Cowles Foundation Paper #625

ECONOMETRICA

VOLUME 53 JuLy, 1985 NUMBER 4

THE EXACT DISTRIBUTION OF THE SUR ESTIMATOR

By P. C. B. PuiLLIps'

This paper derives the exact finite sample distribution of the two-stage generalized least
squares (GLS) estimator in a multivariate linear model with general linear parameter
restrictions. This includes the seemingly unrelated regression (SUR) model as a special
case and generalizes presently known exact results for the latter system. The usual classical
assumprions are made concerning nonrandom exogenous variables and normally dis-
tributed errors. The theoretical results of this paper are made possible by the author’s
development of a matrix fractional calculus. This operator calculus is the main theoretical
tool of the paper and may be used to solve a wide range of other unsolved problems in
econometric distribution theory.

1. INTRODUCTION

IN THE EARLY 1960’s Zellner [10] developed a two-stage GLS estimator for the
coefficients in a linear multivariate system that is now popularly known as the
SUR model. This two-stage procedure has since been used in many empirical
applications. GLS also forms the basis of other commonly used estimators both
in linear models with heteroscedastic or autocorrelated errors and in simultaneous
equation systems where it leads to three stage least squares (3SLS). In spite of
extensive research and perhaps surprisingly in view of the popularity of GLS
methods in empirical work, the exact finite sample distribution of the SUR
estimator is known only in highly specialized cases. These cases effectively restrict
attention to two equation systems and models with orthogonal regressors [2].
Existing distribution theory is even more limited in the case of other commonly
used GLS estimators, such as the two-stage estimator in linear models with
heteroscedastic errors. Here, only low order moment formulae are known and
then only in the simplest two sample setting.

The research underlying the present paper is motivated by the deficiencies
outlined above. Our initial object of study was the exact distribution of the SUR
estimator in the general case. But the methods we have developed open the way
to an exact distribution theory for econometric estimators in a much wider setting
than the SUR model. The present paper will derive the exact finite sample
distribution of the two-stage GLS estimator in the multivariate linear model
subject to general linear parameter restrictions. This generalizes all presently
known distribution theory for the SUR model itself. Two important specializations
of our results will be illustrated in detail: the unrestricted multivariate linear
model; and the Zellner model with pairwise orthogonal regressors.

The analytical results reported here are made possible by the introduction of
a fractional matrix calculus. This calculus is developed in terms of the action of
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a linear pseudodifferential operator on a complex analytic function defined on
a certain matrix space. The development has a simple intuitive interpretation that
follows from the definition of the multivariate gamma integral; and it can be
regarded as a generalization of the scalar Weyl calculus. The mathematical theory
of these matrix operational methods goes well beyond the application that we
report to SUR-like systems.

In Section 2 of this paper the mathematical theory is developed in a form most
suitable for immediate application in problems of distribution theory; and rules
are given there for the fractional differentiation of the most frequently encountered
elementary functions of matrix argument. The power and elegance of these matrix
operational methods is then well demonstrated in Section 4 by the application
to the SUR estimator. The tensor algebraic representation of this estimator severely
inhibits the use of conventional multivariate methods but readily permits the
application of the new operational methods to extract the form of the exact
density of this estimator in a general setting.

The primary intent of the present paper is to introduce the fractional matrix
calculus as a new tool of distribution theory and illustrate its use to SUR-like
systems. The paper is therefore largely theoretical. More work needs to be done
on the analysis and application of the results presented here for the SUR system.
One immediate application, for example, which we only briefly mention in Section
7 is the simple derivation of asymptotic formulae from the finite sample results
given below. Another is the derivation of moment formulae and the analysis of
tail behavior for the SUR estimator. These and other applications will be left for
subsequent work.

The methods given here open up an exact distribution theory for a wide class
of econometric estimators and test statistics. In [5] the author has used similar
techniques in deriving the distribution of the Stein-rule estimator in linear
regression; in [7] the author uses the methods of Section 2 to find the distribution
of the Wald statistic for testing general linear restrictions in the multivariate
linear model; and in [6] Cramér’s formula for the density of a ratio is generalized
to matrix quotients by employing related operational techniques. Other potential
applications of these methods include GLS estimators and test statistics for the
heteroscedastic linear model and systems estimators in simultaneous equations
models. The author has some work on these other problems underway.

