT ue ), —VTue,) + - }] . (12)

{=vVTu

To simplify the above, at least to obtain the first two terms in the large
deviation expansion, we can use the following rules for manipulating
differential operators. If D = d/dx, F(D) denotes a polynomial in D, and
W(x) is an analytic function of x, we have

(i)  F(D)}e®™W(x)} = e™F(a+ D)W(x)

and

(i)  exp(bD){e™ W(x)} = e*™*"” exp(bD){ W(x)}
O’ Wix + b).

Rule (i) is well known [see, for example, Piaggio (1962)], and rule (ii) is
a direct consequence of the fact that exp(bD) is the Taylor series expansion
operator.

From (12) we obtain by using rule (i) and noting the order of magnitude
of the derivatives N, (v T ue®):

J(Tu) = exp{)\(\/_ueo)}[exp{2 ekl()\k(\/_ueo) + _C_)

x (x,(ﬁueO) + 5‘2—1)

u

477 (B Twe s ) (v )

X (Am(ﬁueo) + ;3—2——) + O(uST)}

X exp{ Nab (VT ue®) (L, — VTue,)(p —VTue,) + - - }]

l=\/7:ueo
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_ eXp{X(ﬁue‘)) + 2 oK (VT (T

+ g(\/LT)eklmxk(ﬁueo)xl(ﬁueo)}_\m(ﬁueo) + O(us T)}
- o u 9*
X [eXp{ uekl}\k(ﬁueo)a_cl + Eek,m + O(u® Tl/z)}
X CXP{%Xab(ﬁueo)(ca - ﬁue,,)(l;,, - ﬁueb) + .. }] .
l*—‘\/Tueo

Using rule (ii) and introducing the vector v = { — v Tue’, we find that

ANVTu) = exp{)_\(ﬁueo) + ge,d)_\k(ﬁueo)xl(ﬁueo)

+ g(%) exmhi(V Tue®)\ (v Tue®)\,,, (VT ue’) + O(uST)}

u 8’
X —e——+ O 371/2 }
liexp{2 eklavk v, (w’T?)

1- - _
X exp{a)\ab(ﬁueo)vavb + uegh (VT ue®)N i, (v Tued)
1 - - _ _
+ 5uzek,em,,)\k(ﬁueo))\m(ﬁueo))\m(ﬁueo))\m(ﬁueo)
- o 0 1. o
+ ueyh(vVTue );}— X exp g)\abc(ﬁue Wavpve + - -
1 v=0

= exp{i(ﬁueo) + gek,)_\k(ﬁueo)x,(ﬁueo)

+ E(JLT) eumNe (VT ue®)N (VT ue®)x, (VT ue)

+ L o (Ve )R/ TRV T) + owm}

x[e {Ee il +O(u3T1/2)}
P12 %50, o,

1- - -
X exp{E)\ab(ﬁueo)vavb + uek,)\k(ﬁueo))\,a(ﬁueo)va}
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- a
X exp{ uey )\k(ﬁueo)g—}

vV
1-
X exp{g)\abc(\/Tueo)vavbvE +.- }]
v=0

Expanding the exponential operators in the square brackets above and
differentiating term by term, we obtain:

$(vVTu) = exp{Gr(u)Hr(u), (13)

where

Gr{u) = N(VTue®) +geabxa(ﬁue°)xb(ﬁue°)

+ g(%T) b N (VT ue®)N, (VTue®)N . (VTue®)
2

+ u?ea,,ecdxa(\/—'l_"ue")xb(ﬁueo)xbd(ﬁue“) +O0(u’T)

and
Jr(u) =1+ iz‘ea,,x,,b(\/‘r‘ue") + O(u?) + O(u°T).

