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ABSTRACT

Fractional matrix operator methods are introduced as a new tool of dis-
tribution theory for use in multivariate analysis and econometrics. Earlier
work by the author on this operational calculus is reviewed and to illus-
trate the use of these methods we give an exact distribution theory for a
general class of tests in the multivariate linear model. This distribution
theory unifies and generalizes previously known results, including those for
the standard F statistic in linear regression, for Hotelling’s T2 test and for
Hotelling’s generalized T3 test. We also provide a simple and novel deriva-
tion of conventional asymptotic theory as a specialization of exact theory.
This approach is extended to generate general formulae for higher order
asymptotic expansions. Thus, the results of the paper provide a meaningful
unification of conventional asymptotics, higher order asymptotic expansions
and exact finite sample distribution theory in this context.

1. INTRODUCTION

The purpose of this paper is to provide a short review of some new
methods I have been working with recently in the field of econometric distri-
bution theory. These methods have turned out to be surprisingly useful in
furnishing solutions of a rather general nature to a wide range of problems
that occur in finite sample econometrics. Since these problems are very sim-
ilar to those that arise naturally in other areas of statistical theory, notably
multivariate analysis, I hope that the methods I have been developing will
be of some interest to mathematical statisticians who are working in these

related fields.
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The methods rely on the concept of matrix fractional differentiation
and therefore belong to an operational calculus. At an abstract level the
techniques may be interpreted within the framework of pseudo-differential
operators on which there is a large mathematical literature (see, for example,
Treves, 1980). At the algebraic and purely manipulative level it is hard to
find any references in the literature beyond those which apply to scalar
methods of fractional calculus. Even here most attention is concentrated
on the Riemann-Liouville definition of a fractional integral (or derivative).
Whereas in applications to statistical distribution theory, I have found that
a form of Weyl calculus yields the simplest and most direct results. It is also
the most amenable to matrix generalizations. For an introduction to scalar
fractional operators of this type the reader is referred to the books by Ross
(1974a), Spanier and Oldham (1974) and the review article by Lavoie et al.
(1978).

The use of an operational calculus in problems of distribution theory has
many natural advantages. In the first place, seemingly difficult problems may
often be solved quite simply with rather elegant general solution formulae.
The latter usually avoid the complications of series representations, including
those that are expressed in terms of zonal or invariant polynomials which
many researchers find daunting and difficult for numerical work. Second, the
routine manipulation of operators frequently leads to simplifications which
are not otherwise obvious. Both these advantages arise, of course, in other
applications of operator methods. However, I have discovered that there are
some advantages to operational methods which are peculiar to their use in
statistical distribution theory.

Perhaps the most important of these is that the methods provide a sim-
ple means of unifying limiting distribution theory, asymptotic expansions
and exact distribution theory. This is because the operator representation
of the exact finite sample distribution often lends itself to the immediate
derivation of the asymptotic distribution and associated expansions about
the asymptotic distribution. Thus, all three forms of distribution theory
may often be derived from the same general formulae. An example will be
studied later in the paper.

A further special advantage of operational methods is that they help to
resolve mathematical problems for which existing techniques of distribution
theory are quite unsuited. One of the more prevalent of these in multivari-
ate models, at least in the present stage of the development of the subject,
arises from the presence of random matrices (usually sample covariance ma-
trices) that are embedded in tensor formations. These tensor formations in-
hibit the use of conventional techniques such as change of variable methods.
Prominent examples of such problems occur in econometrics with seemingly
unrelated regression equations, and systems estimation methods like three
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stage least squares. In multivariate analysis many multivariate tests, such
as the Wald test for testing coefficient restrictions in the multivariate linear
model come into this category. Since this particular test includes so many
commonly occurring statistics such as the F test, Hotelling’s 7% and the
T¢ statistic we shall use it as the focus of our attention in this paper as
a prototypical application of the operational method. For other examples
and related work the reader may refer to some other papers by the author
(1984a, 1984b, 1985, 1986).