2 FRACTIONAL MATRIX CALCULUS

This section extends the theory of fractional operators in differential calculus
to matrix spaces. Those readers who are unfamiliar with scalar fractional operators
as a generalization of traditional differential and integral calculus may wish to
refer to the reviews in [8 and 9]. Additionally, [8] provides an historical survey
which traces the theory of fractional differentiation to the work of Leibnitz,
Liouville, and Euler. Interestingly, I’Hospital seems to have raised the possibility
of a fractional derivative as early as 1695 in correspondence with Leibnitz.

Let o denote the space of n X n symmetric matrices, O(n) the group of n Xn
orthogonal matrices, and € the class of symmetric functions on &. € is defined
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as the set of all complex analytic functions on & for which f(X)=f(HXH') for
all H e O(n) and where X € . Since f € € is a complex analytic function of the
n elementary symmetric functions of X (viz. oy =tr(X), 0,=-- -, 0, =det X),
the domain of definition of f may be extended to all complex n Xn matrices X
for which f(X) continues to be defined [1]. In what follows we let X be an
arbitrary complex n X n matrix and we use the notation 6.X to denote the matrix
operator 8/9.X.

DerFINITION. If f is a complex analytic function of X and « is a complex
number for which Re (a)>(n—1)/2 we define the fractional matrix operator
(det X)) by the integral

1
I.(a)

when it exists. The integral is taken over the set of positive definite matrices S > 0.

(1) (det aX)_af(X)= I f(X_S)(dCt S)a*(n-H)/Z ds

In (1) I,(a) is the multivariate gamma function. The definition is motivated
by the observation that (det 9X)™* may be formally considered as the operator

2) (detoX) > =

1 J —ne1))2
= etr (—0.XS)(det S)*~"*V/2 45,
Fn(a) S$>0

etr ( )=exp{tr( )},

using the multivariate gamma integral [1]. We observe that, since f is analytic
and S is symmetric, we have

(3) etr (-aXS)f(X) =f(X~5)

which leads directly to (1).
The definition (1) is a matrix generalization of the Weyl fractional integral [4].
Indeed, when X is a scalar we deduce from (1) that, setting D = d/dx,

gy et | s ds e | _ )t

@ DYW=Fy j fx=s5)s" ds = Lf(y)(x »)* dy
which is one representation of the Weyl definition of a fractional integral. Here
we require Re (@) >0. The Weyl integral (4), when it exists, satisfies the familiar
law of exponents D™*D™# = D™**# for all « and B. Fractional differentiation
is defined in terms of fractional integration to an appropriate order of a traditional
derivative to the nearest integral order: see [4] for a full development.

Equation (1) may be used to define a fractional matrix derivative (det 9X)*.
First we assume that u is a complex quantity for which Re (u)=—-(n—1)/2 so
that (1) does not apply as it stands. Next we introduce a positive integer m and
complex number « which we define by:

m=[Re(u)+(n-1)/2]+1,
Im (&) =~Im (u),
Re () =m—Re (u),
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where [ ] denotes the integral part of its argument. Then u = m — « and Re (a)>
(n—1)/2. Thus the operator (det 3X)* may be defined by:

(5) (det 0X)* = (det 0.X) *[(det aX)™F(X)].

With these definitions we can verify that the fractional matrix operator satisfies
the usual law of exponents. Writing Dx = det 6X we have (for Re («), Re (8) >
(n—1)/2),

1
DX [DEf(X)]=Dx* - B-(n+1)/2
x DX f(X)]=D T.(8) Swf(X S)(det S) as

2_—1* —R— B—(n+1)/2
I‘n(a)rn(mLmLoﬂX R=5)(det 5)

- dS(det R)*~"*V/2 gp

1
T L.B) JMJ(X_M)

M
: j [det (M — Q)1*™"*V/2(det Q)B~"+1/2 gQ
Q=0

1

“T.(a)[.(8) - a+B—(n+1)/2
T,(a)T,(B) Lwﬂx M)(det M)

1
' ,[ [det (1~ T)]1*"""V/2(det T)P~"*V/2 g1
0

1

—_—— _ a+B—(n+1)/2
T.(a+B) JM>of(X M)(det M) d

= DX 7Pf(X).