From (10) and (13) we now have

100

pr(x) =ﬁf exp[T{—uT+lGT(u)}]JT(u) du, (18
2mi ) o T

where 1 = x/+/T. The next step is to deform the path of integration in the
integral (14) so that it is the line of steepest descent [see, for example,
Copson (1965)] through the saddlepoint u°. The saddlepoint u° is the
solution of the equation
_18Gy(u)
= T ou

or

T

_ 1 ON(VTue®)  ew(NavTue’)\ (N, (vVTue’)
T du * 2 ( VT )( vT )
+ %”9()_\“(‘/;“90))(Xb(\f\/T;ueo))(Xc(\\/[TTueo))
Xa(ﬁue")) (Xc(ﬁueo)
VT JT

+ Ul p€ca ( ) )_\bd (\/—Tueo)
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No(vTue® 1 Np(VTue®
* ueab( vT )(ﬁ u )
u (Xa(ﬁue"))(xb(ﬁue"))(L N (VTue®)
2 Gabe vT vT vT ou )
) Na(VTue®)\[ 1 oh.(VTue®\ -
+u ea,,ecd( )(— ))\bd(ﬁueo) + O(u*).
vT VT du (15)
But
N 0 2 3
%_ % = —uhpee, + u?iT‘/ Nueee + % TN umeereen + O(u?),
and

1 on,(vTue® u?
T Ma(VTue) ™ ) _ —Aoe, + uiT A e8, + 53 Thgueerer + O(u’),
so that (15) becomes, after collecting terms,
7= yu +yu* + vy’ + O(u?), (16)
where N
Y1 = —Ae ek,
iTY? 3
2= e ere + E(e])\]a)eab()\bkek);

and

T .
Y3 = g)\,klme,ekelem - 2eab('Tl/z)\ajke]ek)()\blel)

2
- 3eabc()\a]e])()\bkek)()\clel)

- 2eabecd ()\aj%)()\ckek))\bd'

When x = o(v/T) as T > 0, 7= 0(1) and will be small for large T so
that (16) can be inverted [see, for example, Knopp (1956)] to give the
position of the saddlepoint u® as a power series in T; namely,

2y3 -
W=y (—————”2 57”3> P+ 0(Y). an
Y1 Y Y1

Returning to (14), we now write the exponent of the integrand as

Hy(u) = T{ﬂw + lTGT(u)},
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and from the expansions of A( ) and its derivatives we have
cl/2

1 €a
Hry(u) = T[—“T - Euz)\,kejek + u3{—)\1k1€,€ket + ?b(e_;)\]a)()\bkek)}

T €ab, .
+ u4{2_4)\,kzm€,eke,em - —2_b('T1/ “Naxeec)(Norer) (18)

ea ea ec
6bc(7\a,%)()\bkek)(7\dez) - b2 d(Ka,%)(chek))\bd} + O(us):l

= T[~ur +3u’y, + w’n; + u'n, + O(u”)], say.
In place of (14) we now employ the equivalent inversion formula (Widder,
1946):

Pr(X)=—‘.Ju l exp{ Hy(w)}J(u) du.

2ai J o0
We set u = u® + iy and then, on the contour near u°, we have the expansions:
Hr(u) = Hr(u®) —3sHP(u)y* = iHP (u®)iy® + HHP (u%)y* + - -
and
Jr(u) = Jr(u®) + IP @) iy P W)y =3P Wiy + P @)y + - - -

Hence we have

T o0
pr(x) = g J_ eXP{HT(“O + i,V)}JT(uO'*' iy) dy
T exp{Hr(u’)} r eXP{—lH Py’
27 — 2

1 . 1
— gH(T”(uO)lyZ' + ﬁH?)(uo)y“ + . }
1
X [Jr(uo) + IP Wiy - EJ(TZ)(u")y2 4. ] dy,
and, setting v = {H?(u")}"/?y, this can be written

