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THE EXACT DISTRIBUTION OF LIML: II*

By P.C. B. PHiLLIPS!

1. INTRODUCTION

In recent years there has been a renewed interest in the limited information
maximum likelihood (LIML) method of estimation in the simultaneous equations
model. Some of this interest has been directed towards modifications of LIML
which yield estimators with certain improved features. The improvements have
been measured by the criterion of second order asymptotic efficiency and by
the extent to which the modifications thin out the tails of the distribution,
thereby reducing the probability of extreme outliers in finite sample LIML
estimation. Studies of such modifications have been made by Fuller [1977],
Kunitomo [1981] and Morimune [1981]; and a review of this work may be found
in Phillips [1983a]. A second direction of interest has involved extensive
numerical tabulations of the exact distributions of competing estimators in the
case of a single equation with two endogenous variables. These tabulations
have led to a reassessment of the relative mertis of LIML and two stage least
squares (2SLS) as competing estimators. In particular, the distribution of LIML
is shown to have a superior central location and a more rapid approach to its
asymptotic distribution than the distribution of 2SLS. The differences working
in favor of LIML are most striking when the degree of equation overidentification
is large and when there is a high correlation between the endogenous regressor and
the structural equation error. The reader is referred to Anderson [1982] for a
detailed account of this work.

The present paper is concerned with the distribution of the LIML estimator in
the general single equation case. As such, it is a sequel to an earlier paper by the
author [1984a] (hereafter referred to as LIML: I) which dealt with a leading
case of the general problem. The exact probability density function (p. d. f.) of
the LIML estimator in an equation with two (n+1=2) endogenous variables,
even degrees of freedom and an arbitrary degree of overidentification (L > 1) was
found by Mariano and Sawa [1972].2 In Basmann’s [1974] notation, their
result characterizes a subset of the following subclass of distributions
corresponding to even degrees of freedom:

* Manuscript received February, 1983; revised March, 1984.

! I am grateful to the referees for their comments on earlier versions of this paper. My
thanks also go to Glena Ames for her skill and effort in typing the manuscript of this paper and
to the NSF for research support under Grant Number SES 8218792.
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where M, ; denotes the joint distribution on R" of the LIML estimator of the
coefficients of the n right-hand side endogenous variables in an equation with L
degrees of overidentification.

The results of the present paper characterize in the same notation the complete
class of distributions

corresponding to a structural equation containing any number of endogenous
variables, even or odd degrzes of freedom and an arbitrary degree of overiden-
tification. These results are made possible by the use of invariant polynomials
of multiple matrix arguments and the deployment of a new operator calculus
developed elsewhere by the author [1984b, 1984c]. Upon appropriate symbolic
translation, our results also apply to the distribution of the maximum likelihood
estimator in the multivariate linear functional relationship.

2. THE MODEL AND NOTATION

As in LIML: I, we work with the structural equation
(D n=rnf+Z;y+u

where y,(T'x1) and Y,(Tx n) are an observation vector and observation matrix,
respectively, of n+1 included endogenous variables, Z, is a Tx K, matrix of
included exogenous variables, and u is a random disturbance vector. The reduced
form of (1) is written

Ty Iy,

(2 [y:: Y2]=[lezz][: }*‘ [v,: V,1=200 + ,

T2y 22

where Z, is a Tx K, matrix of exogenous variables excluded from equation
(1). The rows of the reduced form disturbance martrix V are assumed to be
independent, identically distributed, normal random vectors. We assume that the
standardizing transformations (see Phillips [1983a] for full details) have been
carried out, so that the covariance matrix of each row of Vis the identity matrix
and T~!'Z'Z=Ix where K=K, +K,;. We also assume that K,>n+1 so that
the degree of overidentification is L=K,—n>1. When the equation is just
identified (K,;=n) LIML reduces to indirect least squares and the exact distri-
bution theory in Sargan [1976] and Phillips [1980] applies.

We write the LIML estimator of §in (1) as By and define the matrices
W=X'(P;—P; )X, S=X'I—-P;)X where X=[y,:Y,] and P,=A(A’A)'4".
Brivy minimizes the ratio 8, WB,/8,SB,, where B/,=(1, —B"), and satisfies the
system
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3) (W=15)8,=0

where 1 is the smallest latent root of the matrix S™1/2WS-Y2, B, in (3) also
satisfies

4) [S—f(W+5)1,=0

where f=(1+2)"1 is the largest latent root of (W+ S)"1/2S(W+S)-1/2,

3. THE DISTRIBUTION OF LIML

The first steps of the derivation follow those of LIML: I. In particular, let
the m=n+1 roots of the equation

(5) det [S—f(W+5)] = 0

be ordered f, >f,> -+ > f,,>0 and assembled into the matrix F=diag (f;, fa,---» fu)-
Further, let the corresponding vectors g; satisfying [S—f(W+S)]lg,=0 be
normalized by gi(W+S)g,=1 and assembled into the matrix G=[g,, g2,.. , gml-
We set E=G~! and define a transformation (S, W)—(E, F) by the equations

(6) S =E'FE, W=E(-F)E.