To prove that the law holds for general indices as well as negative indices we
use the argument that, if u =n—a and v=m—B with n and m integer, and if
the derivatives exist, then:

D&[D%f]= Dx*DX[ DX’ D%f]1= D[ D¥ DX ™f]
= DX P DY f]1= D5f.

The following examples illustrate the use of the fractional matrix operator Dy
on elementary functions of matrix argument:

(6) % etr (AX)=etr (AX)(det A)*, all y,

F(a+p)
I (a)

Re(a)>(n—-1)/2, Re(a+u)>(n—1)/2,

(M Di[det (I-X)]™* = [det (I-X)]*7%,
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L(B) (atp)
() (B+p)

Re(a)>(n—-1)/2, Re(B)>(n—-1)/2,
Re(a+u)>(n—1)/2, Re(B+u)>(n—-1)/2.

It is frequently convenient to work with the adjoint of the matrix operator
8/8X, which we will write in the form 60X, =adj (3/9X). The fractional calculus
can be extended to this operator as in (2) and (5). We define

(8) D% Fy(e, B; X)= 1Filatu, B+u; X),

9) (detdX,) °f(X)= J {etr (=0 X,S)f(X)}(det S)*~"*1/2 gs,

1
rn(a) S>>
Re (a)>(n—-1)/2,

provided the integral exists; and, for complex u with Re (u)=—(n—-1)/2, we
define

(10)  (det aX,)"f(X)=(det 0.X,) *[(det 8X.)"f(X)],

where m and « are defined as in (5) above.
In our applications of this calculus f(X) is often the elementary function
etr (AX). Simple manipulations verify that for this function

(11) (det 8.X,)" etr (AX) = etr (AX)(det A,)*

where A, =adj (A).

We also need to work with the operators det{S'(6X,®M)S] and
det[ S'(6X,% 0X,® M)S] where S is an nm X q matrix of rank g, X is n X n positive
definite, and M is m X m positive definite. Extensions of (11) to these operators
yield:

(12) {det[S'(6X,® M)ST}* etr (AX)
=etr (AX){det[S(A, ®M)ST}*
=etr (AX){det [S'(A"'®@M)S]}*(det A)*
(13) {det[S'(6 X, 2 0X,®M)ST}* etr (AX)
=etr (AX){det[S'(A, 2 A, @M)ST}H*
=etr (AX){det [S'(A'T A ® M) S]}*(det A)***
Another useful formula is:
g[S(0X, @M)SIS'(6X,2 X, ®M)S1,[S'(8X,OM)S]getr (AX)
=etr (AX)g'[S'(A. Q@ M)S][S'(AZ A, ®M)SL[S' (A ®M)S]g
where g is any g X1 vector; and repeated use of this operator yields:
(14) {g[S'(0X,®M)SI[S(8X.% 0X,®M)S].[S'(6X,®M)S]g} etr (AX)
=etr (AX){g'[S' (A, @M)SIS'(AZ A, ®OM)S].[S(A, ®M)S]g}.
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3 THE MULTIVARIATE LINEAR MODEL AND THE SUR SYSTEM

We write the multivariate linear model in the form:

(15) v, =Ax, tu, (t=1,...,T)
where y, is an n X1 vector of endogenous variables, x, is an m X1 vector of
nonrandom exogenous variables, and the u, (t=1,..., T) are i.i.d. N(0, ) with

nonsingular covariance matrix 3. We also write (15) as Y'= AX'+ U’ where the
data matrices are assembled in columns as in Y'=[y,,..., yr]; and we assume
that X has full rank m.

The coefficient matrix A in (15) is assumed to be parameterized in the form

(16) vec (A)= Sa —s

where vec () denotes vectorization by rows, Sis an nm X g matrix whose elements
are known constants and whose rank is g, and s is a vector of known constants.
In (16) a is taken as the (g X 1) vector of basic parameters.