2. FRACTIONAL OPERATORS

Historically, the concept of a fractional operator arose from the attempt
by classical mathematicians, principally Leibnitz, Euler, Liouville and Rie-
mann, to extend the meaning of the operation of differentiation (to an in-
tegral order) to encompass differentiation of an arbitrary order. These clas-
sical mathematicians addressed the following question: given the operator
D = d/dz and rules for working with D" to the integer order n what, if
any, meaning may be ascribed to D® where a is fractional or possibly even
complex? An interesting historical study of the evolution of ideas in this
field is provided by Ross (1974b), who traces the origin of this search for
an extended meaning of the differential operator to correspondence between
Leibnitz and L’Hospital in 1695.

Using the integral representation of the gamma function a very simple in-
tuitive approach to fractional (complex) operators may be developed. Thus,
if Re(a) > 0,Re(z) > 0 we have:

27 = F(a)_lf e*tt*1dt. (1)
0

This formula, which is extensively used in applied mathematics, provides
a simple mechanism for replacing an awkward power of a complex variable
that occurs in a denominator by an integral involving an exponent which is
much simpler to deal with. In a certain sense, this simple idea is the key to
much-of the subject and to its multivariate extensions that we shall examine
below.

If we now consider replacing z in (1) by the operator D = d/dz we note
that whereas D~ is difficult to interpret eP* is not. The operator eP* yields

Taylor series representations for analytical functions and may be regarded
as a simple shift operator. Thus

ePtf(2) = f( - ¢) @)



222 PETER C. B. PHILLIPS

for f analytic. This suggests that we may formally write:
D% f(z) =T(a)™? / f(z - t)t>%dt. (3)
0

Then if the right side of (3) is absolutely convergent it may be used as a
definition for the fractional integral D~* f(z). Quite general operators with
complex powers such as D¥ may now be defined by writing

D¥f(z) = D=*{D™f(=)},

where 4 = m — a, m is a positive integer and Re(c) > 0. Operators of this
type obey the law of indices and are commutative, although this is not true
of general matrix extensions, of course. At an abstract level, these operators
may be used to form algebraic systems such as operator algebras, which may
in turn be used to justify routine manipulations of the operators as algebraic
symbols.

After a change of variable on the right side (3) may be written as:

D~*f(z) = I(a)"! /_ 1 £(2)(z — 8)*~ds, (1)

which corresponds to one form of the Weyl fractional integral (see, for ex-
ample, Miller, 1974).
It is easy to show with this definition that:

D¢ = %™, (5)

This may be proved using (3) for Re(a) > 0, Re(a) > 0. The result (5) then
holds by analytic continuation for all complex a # 0 and for all complex a.
Similar results extending the rules for differentiating elementary functions
may be obtained in the same way. Another rule which is quite useful is:

u s _T(B+n —f—n
D(l—”)ﬁ—T(ﬂ)—(l—x)'9 , (6)
Re(B) > 0, Re(B+p) > 0.

(5) and (8) illustrate the great advantage that the Weyl operator (3) has
over the Riemann-Liouville operator defined by

D> f(z) =T(e)™? [: f(8)(z — 8)* ds (7)
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for Re(a) > 0. The finite limit of integration zo in (7) allows us to admit
a wider class of functions into the definition (avoiding the conditions of
convergence required by the improper integral involved in the Weyl definition
(4)). However, when (7) is applied to elementary functions the results are
usually much more complex than (5) and (6). For example, in the case of
(5) we have

D;%e* = a~%¢**T(a)~'T(a, a(z - 20)),

where I'(a, 2) is the incomplete gamma function. This complication turns
out to be a significant drawback to the Riemann-Liouville opeator in multi-
variate extensions and in applications to distribution theory. I have, there-
fore, found it most useful in my own work to employ (3) and its various
generalizations rather than (7).

Multivariate extensions follow from the matrix gamma integral:

(det 2)~* =T, (a)! / etr(—SZ)(det S)*~("t1)/2g4g, (8)
5>0

where Z is an n X n matrix with Re(Z) > 0 and Re(a) > (n—1)/2, and etr(-)
represents e to the power of the trace of the matrix. I',(c) is the multivariate
gamma function which may be evaluated as I'y(a) = x™(*~D/4 " T'(a —
(¢ — 1)/2). The integral (8) is extensively used in multivariate analysis. Its
significance was first brought into prominence in the remarkable paper by
Herz (1955).