This transformation is made one to one by the imposition of a sign requirement
on a particular column of E=(e;). We choose the final column of E (asin LIML:
I) and set e, ., ; >0 for all i.

Our distribution theory begins with the joint p. d. f. of (W, S). W and S are
independent Wishart matrices. S is W, (T—K,I) (as in LIML:I) and W is
noncentral Wishart W,(K,, I, M). The noncentrality matrix M is given by

o) M = MM’ = E(T-12X'Z,)E(T~12Z,X)

0
= Tn'[ }[0;1,(,]17

I

1T, .
=T - [Hu P T,,]
I

’

22

B/
= Tl: I } 22015,[8 : 1,].

The joint density of (W, S) is
etr(——%—MM’)etr {— %(W+S)}

- K T-K
m(T-k/2p (K2 L2
o, () (15)

(8) pdf (W, )=

(et WY Emviz(det S)T-x-m=izF, (K2 T prar W).
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Writing IT5,11,, as IT5,1T,, where IT,, is an nx n matrix we find that

©) etr( -1 MM’) —etr {— % I+ ﬁﬂ’)ﬁ;zrln}
and
5
a0 oF (K25 Lanew) = or (%2 Zmats: w5 ).
The jacobian of the transformation (S, W)—(E, F) is
(1) 2ridet E1™*2 [T (fi~)
(as in equation (22) of LIML: I). We deduce from (8)-(11) that
2metr {— L (1488105, 120}

(12)  pdf(E, )= m(T-K0/2[ <%>r,,. (T—;K>

etr < -1 EE> [det (E'E)]T-Ku/z=tm+D|det E|m+2

-(det F)(T-K-m=0/2[det (]— F)]Ksm=1)/2 L (=19

& I nea-ne[Lm,).

We now introduce the same partition of E that is used in LIML: I (see equation
(32)) and again employ the notation By ;. =r:

“ofy

1 n

1[ €11 € }
E= i «.... Deenen .
nL Eyr: Ej;

We also partition F conformably as

[f130 iI
F=| i
OEFZ

where F,=diag(f, f3,...,f,). With this notation the argument of the F,
function in (12) becomes

(13) (T/4)ﬁ22[(1 —fi)e1 1 B+e )18 +e;,)
+ (I +Br)E5y (I = Fy)E (I +rf)15,.

Using the series representation of oF, in zonal polynomials (Constantine [1963])
and the multinomial expansion of a zonal polynomial of a sum of matrices in
terms of invariant polynomials of several matrix arguments (Davis [1980, 1981]
and Chikuse [1980]) we deduce that
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9 of (82 Lm,08: nEU-PE [ﬂlj )

AR
(pedl2)) 142!

2 L‘ (Kz) F] f'B - c <— (I=f ) (e B +eys)

(e B +e12)H22, vy 22(I+ﬂ”)E’zz(I—Fz)E22(1+"B')ﬁlzz>'

In this expression, ¢ represents an ordered partition of f=j, +j, into at most n
(hereafter <n) parts and J[2]=(J,, J,) where J, represents an ordered partition
of the nonnegative integer j; (i=1, 2) into <n parts. The notation ¢ € J[2]
relates the two sets of partitions and is explained in Davis [1980, 1981].
CI2{(X, Y) is a polynomial in the elements of the two matrices X and Y which is
invariant under the simultaneous transformation X—H'XH and Y- H'YH for
any orthogonal matrix H. These invariant polynomials in two matrix arguments
are developed and tabulated to low orders by Davis [1980]. The constants
62121 that appear in (14) are given by

1) 02 = CIU, DIC,(D)

(Davis [1980], equation (5.1)).
Noting that det E=(det E;;)(e;; —ej,7) we transform E-—(e,y, e,5, 1, E;;)
and find the density:

etr {___ % I+ Bﬂl)ﬁ'zzﬁzz}e-% (eli+elzers)

- K T-K
m(T-Ku)j2-mp (B2 A=A
R D

(16) pdf (eyy, €12, 7, Eyy, F) =

etr { -3+ rr’)E’zzEzz} [det (Ej;Eq;)]T-Kimm=i241jg |\ — ¢! ,r|T-Ki=m

(det F)(T-K-m=12[det (I~ F)]Ka=m=D2T] (f,~f))
1<J

$r ot xS
o5 (Ky 5 jil A =f)
3 0 (eel(2])

: Cim <—47: ﬁzz(euﬂ +e)(enf + e’u)ﬁlzzy % ﬁzz(l'f' ﬂfl)E'zz
U= F) Ex(I+r8) ;).