The model given by (15) and (16) includes the SUR model as a special case
as well as Malinvaud’s general linear model [3] which allows for the same
parameters to occur in more than one equation. Of course, in the SUR system S
is a block diagonal selector matrix and s =0. Additionally, the model (15) and
explicit parameterization (16) are formally equivalent to the same model (15)
with the coefficient matrix A subject to p = mn — q general linear restrictions.

(17) Rvec(A)=r

where R is a p Xnm matrix of rank p and r is a p X1 vector. All of our results
apply to the restricted regression model (15) and (17) upon appropriate symbolic
translation. We will therefore confine our attention in what follows to the explicit
parameterization (16).

The GLS estimator of « is given by

(18) d={S"(T7'®X'X)S} H{S'(Z'® X ) vec (Y)+ S'(Z'®X'X)s).

The two-stage estimator of « is obtained by replacing ¥ in (18) by an estimate
that is typically based on the residuals of a preliminary least squares regression
on (15). We take the estimate

(19) 3*=(T-m)"'Y'(I-Px)Y, Px=X(X'X)"'X',

from an unrestricted regression. The corresponding two-stage estimate of o we
will denote by a*. The error in this estimate satisfies:

(20) a*—a={S'(* 'R X'X)STHS(Z*'® X') vec (U")}.

It is also possible to select an estimator of 2 based on a restricted preliminary
regression which takes (16) into account in the first stage. The treatment of the
resulting restricted estimator of a is more complicated than it is for a*, but our
methods are still applicable. In what follows we will confine our attention to the
estimator a* given by (20) and leave the additional algebraic complications of
the restricted estimator to later work.
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4 THE EXACT DISTRIBUTION OF a*

Define M =T"'X'X, p=vec(U'X/T), and D= Y'(I —Px)Y. We write the
error in the estimator a* given by (20) in the generic form

(21) a*—a=e(p, D).

Our approach is to work with the conditional distribution of e given D and then
average over the distribution of D to achieve the marginal probability density
function (pdf) of e.

Since p is N(0, 3 ® M/ T) the conditional pdf of e given D is

T2 exp {—(T/2)e[B(S®M)B'] 'e}
(27)?(det [B(Z @ M)B'])!/?

(22)  pdf(e|D)=

where
(23) B=[{S(D'@M)S]'[S"(D'®I)].
The matrix D is central Wishart with pdf given by:

etr (=32 7' D)(det D)(T~m /2
2" (T=m/2P ((T—m)/2)(det ) T—™/%

(24)  pdf (D)=

It follows that the unconditional pdf of e is given by the integral:

Tq/2
Pl (€)= T T, (T — m)/2)(det Z) 772
_ J’ etr (-327'D) exp {—(T/2)e'[ B(Z ® M) B} 'e}(det D) T-m—""V/2 gp
(25) D>0 (det[B(Z®M)B')'?

_ (T/2m)%? = (=T/2)
T nT=m2E (T —m)/2)(det )T-™72 25 ji
J’ etr (=137 D)(det D) T "~ 2(o [ B(Z® M)B] 'e) dD
“Jomo (det[B(Z@ M) B')'>

where term by term integration of the series is justified by uniform convergence.
We now decompose the matrix

(26) B(Z®@M)B'=[S'(D'@M)S] '[S(D'SD'®M)S]

[S(D'@®M)ST!
=[S"(D,® M)ST'[S(D,ED,® M)SIS'(D,® M)S]™*
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where the suffix “a” is used to indicate the adjoint of the associated matrix. The
integral we need to evaluate in (25) has the following form:

(27) J etr (43! D)(det D)7 12
D>0

- {e[S"(D,® M)SIS(D,3D,® M)S1.[S'(D,®M)S]ey
- det[S'(D,® M)SHdet[S'(D,ZD,®M)ST} "2 dD.