__1_{__?__}‘” o
pT(x)—zTr H(Tz)(uo) exp{Hr(u")}

X Jm exp{—v2 —1L3(u°)iv3 +—1—L4(u°)v4 +. }
—oo 2 6 24

X [Jr(uo) + M(u®)iv + %Mz(uo)v2 +-- ] dv, (19)
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where
L(u°) = HP(u)/{HP W}, j=3,
M,(u®) = IPW){HPWOY?,  j=1
From (18) we note that
HP(u®) = T{y, + 6u’n; + 12(u°)ns + O[(«°)’]},
HP(u°) = T{6m; + 24u’n, + O[(u°)1},
HP(u®) = T{24n, + O(u”)},
so that, since v,, 3, and m, are all of O(1) as T1] 0,
L(u%) = O(T7/**),
Expanding part of the integrand in (19) we get

@

1/2
pr<x)=2i{—i—} exp{HT(u")}f o

w LHP (4 .

x{l_lL °‘3+|:lL 0y, 4 LL 0 26]+ }
6 3(u®)iv a Ju®)v —72( L(4%))2v .

X {JT(MO)"' M](uo)iv+%M2(u°)v2+ . _} dv

T 1/2 .
= {hH(—TQ_)(uo)} exp{Hy(u")}

1 5
X [Jr(u°) + Jr(u®) {gLa(uO) —2—4(lq(u°))2}
1
+%M1(u°)L3(u°) +5M2(u°) + o(T")].
Since Jr(u®) = O(1) and is nonzero as T10, we can write the above as:

T 1/2
pr(x) = {m} exp{Hr(u*)} 7 (u®)

x [1 + {§L4<u°) - %(Ls(u")f} (20)

1 My(u®) Ly(u°) | 1 My(u)
2 I 2 Jr(u)

+0(T"):|.

The first factor in the above can be regarded as the saddlepoint approxima-
tion [see Daniels (1954, 1956)].
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However, it is possible to find 4°, and hence Hy(u°) and J;(u°), only in
very special cases. For this reason it is not possible to find the saddlepoint
approximation analytically in a general case such as this. An obvious
alternative is to use the first few terms of the expansion (17) of 4° in powers
of + = x/v/T to develop a corresponding expansion of Hp(u°) and Jr(u°).
As pointed outin the introduction, this expansion should accurately describe
at least a region of the limiting tails of pr(x).

From (17) and (18) we obtain

Hr(u0)=T|:—{l2—_yz 3+(2'y2 'Yl'Ya) }
Y1 M1

+{”_ 2723+(5_vz_2%_%) }v_

YoM vi 2

7 3'yz 7 s
Fys—57 Mttt O(7) ),
1 'Y Y1

1

(21)

and noting that
Nap (VT ue) = =g, + uiT"*\ 8, + O(u?)
we deduce from (17) and the definition of Jy(u) the expansion

1
() =1-3 yle,,,,xa,, + 0() + O T).

1

We now use the following notation which corresponds to that in Phillips
(1977¢):

Q= A€, €re, sy = Njpim© € i€nm,
03 = 048,50, 04 = Ngb€ab,

as = 8abea!n Qg = €4p0 00,

a7 = abc)\abo-c; ag = abecdo-ao-c)\bda

o = €apApc€eaNda, 1o = O4€ap Py,
where
2

®” = —h\ee, Oa = Nakéx,
Ba = Agreex, Sab = Nabis,
so that, in terms of the above, we have
iTY %0, + 303
PR
iTY 20, + 30 T iTY? o Og

N3 = N4 =70 =7 0o~ ~ 7.

6 24 2 6 2

Y1 =“’2, Y2 =
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Then, after collecting terms in (21), we obtain:
4 5
0 Uo Uy x X
=-={= =) +2(=) +ol=s
Hr(w') = 2(«)) \/T(m> T(m) O(T‘W)’ (22)

iT %0, + 305

60’

where

Yo =

and

. :_1<iT”2a,+3a3>2+i(To¢ _iT”zam_%_%>
8 o’ “\ 24 2 6 2/

Similarly, we find

x/ o\ [iTY?a, + 3a
HP(u') = TmZ[I - (—ﬁ>(_—u:’ 2

1
N (X/T;)) {Q(Taz - lziTl/zalo — 4o — 120‘8) (23)
() b o)
2( » ) +0 VT ’

oy (L) 1 (fo) fou T2
]T(u)”l_2<ﬁ)m+2<ﬁ>{m 20°

T1/2 < 3 5 (24)
s X X"
5 ol(7)) o)