We may now proceed as in the scalar case by introducing the matrix op-
erator 3Z = 3/3Z. Whereas (det dZ)~* is difficult to interpret etr(—8ZS)
is not. In fact, if f(Z) is an analytic function of the matrix variate Z the
operator etr(—32S) yields the matrix Taylor series representation

etr(~025)f(2) = £(Z - 5), (©)

generalizing (2). We may therefore define

Dz*f(Z)=Tn(e)™? f £(Z - §)(det 8)*~(n+1/2gg,
5>0

provided the integral is absolutely convergent and Re(a) > (n — 1)/2. The
general case of an arbitrary complex power of Dz may be dealt with in the
same way as the scalar case by setting

D%f(2) = Dz*{D% f(2)}

for p = m — o with m a positive integer and Re(a) > (n — 1)/2.
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Elementary functions of matrix argument may be complex differentiated
as before. Thus

Dz%etr(AZ) = etr(AZ)(det A)~* (11)

generalizes (5) and may be proved for Re(4) > 0, Re(a) > (n —1)/2 using
(10). The formula (11) holds by analytic continuation for all nonsingular A
and for all complex c. In a similar way, we find

T p
Dy det(I-2)"F = —Igf#det(l— Z)=P-k,

Re(f) > (n—1)/2, Re(f+p)>(n-1)/2, (12)

generalizing (6).

It is also useful to work with more complicated operators than D z. For
example, if R is a ¢ X nm matrix of rank ¢ < nm and M is a positive definite
m X m matrix, then we may define

[det (R(0Z ® M)R')]"* f(2)
— Ta(e)"! / [etr {~R(8Z ® M)R'S} £(2)] (det §)*~(++1)/24g (13)
5>0

if the integral converges absolutely. The exponent R(3Z @ M JR'S in the
integrand of (13) is linear in the operator 32 and we may write:

tr[-R(3Z ® M)R'S] = tr[-32Q(S)),

where the n X n matrix Q is linear in the elements of S. Thus, (13) has the
form:

Fq(a)“l /S>0 f(z — Q(S))(det S)a_(Q+l)/zdS.

Extensions to more complex tensor formations of operators are possible in
an analogous fashion. Some of these are given and applied in one of the
author’s paper (1985) on the subject. When f(Z) is an elementary function
like etr(ZA) one obtains extensions of rules such as (11):

det (R(0Z ® M)R')"" etr(AZ) = etr(AZ) det (R(A® M)R')™™. (14)

Once again (14) is proved for Re(Z) > 0 and Re(a) > (g — 1)/2 and then
analytically continued for all nonsingular A and all complex a.
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3. MULTIVARIATE TESTS

To illustrate the use of these operator methods in distribution theory we
shall consider some commonly occurring multivariate tests. What we present
here will in large part be a review of work already done by the author in
(1984, 1986) and the reader is referred to these papers for full details and
generalizations. However, we shall present some new results on asymptotic
expansions and exact distribution functions.

We shall be concerned with the multivariate linear model

yi = Az + uy; (t=1,...,T7) (15)

y: is a vector of n dependent variables, A is an n X p matrix of parameters, z,
is a vector of nonrandom independent variables and the u; are i.i.d. N(0,(Q)
errors with ) positive definite. Let us suppose that we are interested in a
general linear hypothesis involving the elements of A, which we write in null
and alternative form as:

Ho:Rvec A=, Hy:RvecA-r=b#0, (18)

where R is a ¢ X np matrix of known constants of rank ¢, r is a known vector
and vec(A) stacks the rows of A.
From least squares estimation of (15) we have:

A"=Y'X(X'X)™', Q'=Y'(I-Px)Y/N (17)
where Y/ = [y1,...,y7], X' = [z1,..., 2], Px = X(X'X)"'X' and N =

T'—p. We take X to be a matrix of full rank p < T and define M = (X'X) 1.
The Wald statistic for testing the hypothesis (16) is

W = (R vec A* — ) {R(Q* ® M)R'} ' (R vec A" — 1)
= N¢'B¢, (18)

where £ = R vec A* — r, is N(b,V) under H; with V = R(Q ® M)R/,
and B = {R(C ® M)R'}"1. C = Y'(I = Px)Y is central Wishart with
covariance matrix {2 and N degrees of freedom.