We introduce an n X n matrix W of auxiliary variables and using (12), (13), and
(14) we deduce that (27) equals

(28) [{e’[S’(a W,®M)SIS'(0W,2dW,®M)SLIS'(6W,®M)S]eV
-det[S'(6W,® M)SHdet[S'(aW,ZoW,@M)S]} /2

. j etr[— (327!~ W)D](det D){F /2 dD]
D>0 W=0

In this expression d W, denotes the adjoint of the matrix operator oW =0/0W

and the fractional matrix operator that appears in (28) is defined asin (9) and (10).
We evaluate the multivariate gamma integral in (28) and from (25) we then

deduce:

(T/2m)""?
(29) Pdf(e) = 2n(T—m)/2I~n(( T-— mq;/2)(det 2)(T—m)/2
3 % [{e'[S'(aWa@)M)S]

[S'(AW,ZoW, R M)S1.[S' (W, M)Sle}
-det[S"(dW,® M)SHdet[S'(dW,ZoW,® M)S1} /2

T, (T—;—’—") [det (237!~ W)]—(H'W]

=( _T_)"“ 2 (=T/2y

W=0

(30) Y ———[{e[S'"(6W,® M)S]
2

jt
[S'(OW,ZoW,®M)S1.[S (0 W,® M)S]ey

- det[S'(3W,® M)SHdet [S'(3W,ZoW, @ M)S]} "2
[det (I =23W)]~ T2 ..

1=0

In generalized operator notation this expression for the pdf of e =a*—a may

be written more simply as:

T2 exp {—(T/2)e’'G(3W,) 'e}
(27)¥*[det G(aW,)1/?

(31) pdf (e) = [det (J =23W)]™ 7™y,
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where

G(OW,)=[S"(OW,@M)ST'[S'(6W,ZoW,@M)S]S'(aW,@M)ST".

5. MARGINAL DISTRIBUTIONS

Let F be an f X g matrix of known constants of full rank f (<q) and consider
the marginal distribution of g= Fe. The joint marginal pdf of g is deduced by
the same sequence of operations as those developed above for the full dimensional
case. The final result corresponding to (30) is:

27 Eo j!

‘g [F{S'(sW.® M) S},{S' (W, Z9W,® M)S}
{S'(OW.®M)S},F'l.gy (det[S'(dW,® M) ST
- (det [F{S'(3W,® M)S},{S (6 W,ZoW,® M)S}
{S' (6W.®@M)S}F)~~'/?

<[det (I =23W)1" T2y, _;

12 o (_
(32) pdf(g)=(T) T2y

or in generalized operator form:

T exp {~(T/2)g’H(3W,)"'g}

(33)  pdf(g)= (27 ) [det H(3W,)]""

[det (I -23W)]" "™/ o

where
H(3W,)=F[S'(6W,QM)ST[S'(aW,ZoW, R M)S]
[S'"(aW,® M)ST'F'.

6. SPECIALIZATIONS
6.1. The Unrestricted Model

In this case @ =vec (A) and a® is the unrestricted least squares estimator. To
reduce the general expression (30) for the density in this case we note that
(3W,)(3W,), = I(det aW)""! and thereby

: OW, @M)W, ZoW,®M),(3W,®O M)
=(@W, QM) ((0W,).2,(8W,) . ® M,,)(8 W, ® M)
-[det (W, ZaW, )™ (det M) !
= (3, @ MM_M)(det aW)*"~*(det d W, )>™ *(det )™ '(det M)"™
=(Z7'@M)(det Z)™(det M)"(det aW)>m("~1),
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Additionally,
det (W, ® M){det (6 W,ZoW,@ M)} 7~ 1/?
= (det M)"{det (£ ® M)}™"/*(det W, ) ™2m0*+1/2
= (det M)"{det (@ M)} 7~ V(det g W) ™"~ D=2mn=D0+1/2)
Using these reductions in (30) we deduce that:

q/2 o (__ j
pdf(e)=(%) z(JT.—!/Z)’{e'(f@M)e}f

1=0

-[(det )™ (det M)™(det 9W)2™ "~V (det M)"

. {det (2 ®M)}-—j-—l/2(det aw)m(""l)-ZM(""l)(ﬂ']/Z)

Adet (I =23W)}~T-™/21,, o

q9/2 _

= (%) L =172y JT,'/Z)j{e'(z“cy;M)e}J(det )" *(det M)™?
T exp{-T/2e(37'@M)e}
T Qm)¥YYdet (E@MYH)]?

Thus, the joint density of e =a*—a reduces to the well known multivariate
N, 2®(X'X)™).

(34) , g=nm.