= e () T o{(75)) - ol7)
IPW) = - a4+<ﬁ) - +0 Nes + 0 7) 25)
and

2 0y __ 1/2 x3
JPW®) = iT s + O<ﬁ) + o(ﬁ), (26)

so that from (20), (22), (23), and (24)-(26) we deduce that

prix) = zm{1+6%< ) ( ))}
ool ) e oo 5) o))
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MoV of (2 V) 4 of X
13035 ol () + o5} @D
. x\ EAY -
x{1+O(T )+o((ﬁ) ) +o((ﬁ> ) +o(T ‘)}.

When x = O(T"*) as T1 o, it follows from (27) that

oozl A | ool
28

where

() -wrel)

The first two factors on the right side of (28) then describe the limiting tails
of pr(x) for large deviations up to (and including) x = O(T"?).

Expansions corresponding to (28) for tail probabilities rather than tail
ordinates can be formally derived by integrating by parts and using Mills
ratio.! We have for x > 0 and x = O(T"?)

P(t=x) = {1 - I(f)} exp[(xjﬂf‘l’[z](ﬁ)]{l + o(%)} (29)

and

P(t < —x) = I(~x) exp[ (\/.‘”)Bxpm(ﬁ)]b + o(%)} (30)

III. RELATIONSHIP BETWEEN THE LARGE
DEVIATION AND EDGEWORTH EXPANSIONS

The coefficients in the truncated power series $*)(x/v/T) depend on the
cumulants of the underlying variates g (up to the fourth order) and the
derivatives of the error function e;( ) (to the third order). Moreover, when
we expand the exponential in the second factor on the right side of (28),
we obtain the asymptotic normal density multiplied by a polynomial in x,
just as in the Edgeworth expansion. In this way, we can establish a simple
link between the two expansions.

To be precise, we recall the form of the Edgeworth expansion of P(t =< x)
up to O(T™") given by Sargan (1976):

((2) i EHar alZ) #oll) +oll) <ol2) )
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where

1
= e g T+ 3,

a, = 80)2T Qs + 4(X7 + Q4 + 20(9)
1 1/2 . 1/2
S0 T + 12iT “oy0 — 2iT "o jas — dog — 60304 — 120t5)
- 24T(1)6(;'T1/20L1 +3a3)7,
1 1/2
a, = _6ﬁw3(lT o + 3(!3),
1
a; = —2—4;)—;11('1"(312 —12iTY 200 — 2iT * 00 — dotg — 60304 — 1201)
36T 6(1T1/2a1 +3a,)%
as = -72 TmG(iTl/2(!1 + 3(!3)2.

Equation (31) is in the same form and notation as equation (13) of Phillips
(1977¢). We sometimes call (31) the Edgeworth (A) approximation. An
alternative representation of (31) which is accurate up to O( T ") is (Phillips,

1977c, p. 474)
( +by+ b <w> n bz(m) ¥ b3(5) ) (32)

where by = ao, b, = a, + al/2, b, = a,, and b; = a; + aya,. Equation (32)
is sometimes called the Edgeworth (B) approximation.
From (31) we have the corresponding density approximation

il(i){l +a; + (2a, — a0)<£) + (3a; — al)(i) - a2<£>
4 6
+(5as — a3)(§> - a5<f) } (33)

To reconcile (33) with the large deviation expansion we note the order of
magnitude of the coefficients
ao=O(T"?),  a=0(T"), a=0(T""?,
a;=0(T"), as=0(T"),
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so that, in the tails, where x may be large relative to T the polynomial in
braces in (33) is dominated by the last three terms which are respectively
of order O(x*/vT), O(x*/T), and O(x°/T). The other terms are of
O(x/vT) or smaller.

