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A theorem on the tail behaviour of
probability distributions with an application
to the stable family

P.C.B. PHILLIPS Yale University

Abstract. The theory of Fourier transforms of generalized functions 1s used to extract general
formulae for the tail behaviour of a probability distribution from the behaviour of its
characteristic function in the locality of the origin. The theory is applied to develop asymptotic
formula for the tails of the stable distribution. The results of the present article yield immediate
series representations of the densities of these distributions. In some cases (when the
characteristic exponent o < 1) the series are convergent; in others (1 < a < 2) the series are
asymptotic and thereby describe tail behaviour.

Un théoréme sur le profil des extrémités des fonctions de probabilités et son application a
une distribution stable. La théorie de la transformation de Fourier des fonctions
généralisées est utilisée par l’auteur pour extraire, du comportement de sa fonction
caractéristique dans le voisinage de ’origine, des formules générales défimissant le profil
des extrémités d’une fonction de probabilités. L’auteur applique cette théorie au
développement de formules asymptotiques pour définir les profils des extrémités de
distributions stables. Le travail développe des représentations en séries des densités de ces
fonctions. Dans certains cas (quand 1’exposant caractéristique o < 1) les sénes convergent;
dans d’autres cas (quand 1 < a < 2), les séries sont asymptotiques et donc décrivent le profil
des extrémités. '

INTRODUCTION

The tail behaviour of a probability distribution is known to be closely related to the
behaviour of the characteristic function of the distribution in the neighbourhood of the
origin. In particular, it is well known that if the distribution has finite absolute
moments to order M (where M is an integer) then the characteristic function is M times
differentiable at the origin, and it admits a Taylor (asymptotic) expansion to this order
in the locality of the origin. An extensive treatment of this aspect of the relationship
has been given in the statistical literature, for example by Pitman (1960) and by
Lukacs (1970). An excellent introduction to the subject is provided by Feller (1970).
Useful though these results are, they fall short of a full mathematical characteriza-
tion of the relationship. Such a characterization is likely to be most interesting in those
cases where the form of the characteristic function of a distribution is known and is
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easy to express in terms of elementary functions, whereas the denstty itself is either of
unknown mathematical form or expressible only 1n terms of special functions of
applied mathematics. Such cases arise frequently in problems of econometric
distribution theory. They also arise more generally in economics when it becomes
convenient to use explicit distributional laws. An obvious case in point is provided by
the stable family of distributions. Under weak conditions this family describes the
only possible limiting distributions of normal sums of stationarily dependent random
variables.

In econometrics, disturbance terms are often taken to represent the combined
effect of a large number of variables that are not explicit in the model itself. When the
individual effects are sufficiently numerous, independent, identically distributed, and
small enough, a central-limit theorem is often used to justify an assumption of
normally distributed errors. If we wish to relax the assumptions of small individual
errors (usually transmitted by a requirement of finite first and second moments) and
independence, then the same argument leads naturally to the stable distributions as an
alternative, wider family of distributions for disturbances in econometric models.
Attention to the properties of econometric estimation and testing procedures under
such wider distributional hypotheses has become an important concern of recent
studies of robustness in econometrics, as exemplified by Bierens (1981), Koenker
(1982), Andrews (1983), and the references therein. In the economics literature also,
many different applications of stable distributions have been discovered, most
frequently as a means of representing apparently non-normal populations that display
thick tail-area behaviour. Both theoretical and empirical arguments have been put
forward in support of these distributions, notably by Mandelbrot (1963a, 1963b,
1967) and Fama (1963, 1965) in connection with speculative commodity prices and
stock market prices.