6.2. The Zellner Model with Pairwise Orthogonal Regressors
We specialize the multivariate system (15) and (16) to the Zellner model
(35) yk=XkBk+uk (k=19"'7n)

where y, is the observation vector on the kth dependent variable, X, isa T X L,
observation matrix on L, regressors, B, is a vector of coefficients, and u; is a
vector of normally distributed serially independent errors. The covariance matrix
of u'=(u},...,u,)is I®L

When we stack the model (35) and set a’'=(81,..., 8,) the Zellner SUR
estimator of « is a® and its exact distribution is given by (30). The marginal
distribution of 8%, the SUR estimator of the subvector of the coefficients in the
kth equation can be deduced directly from (32).

To relate our results to the existing literature we now assume pairwise
orthogonal regressors across the equations of (35), so that X; X, =0 for i # j. We
may concentrate on the first equation of the system without loss of generality
and set k=1, e;;=B%—B;, m=Y;_, L, and M;; = T"'X|X,. From the general
expression (32) the joint marginal density of e;; is found to be:

L,/2 © (_
(36) Pdf(eu)=(%> (det M)/ ¥ (f# (el1My e1)

1=0

_ [ CLANS

[det (I —22W)]"T—"'”2]
(a Waz a Wa)jl-;-Ll/Z

W=0
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Simple manipulations now verify that
(OW) T M (OW.Z aW) 11 [det (1 —2ZW)]1™ T2,

1
- L(T-m)/2)

. (crs-lc)2]+Ll(ch—20)—j—Ll/Z dS

j etr (—S)(det §)(T~m)/2=(n+1)/2
S>0

_ (CIC)_]+Ll/2
IL,(T-m)/2)

(SIS ds

(c'ey*™’r (—T_—m+l) r (T_ m+£‘—‘—f+j+ 1)

‘[ etr (—S)(det §)(T—mY/2-(n+1)/2
5>0

2 2 2 2
(37) N T T L 12
F(—m—f+1>r( Prysy
2 2 22

where ¢’ denotes the first row of Z7'/2 The final step in the argument leading

to (23) is an interesting exercise in integration for the reader. If we write X in
partitioned form as

and set oy ;=var(u|uy - u,)=0,;— 0,250, we find that c'c=c¢''=

(01— 01,23 02,) " =01} ,. We may now deduce from (36) and (37) the following
expression for the joint marginal density of e;;:

T\ L/?
(38) pdf (e;) = (;) [det (o1, M1

T—

I r(Lemd.)
2 2 § 2 2 2
T-m n o T-m L, 1 )
r{—=2-241)"° r (=2 24241
( 2 2 ) ( 2 22 )

. (_ TeilMllell)J
2042
= (T/ZW)L‘/Z[det (0'11~2M1~1l)]“1/2

F(T—m+1)F(T—-m+L,——n+1>

) 2 2
F(T—m—n+1>r(T—m+Ll+l>
2 2

F, (T—m+L1—n+1, T——m+L,+1;_Te’“M“e“)
2 2 204 2
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= (T/zﬂ')L'/z[det (o1 2M1—11)]—l/2 exp (—Tej My eq,/204, »)
F(T——;@+l) F(T—m;—Ll—n+])

’ T—-m—-n T-m+L,—1
r——+1 ) ry————
( 2 1) ( 2 )

. F (n_l T—-m+L1+l‘TehM1,e“>
TN 2 2 © 200, )

Upon translation of notation (38) is the expression found in [2] by direct methods.

7. FINAL REMARKS

The general formulae (30) and (32) may be used to deduce the corresponding
asymptotic distributions in a simple way. We replace [det (I —23ZW)]™"T"™/2 in
(30) or (32) by an asymptotic approximation as W-0. It is simplest to use
[det (I-23W)]"T"™/2—etr [(T— m)ZW]. Upon evaluation, we see that (30)
now yields the asymptotic N(0, T[S (2~ '® M)S]™") approximation directly.
Higher order asymptotics may be obtained in a similar way although the algebra
is more complicated.

The operator calculus developed in Section 2 may be applied to a variety of
other unsolved problems in econometric distribution theory, including systems
estimators in simultaneous equations, Stein-like estimators, and other commonly
used two-stage GLS estimators. Research on some of these problems has commen-
ced and is reported in [§ and 7].

Yale University
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