We define y = £/ B and write y in canonical form as

y=g'Gy, (19)
where ¢ = V-Y2¢is N(m,I,), m = V~'/2p and G~! = V-V2{R(C ®
M)R'}V ~1/%, With this notation we see that y and W are simply positive
definite quadratic forms in normal variates, conditional on C. The distri-
bution problem becomes one of integrating up this conditional distribution

over the distribution of C.
Important special cases of the statistic W are as follows.
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(i) The regression F statistic
Setn=1,A=a, Hy: Ra=r, Q0* = 5% and then

W = (Ra" - r)' [R(X'X)"*R'] "} (Ra* - r)/s?
=c FQ,N (20)

where Fy x denotes a variate with an F distribution with ¢ and N degrees
of freedom. In (20) we use the symbol “=" to signify equality in distribution
and the letter “c” to represent a constant. These notations will be used
throughout the paper.
(i) Hotelling’s T? statistic

Set R=R; @ ry, Hy: Ry Ar, = r and then

W = (R1A*r; — r)'[RiQ* Ry " (R1A%ry — 1) /ry M7,
=cz'S'z=c Fyn_qp1, (21)

with z = N(0, R,Q2R]) and S = W (N, Ri2R}) under the null; z and S are
of course independent.
(iii) The T§ statistic

Set R = Ry ® R, Ho: RyAR; = r with Ry ¢; X n and R; m X q,. Then

W = vec(R, A" R; — r)'[R1Q2* Ry ® Ry MRy) 'vec(R1A*R; — 1)
=tr [(R1A* Ry — r)' (R R}) ' (R1A” R, — r)(RyMR;)™Y]
=ctr(XX's;)
=ctr (SIS{I) , (22)

with X = matrix N(0, iR} ® I,,,), S; = W,, (N, RiQR)}) and S; =
W, (g2, R1SR]) under the null. Because of invariance to the covariance
matrix in (22) we may treat S; as Wy, (92, I,,) and S; as W, (N, I,); S)
and S are independent.

Interestingly, the exact distribution of the statistic tr(S1S; ') has not
been found in the statistical literature, in spite of apparently substantial
efforts by many researchers (see Pillai (1976, 1977) and Muirhead (1982) for
reviews). Many conjectures have been made about the form of the exact
density of this statistic. The classic article by Constantine (1966) which
gives a series representation that is valid over the unit interval [0,1] is still
perhaps the most general treatment. We shall show below how the distribu-
tion may be found in the general case quite simply by operator algebra. A
full treatment is available in the author’s paper (1986).
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4. THE NULL DISTRIBUTION

It is shown by Phillips (1986, equation (32)) that the null density of W
in the general case (18) is given by:

pdf(w) = ﬁ%(% [det (L(oX © DL oFo (~L(9X @ I)L',w/N)
- det(1 — X)~N/ ’] o’ (23)
where
L=[R@®M)R|™ R (02 0 M1?). (24)

The function oFo(—L(dX®I)L',w/N)in (23)is alinear operator which
may be explicitly represented as:

/ etr (—(w/N)L(3X ® I)L'hh') (dh),
Vi,

where (dh) denotes the normalized invariant measure on the sphere V; ;, =
{h : K’'h = 1}. An alternative representation in terms of an absolutely
convergent operator power series is also available:
i (=1)(w/N)'C; (L(3X ® I)L')

31C,(1) ’

=0

where C;(-) denotes the top order zonal polynomial of degree j, for which
explicit formulae were given by James (1964).

The simplicity of (23) is unusually striking. Yet, as we shall see, all
existing exact distribution theory for the null case is embodied in this for-
mula. Moreover, (23) also delivers the appropriate asymptotic theory and
asymptotic expansions with little effort. In the following specializations we

shall use the notational reductions detailed for these special cases in Section
3.

(i) The regression F statistic

pdf(w) = cw0/2—1 [(ax)q/ze—aa;w/N(l _ x)_N/z] i
=
= q/2-1 | _—8zw/N(q _ \—N/2—g/2
cw [e (1-=2) L=o

— cqu_l(l + w/N)—(N'HJ)/z
=cF,n.
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The reductions in the second and third lines above follow directly from the
rules (5) and (6) given earlier for fractional differentiation.