It is now easy to see how the large deviation expansion selects those

terms in (33) which dominate in determining the behavior of tails. Returning
to (27), we have

pia- o 4 oo ) - )]
x exv[\bo( \5—“—)) +¢1(x/w)4 O(T";)]
o) of(3)) +ol)
8 {1 ro(TH+ O((%T)B) + O(T"l)}
e Th-5) o)

ar
(x/w)’ (Jf/w)4 L (x/0)°
{1 o JT + + llio T

+of(7)) O(%iz>}
Ji3(F)s o)) + ol

{1 +O0(T) + o((%)s) + O(T”l)}
o A2 5
(i)
sl

+ o((%)z) + O(T“)}. (34)
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It now follows from the definition of s, and {5, that

() -
JT\2 » Yo ) = 2a, — aq,
Mo _
JT - %
1 1 a,
? Uy — o 5;*’3‘-"0 =5as — as,
and
1 5
2T

which reconciles (34) with the Edgeworth expansion (33) up to order
O((x/VT)?).

IV. TAIL PROBABILITY EXPANSIONS
IN THE AR(1)

In this section we apply the large deviation expansion given above to the
sampling distribution of the least squares estimator in the first order
autoregression

Ve = aYe + U, t=...,-1,0,1,..., |of<1,

where the u, are independent and identically distributed N(0, ¢?). Writing
the least squares estimator of a as & = y'C,y/y'C,y as in Phillips (1977¢),
Where y, = (yOa e ’yT)s

1 0--0 0

0 - 00 0 1---0 0

1 0--0 0 ,

G=|. . .oup and G=) o0 0

Lo A 0 0 1 0

0 0z 0 o0 1 0

we obtain

A 9 — g,
&= er(q) =020
4 4@t p/T

where g, = (y'Cy —p.)/ T, p, = E(y'Cy), and q' = (q,, 4,).
As in Section II we introduce the vector § =+/Tgq, and from Phillips
(1977c¢, p. 472) we know that the second characteristic of g is given by

1 2i iz iuz
Az) = _EIOgdet{I-ﬁ(zlcl"'zzcz)ﬂ} _ \};lTl_ ih/ZTz’
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where Q is the matrix whose (i, j)th element is given by a"l6?/(1 — a?).
Successive derivatives of A(z) evaluated at the origin are

Ao = —2l(CONGA),
have = 2373 1 CLON GONCO} - 237 t{(CLO(CONG),

Nabea = %[tr{(cd D (C.)(Ca ) (G} + tr{( Ca QN Ca ) (CONC )}

+ tr{( CLAONC N CN(C, )} + tr{( GANC,Q(Ca Q) CQ)}
+ tr{ (G C, M) (C.QNCa )} + tr{( CQ)(CN(CQ)(Ca )}

To derive the large deviation expansions (29) and (30) we need the
coefficients ¢, and {, in the truncated power series ¥?{(x/+/T). These
coefficients in turn depend on the cumulants of 4 up to the fourth order,
which we derive in the Appendix, and derivatives of e;( ) to the third order
at the origin. The latter are as follows:

1-¢? —a(l-d?)
e = eQ=—"""—""
1 0_2 s 2 0_2
(1 —a?? 2a(1 — o?)?
e =0, €12 = 3 s € = ) B
o o
a(l—o?)? —6a(1 ~ a?)?
e =0, €2 =0, €122 = 6 s € =" ¢ -

g o

Using the results in the Appendix and omitting the details of the algebra,
which is at times quite heavy, we now obtain

1-02)\?2 1-a*VY_o*
0= —Njie e = ( o2 ) ?tr[(cl - )P = ( o2 ) ( 2)

12
=1-a,

1— 2\ 3 8
iT"a; = iT N ueee = (_z_a) (? G- “CZ)QP)
[0

- (5 [§ o)

= 6a(l — o’y + O(T™),
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Q3 = (e,)\]a )eanr(Nprer)

- 4(1 ;“)(l_[ er{[(C, — cz)mcam)

1
X €up (? tr{ G, Q[(C, — “CZ)Q]}>
= —4a(l —a®) + O(T™),
Q@ = Njjim€€1€1em

48
=Ftr(e,CJQ)4
1 -a%\*/48
= ( = ) (?trt(cl - acz)m“)

_ 1(1 - a2>“(6(3 + 7(12))
T T\ o (1-a?)?
6(3+ 7o) (1 — a?)