With the exception of a few special cases (the Cauchy, the normal, and the stable
law with characteristic exponent parameter o« = 1/2) simple analytic formulae for the
densities of the stable distributions are not available. This makes both analytic and
empirical work within the family of stable distributions much more difficult than it is
in other cases. For example, in the absence of analytic formulae, the formulation of
maximum likelihood problems becomes very complex. On the other hand, a simple
characteristic function formulae is known, which is general enough to include every
member of the stable family (see, e.g., chap. 2 of Ibragimov and Linnik, 1971). It
turns out, as will be seen in the third section of the paper, that very detailed
information about the stable distributions may be extracted quite simply from this
formula for the characteristic function. This information precisely describes the tail
area behaviour of the distributions. In certain cases the information is even sufficient
to allow for the numerical computation of the entire density. In others it will be
sufficient to allow for the construction of good global approximants to the density by
means of the Padé techniques explored in Phillips (1982a). Density formulae
obtained in this way may then be used in statistical work at both descriptive and
inferential levels. Tail area probability computations based on these formulae or the
underlying series should also be directly useful in inferential work.
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In the earlier article (1982a) referenced above I proved a result (theorem 4 of
1982a) which can be used to extract general formulae for the tail behaviour of a
probability distribution from the behaviour of its characteristic function in the locality
of the origin. The present paper reports a generalization of this result that covers a
more extensive class of distributions. In particular, the results of the present paper
apply to the stable family of distributions and yield immediate series representations
of the densities of this famuly. In some cases (when the stable family exponent
parameter o < 1) the series are convergent; in others (when 1 < « < 2) the series are
asymptotic (as the argument of the density x — ) and thereby describe tail
behaviour. The approach adopted here uses the theory of Fourier transforms of
generalized functions. The advantage of this approach is that the formulae obtained
are very general indeed and describe tail behaviour directly. In the case of the stable
family this avoids the use of the lengthy derivations by which the formulae have
previously been obtained, involving contour integrations that are specially tarlored
for individual cases.

GENERAL FORMULAE FOR THE TAILS OF A DISTRIBUTION

We let CF(s) be the characteristic function of a real valued random variable. The
behaviour of CF(s) as s — 0 is assumed to be given by the following asymptotic series:

M—1 *  K(y) L(y)
CE(s) ~ €™ { 2 P+ IsI* 2 2 D quls!™[isgn (s))k(lnlsu’] ,
m=0 J=0 k=0 =0

where M, 1, v, P, . are real constants and sgn (s) = 1,0, —1fors >0, = 0, <O0.
In general, we shall find in most applications that w =M, v > 0, K(j) = 0, and L(j)
= Qor 1 for all j.

The representation (1) is sufficiently general to include a very wide class of
distributions and should cover most distributions of practical interest in statistics. The
first component in braces on the right side of (1) is analytic and ensures, when p = M,
that integral moments of the distribution will exist to order M — 1 if this is an even
integer and to order M — 2if M — 1isodd (see, e.g., Lukacs, 1970). In cases where M
is finite and the distribution does not possess all its moments, the second component
of (1) is important in the local behaviour of CF(s) in the locality of the origin and is
instrumental in determining the form of the tails of the distribution.

A simple example of (1) is given by the Cauchy distribution whose characteristic
function is CF(s) = e~ "' with the obvious (convergent) series representation

CE(s) = 1 + Isl Zl (=17 Y + DIsl
=

sothatn=0,M =1,po=1,K(j)=L(j)=0forall j,v=1andq,00 = (=YY
+ D!in (1).

A more complicated example 1s provided by the F distribution whose characteris-
tic function admits an expansion of the form (1) involving powers of In Is! (so that
L(j) # 0); details of this example have been given by the author in (1982b). As a third
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example we shall consider 1n the following section the entire family of stable
distributions.