(ii) Hotelling’s T? statistic

Noting that L = L; ® €5 with L, L} = I ,, we find that the density of
W is:
df(w) = cw?/?1 [det(L1XLY)Y? o Fo(~L10X L}, w/N)

- det(I - X)~N/1
(I - X))
= cw?/2-1 [(det 8X11)1/2a0F0(—3X11,w/N)
. — —N/2
det(I — Xi;) ]X=0

= cw?/2-1 [ oFo(—aXu,w/N) det(I— Xu)_(N+1)/2]X o
1=

= cw?/2-1 [/ etr — (w/N aXllhhl(dh)
Vi,e

- det(I - X11)_(N+1)/2]
X11=0

— cw/2-1 / det(I + (w/N)hH')=(N+1)/2(gp)
Vl,q

=cw?/?"1(1 + w/N)~(N+1)/2

= cFgN-q41.
In the second line of this argument X,; is a ¢; X g2 matrix of auxiliary
variates obtained from the ¢ X ¢ matrix X by transforming X — PXP’

where P’ = [L{, K'] is orthogonal. Note that under this transformation
80X — P'dXP and L,;8X L} — 3X,1, giving the stated result.

(iii) The T§ statistic
L=1L,®L,, L, L} = I,, ¢ = q1q2 and the density of W is:

pdf (w) = cw??? [det(LlaXL;)*h/2 oFo(~L18XL, ® I,, w/N)

- det(I - X)~/?] s

= cw?/?1] 0Fo(—0X,1 ® I, w/N)

- det(I — X11)_(N+q°)/2]x o
11=

= cw?/?"1 r{—(w
= {/v et {~ (w/N)

'q
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- (8X1; ® I)hh'} (dh) det(I - xu)—(Nm)/z] _ (25)

11=

= cw??1 [ det (I+ (w/N)Q) W+9)/2 (gp), (26)
Vl,q

where Q = > %2, h,h} and B = (h .»hl,). For 0 < w/N < 1 we may
expand the determma.nta.l expression in the integrand of (26) giving

_ k
pdf(w) = cw?/?~ 12 w/N) Z(N:h) ] C(Q)(dh)

o £ (K22) (8) i,

which is the series obtained by Constantine (1966) for the null distribution.
The integration over Vy 4 leading to (27) may be obtained quite simply using
operator methods. The reader is referred to Phillips (1984b) where full
details are given.

An alternative everywhere convergent series is obtained by working from
(25). Once again details are provided by Phillips (1984b). We state only the
final result here:

¢ wi/?-1 > (N:«;gw)
+N)/2
(N + qzw)QI(Qz ) =

Tt (), a0 e

where the summations are over all partitions 8, k of k into < ¢ parts, and
the b§ are certain constants.

pdf(w) =

(iv) Asymptotic theory
We employ the simple asymptotic representation

det(I — X)™N/? ~ etr(N X/2)
for X ~ 01in (23) and deduce immediately that:

u)‘l/z_]'e_q/2

pdf(w) ~ W =x:. (29)

Thus, the asymptotic distribution appears as a special case of (23) in a single
step.
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(v) Higher order asymptotics
We transform X — Z = NX in (23) giving 8X = N3Z and:

pdf(w) = I'(q/2) w2~ [det (L(3Z ® I) L' )*/*
 oFo (~L(9Z ® I, w) det(I — Z/N)~N/?] s (0)

We now expand the determinantal factor as N | oo:
det(I — Z/N)~N/? = exp —-I—v—lndet I- Z
2 N
N1, [(z)*
~ exp {E Z%tr (—) }
k=1
_ t-r(ZJ“)
= ( Z)exp{ (j+1)NJ
(1/2)‘
— e (12) [ +ZmZ
k=1

Z- tr Zntigr Z”“...tr Zae+1 (31
e GADGTD. - Ger D)~ Y

N =

Mll—l

In the final expression (31) the summation Y " is over all £-tuples of positive
integers (J1,. .., J¢) satisfying

¢
doh=k Hi=12...k (i<i<d).
We deduce from (30) and(31) the following general form for the asymptotic

expansion of the density of W to an arbitrary order as N 1 oo:

wi/2-1g—w/2
29/*T'(q/2)