= N

T

iTl/Z(llo = ( iTl/z)\a}ke]ek) €ap ()\blel)

= —{ET tr| C,,Q(e,CJQ)Z]}eab{% trf Cbﬂ(ekckﬂ)]}

_ _(1 ‘2"‘2) (i [ C,Q(C, — acz)m>
o T

X eab(% [ GQ(C, — aCz)Q))

= 4(1 + 5%)(1 — o®) + O(T ™),

Qg = eabc()\aje] YN e ) (Acer)

= —8egpc (lT tI'[ Caﬂ(e]qﬂ)]) (_;: tr[cbﬂ(ekck\ﬂ)])

x (thr[CcQ(e,C,Q)])

= —240*(1 — o)+ O(T™),
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g = €upled (N ) (N ki )\ pa

- —Seabecd(—]—_ te] c,,n(e,c,m]) (lr ] ccn(e,cckz)]>

1
X (—7: tI'(CbQCdQ))
= -2(1+7a%)(1 — o?).
It now follows that

1
o= o=yt —a?) — 1201 - o} + O(T7)

= (1—_%)-,/—2+ o(T™)

and

e 6a 2 1\ , )
‘1’1 = —{g((l ——(12)1/2) +(1—a2) Z(3+70l )(1_(1)

—2(1+ 5031 = o?) + 4a?*(1 —&®) + (1 + 761 — az)}

+0(T™h

1(1+7a) oY),
1-¢a?

4

In the present case, therefore, we have for x > 0 and x = O(T"*) as T}

VT(&—a) B 2 1{1+7° _“}
P((l—az)‘/2>x)'(I—I(X))e"p{ a- )“2\/_ 4(1—a )T
X

X [1 + O(\/——’f‘)] (35)
and
VTG -a) _ Y _ { x’ (1”“)_}
P((l—az)‘”_ x)_l( x)exP( ADVIYT a\1-& )T

< [1 +o(%)] (36)
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V. FINAL REMARKS

The theory developed in this paper is appropriate for large deviations of
the form x = O(T"*) as T1 . In particular, the general formulas (29) and
(30) provide the scale factors needed to modify the asymptotic normal tails
when the region of the tail is restricted to a zone of O(T"*). These results
may be extended to apply over zones of O(T"?>"%) for any £ > 0 as in
formula (6) for the case of a standardized sum of iid variates.

This theory of large deviations is sometimes distinguished from the theory
of very large deviations in which the argument x is not restricted to a zone
of o(T"?). Ibragimov and Linnik (1971) report some results on very large
deviations for standardized sums, showing how the limiting tails can be
represented as the sum of a rational function in x and the normal integral.
This type of expansion seems likely to be useful in practice only on the
extreme tail of a distribution. However, in cases where the statistic under
study has finite moments only up to a certain order such expansions are
relevant, even though they may not yield very good approximations to tail
probabilities in practice. A general theory of such expansions in terms of
increasing powers of 1/ x is developed by the author in a recent paper (1985)
using the theory of Fourier transforms of generalized functions.