The following result is an extension of theorem 4 in an earlier article by the author
(1982a):

THEOREM. If the characteristic function CH(s) is absolutely integrable and can be
decomposed into the form
CF(s) = CF;(s) + CFx(s) + CF3(s),
where
M-1
CFi(s) = €™ 2 Puis)”

J K(y) L(y)
CFR(s) = e™|sI* Zo i 120 Gua S [i sgn ()1*Unish, w =M, v >0
= =

CFY )(s) is absolutely integrable over every finite interval for j = 0, 1, ..., N where N
1s the smallest integer = w + Jv + 1, and cFV(s) is well-behaved at infinity
(Lighthill, 1958, 49), then the corresponding probability density function PDF(x) has
the following asymptotic expansion as x| — :

1 J K( L(y)
PDA(x) = r > i [zgo (qjklal/azl)I‘(z +ut+ Diyl™?

-+ 20 =0
1

'3 {l e HmseONGEEE D (- [ykg wrsgn(y)(z+u+1)H ) +00x1™N). (2

z=jy
y=x=m

Proof. The derivation of (2) follows in an identical way the lines laid out in detail in
the proof of theorem 4 in the earlier article. This proof draws on the theory of
asymptotic expansions of Fourier transforms of generalized functions as developed
by Lighthill (1958) and Jones (1966). In fact, Lighthill’s theorem 19 on page 52 of his
book provides the basis for this result. The only point of difference with the earlier
proof arises in the treatment of the terms in CF,(s) involving [i sgn (s)] k(nish:, (> 1)
which did not occur in the (1982a) paper. We shall now show how these terms may be
analysed; the remainder of the argument follows as before.

We use the notation FT,)x) to denote the inverse Fourier transform of CF,(s). Since
CF,(s) is not absolutely integrable, we proceed by defining it as a generalized
function, and we interpret FT,(x) as the inverse transform of the generalized function
CFy($).

We now write

K()) L)
CEa(s) = e™|s* Z i 2. quls!™ (i sgn (5))*(In Isl)!

7=0 k=0 [=0

J K [LO)D
= JZ: =0 [ i (qyud'/0z") 15177 ¥ (i sgn (5)) ] -

I=

J K(
lim e™ > i

>0+ J=0 k=

~

- @

(=)

L(y
[Z (q,10"/925)1s17* (1 sgn (s))"e"f“] z=jv.



62 P.C.B. Phillips

By definition we have the inverse transform:

1 L KW L)
FT,(x) = lim {— > i [120 (q,0"02")

0+ |27 ;=0 k=0

j e—tsx+ms—!s|t|s|z+p.(i sgn (s))kds] 7= ]V}

—oc

I
5
|
Mx

[ i (qjklal/azl) (lkj e_(W+t)SSZ+uds

0

+ (—i)* j e_("y“”s”“ds)] z=jv }

1 Ej: K(j) L(i) L . .
= — . + . . e
27 /=0 K=o <1=o (9°/02°) {tﬂ‘gi T+ p+ DI +iy) ]
+ (=) - ly)_ru_l}) z=jv
y=x—mn
1 L KW Ly
= 2_ ; & {lgo (qudl/oz)(z + w + Dyl —27#1
[ike_izw sgn (M(z+p+1) 4 (—i)ke%"" sgn (y)(z+p,+1)} 7= jv
y=x—m
J K(y) [L(
- W ; ; {i (qud'/0z Tz + p + DIyl ™=
1

.- [ike—im sgn (yz+Hp+1) 4 (_i)ke%m sgn (y)(z+p.+l):|} 7= jV. (3)
2 y=x-m

As in the (1982a) paper we now deduce that (3) provides the dominating terms in
the asymptotic expansion which yields the tail behaviour of PDF(x). Specifically, we
have as x — o

K( L)
PDF(x) = |p’+1 Z g {IZ:O (qjklal/azl)r(z +p+ Diyl™?
. l [ike—%m sgn ()(z+p+1) 4 (-i)kei”‘ sgn (y)(z+u+1)]} L+ 0ox™™) [}
2 zZ=jv
y=x—m

AN APPLICATION TO THE FAMILY OF STABLE DISTRIBUTIONS

If a distribution is stable, then its characteristic function must be expressible in one or
other of the following two forms (see, e.g., Ibragimov and Linnik, 1971, chap. 2):

CE(s) = exp {iys — clsl*[exp(—2imK(x)Bs/IsD]}, a*1 4)
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or
cF(s) = exp {iys — clsl[1 — iB/m)(s/Is)) In IsI]}, a=1 &)

where ., B, 7Y, and ¢ are constants (¢ = 0,0<a =2, IBl=<1),and K(e) =1 = Il =
al.