2 wq/2—1
+2Nkz“/2’ >

e T(g/2)(jr+1)...(7 + 1)
. [det (L(3Z® I)I')/? oFo(-L(3Z @ )L, w)

- etr (%Z) tr (Z72Y) ¢r (Z272%1) ..o (270FY) . (32)
Z=0

pdf(w) ~
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To O(N~1) we have:

wi/2-1

TN @)
- oFo (-L(8Z @ I)L',w)etr (%Z) tr Zz]
Z=0

+o(N7Y). (33)

pdf(w) = x5 [det (L(8Z ® I)L')l/2

The correction term of O(N~!) in (33) may be evaluted using the rules of
operator calculus given earlier. The final result may be shown to correspond
to the expression obtained by more conventional methods by Phillips (1984c).

5. THE DISTRIBUTION FUNCTION

We may also derive the cdf of the null distribution of W. We shall use
the incomplete gamma integral:

Y
/ e Vy*ldy = o~y ® 1Fi(a, a+1; -Yg¢),
0

where Re(a), Re(s) > 0 (Erdeyli, 1953, p. 266). We have:
cdf(w) = P(W < w)
-1 [fw
= [Ner*r(g/2)] / ¥ [det (L(0X @ 1) L')"/?
)

- oFo (~LOXQI)L',y/Z)det(I - X)—N/z] oy

= [/ 21“(q/2)]_1 /0 ) /V ¥/ [det (L(0X @ 1)L)/?

- exp {(y/N)W'L(3X ® I)L'h} (dh) det(I — X)~N/ 2] _ .

Interchanging the orders of operation in the above expression, which is per-
missible in view of the continuity of the integrand and the compactness of
the domains of integration, we obtain:

wi/2 1/2
cdf(w) = ) [det (2(0x ® 1)

Nd/?T(q/2+1
[, B2 5o/ NW X © 1) (dh)

q
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- det(I — X)—Nﬂ]

_ (w/N)e/2

T T(g/2+1)

- 1F{ (g/2,4/2+ 1;—(w/N), L(3X ® I)I')

 det(I - x)—N/z]

X=0

[aet (L(ox & 1) L)"/?

X:O.

In (34), 1F1(q) is a confluent hypergeometric function with two matrix argu-
ments (see James, 1964). In the present case one of the arguments is scalar
and the function admits a series representation in terms of top order zonal
polynomials.

6. THE NON-NULL DISTRIBUTION

Analysis of the non-null distribution of W proceeds along similar lines.
The derivations are more complicated and the reader is referred to the au-

thor’s paper (1986) for details. The final result for the density may be
expressed as:

wi/2—1g-m'm/2

/
PAE(w) = =t [det (2(0x © 1) L/)"/?

. /‘; exp{—(w/N)K'L(dX ® I)L'h}

1wy 'm!

- det(I — X)‘N/z] (35)

X=0 ’
An alternative series representation of (35) is possible in terms of top order
invariant polynomials (Davis, 1979) with two matrix argument operators.
Specializations to the non-null distributions of the statistics in Section 4

and to the asymptotic theory of W under local alternatives are also given
by Phillips (1986).

7. CONCLUSIONS

There seems to be considerable scope for applying the methods outlined
here to other problems of distribution theory in multivariate analysis. The
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author (1984a) has used similar methods in studying the distribution of the
Stein-rule estimator in linear regression. The latter results have recently
been extended by Knight (1986) to nonnormal errors.

The technique of developing general formulae for asymptotic expansions
from exact theory also seems to be very promising. This approach avoids
much of the tiresome algebraic manipulation that is a feature of the tra-
ditional work on Edgeworth expansions. Moreover, the final formulae are
simpler in form and may be used to obtain expansions to an arbitrary order,
which is very difficult with the traditional approach.

Here and elsewhere in the application of these methods to problems
of distribution theory it would be helpful to have a glossary of results on
fractional and matrix fractional calculus. Until now I have been developing
rules for working with these operators as the need for them arose. With a
systematic set of formulae for the action of matrix fractional operators on
elementary and commonly occurring special functions as well as rules for
operation on products and compositions of functions of matrix argument it
should be possible to make progress on many presently unsolved problems
of multivariate distribution theory.
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