APPENDIX

In this Appendix we detail derivations of the cumulants of q that are needed
in order to obtain explicit representations of the expansions in Section IV
of the paper. Cumulants up to order 3 were obtained in Phillips (1977c¢),
and we now extend the analysis there to higher order cumulants. It is
convenient to work with the cumulants of the quadratic form

Q(r) =y'(C, - rC,)y

as a function of r. From Phillips (1977¢c, p. 465) the sth cumulant of Q(r)
is given by

k(r) = (s — )12 e[ (C, — rC,) Q] (A.1)
G-z (L) § (Y
2w =0
X J‘“ [2af(\)]*(cos ) AN + O(1), (A2)

where Q) is the covariance matrix of y and f(\) is the spectral density of
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¥.. The integrals

J‘ﬂ [2mf(N) (cos N) d\

-

can then be written as linear combinations of integrals such as

J’1r [27f(\)T(cos k\) dX (A.3)

for k integer and k = j. Using the fact that

25

[2mf 0" = =

(1 —a ez)\)sll

(A.3) can now be evaluated by residue theory as in the Appendix of Phillips
(1977c¢) using the general formula

™ . s . 1 ds—l Zk+s—l
j"[lwf()\)] cos(k)\) dA = 0¥ 2% 1213.1{“_1)! e (1—az)S}' (A.4)

In this way, we can find expressions for the cumulants k,(r) which are
correct up to O(1). For s =2 and s = 3, the results are given in Phillips
(1977¢). In particular, we have

4

lo(r) = —% (14 40 — *) — 8ar + 21 + a2 + O(1) (A5

(1-a??
and
6
ky(r) = % %(9 + 190 — 5a* + o) — 2(1 + 100 + a*)r
- Q
+9a(1+a®)P - (1 +40®+ a*)rP + 0(1). (A.6)
Hence
o) =2 k() =317 4 o)
o) = = ——
2 1— o 3\ a —a2)2 s

and equating coefficients of like powers of r in (A.1) and (A.2) we have
from (A.5) and (A.6)

T 4
tr(C,Q)? = 5(1_"—(12)3(1 +40” — a*) + O(1),
2Tac?
tr(C,QC0) = m + 0(1),
To*(1 + a2
tr(C,Q) = —"(—"‘3—)+ o),

(1-o
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T 6
tr(C, Q) = 4—1—1%)—5(9 +19a2 - Sa* + o®) + O(1),
- Q

(

Tola

tr[(C1Q)*°C,] = E(T-Tz)s(l +10a> + o) + O(1),

HCAUCOYT = —T% (1462 + 01),
(1-a
() = %(1 + 402 + %) + O(1).

When s = 4, we have

ky(r) = %{(—r)“ r [2mf(M\)]* dN + 4(—r)? J’“ [2mf(A)]* cos A d\

+ 6(—r)? Jﬂ [2mf(M)]? cos® N dX (A7)

-1

w

+4(—r) J’Tr [27f(M)] cos® A d“J [2mf(A)]* cos* A dx}+ o(1),

—ar

and setting

J’ﬂ [27f(\)]* cos(jN) dn

R, =

) 2s H

2mo
we obtain from (A.4) after some lengthy but routine algebra
R =(1-))T'G+1)(j+2)(j+3)e’
+12(1 -+ 2)(+3)? T2+ 60(1 —a®) " +3)a’**  (A.8)
+120(1 — o) a’*S,

Then, by elementary trigonometry, (A.7) becomes

ky(r) = 480 T{(—r)*Ry + 4(~r)°R,
+ 6(—r)*4(Ry + R,) + 4(—r)i(3R, + R;)
+3(3Ry+ 4R, + Ry} + O(1) (A9)
= 60°R{8r*R, — 32r’R, + 24r*(R, + R,)
—8r(3R, + R;) + (3R, + 4R, + R,)} + O(1).

We can now substitute (A.8) directly into (A.9). In the paper we need only
ks(a), and this is obtained by setting r = « after substitution of (A.8) into
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(A9). We find
k(o) = 66°T(1 — a?) 77 (7’ — 250® + 30a® — 10a* — 502 + 3) + O(1)
=60°T(1—a®)7(1 — )3+ 7a?) + o(1)

65°T(3 +7a”
= —g(l(——az)—;_) + O(l)
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NOTE

1. A rigorous development will be more difficult Integral large deviation hmit theorems
are generally proved by using auxiliary vanates, and direct proofs by this method encounter
greater difficulues than the corresponding local theorems for densities See, for example,
Ruchter (1964).
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