Both (4) and (5) fall within the class of characteristic functions with local
expansions at the origin of the form given by (1). Without loss of generality in the
consideration of these distributions, we may restrict ourselves to the case in which -y
=0, c = 1, x = 0 (once again, see Ibragimov and Linnik, 1971, chap. 2). The
behaviour of (4) is then governed by the series

o - (1) IslP®

CF(S) = Z Z ..L__)_.....__ (

1 k
& m - = J“TK(OL)B) (i sgn (s))*.

2

Setting u = 0, = 0, v = a in (1), we then obtain directly from (2) the following
asymptotic series for the probability density as x — «:

—1) (— 3jmK(0)B)*
jlk!

1 o© o0
PDF(x) ~ p— ];0 kéo ( {F(z + 1)y~ 2

[ [ike—%t'ﬂ' sgn ((z+1) 4 (- l‘)ke%t‘" sgn (y)(Z“'l)]} z=ja
y=x

(e—%tj ‘rrK(Ot)Be-éz‘rr sgn (x)(ja+1)

+ eit] 'n’K(oc)Beém' sgn (x)(ya+ 1))

I

T - [i - ]
L F + 1 ol 1z iz
T JZ:() J! o+ D 2 (= s=fmK(@)B+Hmje
15 ﬂr('a+l)sin {i j( +K())} e (©)
e j 5 i« a)B)p x77°

This formula has been obtained by contour integration 1n the separate cases « < 1 and

a > 1 by other authors (see Ibragimov and Linnik, 1971, 54-6 for a discussion).

When a < 1, the series is convergent; when o > 1, the series is asymptotic.
When a = 1 we have from (5) (settingy = 0, ¢ = 1):

exp {—Isl[1 — B(2/w) In Isl(i sgn N}

()
k/\ T/ 1s517(In 1s1)%G sgn ()%,

CF(s)

1l
M 8
M~
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which is also of the general form (1). WesetK(j) = j,I=k,n=0,n=0andv =1
1n (2), and we find the corresponding asymptotic series for the probability density as x
— o

2 k
5[5 D
PDE(x) ~ — . K/\T ) 8%z T(z + 1)y™*
TX =0 | k=0 i
. .1 [ike-%m sgn (y)(z+1) (_i)ke%m sgn(y)(z+l)]}
2 z=j
y=x
1 & (-1 {1 [( 2iB 6)/ . 1
— — — 1 - —/— — l“ + 1 z —umw(z+1)
X j;() J! 2 T 9z @ )y re
2i] J
+ (1 + 28 9—) I + 1)y—2e*m(z+l>]] NG,
T 0z z=j
y=x
This series representation of the density when o = 1 appears to be new.
We note that when 8 = 0, (7) becomes
1 3 1
—_— —1)VYx 7 — —l‘ﬂ'(j+l)/2+ l'ﬂ'(]+])/2:|
pdf(x) TX ];0( Y 2 [e €
1 & _ .
= (=1)Yx" 7 cos (m(j + 1)/2)
TX J=0
1 & 2
=, 2 (=g
X" n=0
= (Umxd)( + x7371, (8)

which we identify as the tail expansion for the Cauchy density pdf(x) = [w(1 +
x?)]~ 1. In this case, therefore, the asymptotic seres (7) 1s convergent for x2 > 1; and
the formula for the summed series given by (8) actually represents the density over the
whole real axis, as we would expect by analytic continuation.
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