The joint density of r is found by integrating out the surplus variates in (16). To
facilitate the first step in this reduction we introduce a random orthogonal matrix
H whose distribution is uniform over the orthogonal group O(n). In the new
joint distribution of the variates in (16) and H we then transform E,,»H'E,,; =D,,
and subsequently integrate out H over O(n) where O(n) is normalized so that
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the measure over the whole group is unity. In performing this step we utilize
the following integral, where (dH) denotes the normalized invariant measure on

O(n):
a7 So(n) CoYA'H'XHA, B)(dH) = Cy*(A'A, B)C(X)/C(I)
(Davis [1980], equation (5.13)). We find
(18) pdf(e1y, ey2, 7, D3, F)
etr {— Z(1+ B8 Moo e Fectir e
o, (). (T

2
-etr {" % I+ "r')D'zzDzz} [det(D3,D5) 1T~ Kimm+Di2|g | — e r|T~Kimm

-(det F)(T-K-m=1)/2 [det(I~ F)](Kz-m—l)/Z .H s _fJ)

8

sl oy 8P s
0 (Kz i3 Jila! '
2 ® (9eJi2])

'f
T T ’ ’ i T o d ’ ’
'Cim (Tnzz(euﬁ'*'eu)(euﬁ +e}3) 1T, —4-1722(“'»3" )D32D;,

(T4 B)1) Co (I~ F)ICr (D).
The next step is to integrate F out of (18). The required integral is:

(19) SF (1=£,)/1(det F)(T-K-m=Di2[det(I— F)]Kxm=0/2C; (I~ F,) [T

1<j
. (f;=fdF.

where the region of integration is 0<f, <---<f, <1. First we transform F,—F,
by defining F,=f,F,. The jacobian is f7 and (19) becomes
(20) Slf'x"(r_x)/z_l(l"‘fl)(Kz-""l)/Hj‘S

0 F,

- (det F,)(T-K-m=1)2det (] — F,) [det (I — f, F,) JKa~m—1)/2

Cr~fiFa) T (J~F)dFadf,

where F,=diag(f;,..., f.) and the region of integration of F, is 1>f;>f;>...>
f..>0. We write out the expansions:

< —-K,+m+1 )
(21)  [det (J—f,F)]Kem-0i2 = 3 3 2 I Gy, (fiF2)

J3 I3 Jjat
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where the summation over j, is fimite if K, —m—1 is even and infinite otherwise,
and where J, is an ordered partition of j; with < n parts; and

= iz J _
@) CU—fiF) = CiD ,20;:( ; )cj‘(—m)/chu)

Ja= J4
where J, is a partition of j, with <n parts and <‘52> denotes the generalized
4
binomial coefficient introduced by Constantine [1966]. The product formula

(23)  CL(AFIC, (—fiF)=(- l)f‘f{’”‘( = (83379°C (Fy)

JselJyJa)

(Davis [1980], equation (5.10)) enables us to write (20) in the form

(—K2+m+1> ) J
(24) CJZ(I)JZ; z 22 ¥ Z<J2 )(—1)“ T (82742
3 3 4

j3! 14=0 Jgs (JseJ3Ja)
: Slfi"‘r*x”“““‘"(l —f ) Kz-m=1)/2+j1 gF,
0
. Sr (det Fp)(T-K-m=Di2[det (I- F)1C;,(F,) I:[J (f.—F))dF,/Cy (D).

To evaluate the integral over F, we note that

I(a, NHI,(D)

T.a+b.n <D

@5) | (det R0 [det (I- RYP*I2C,(R)AR =
0

where the integration is over all positive definite R for which O<R<I

(Constantine [1963], Theorem 3). In (25)

(26) [, J)y=n"" U. <a +j— -;—(i—l))

for the partition J=(j,, js,...,Jj,). Following the approach used in LIML: I
{equations (25)(28)), we deduce from (25) a corresponding integral in terms of
the latent roots (1>r,>-.->r,>0) of R:

@) [ @R DR =) e 2GR T =1 TTdr,

Iy, DIUBC DT (F)
- T,(a+b, Nar ‘

This integral now may be used to reduce (24), leading in fact to
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j3! Jja=0 Ja

-K,+m+1 J
(28) C,z(l)gg( 2 >” tZ( Jz )(—1)"‘ (633742

4 (Jsed3-J4)
B(m K s+ g B - i)

T-K _ 1 n+1 ) (_1)
_n(5 Loa)r (2 +0)r, (5 )esm
Fn<_71_:'_1<;_ﬁ.'f_2.,15>nn2/2c]‘(1)

= Clz(I)wn(jb Jl)v say.

From this expression and (18) we deduce
(29) pdf (elh €2, I, DZZ)

etr { - % I+ BB')ﬁ’zzﬁzz}e‘“h“{zfum

- K T-K
m(T-K)/2=mp (D2 ==
mrror, () (45)

-etr {‘ % I+ ”')DlzzDzz} [det (D3, D;5)](T-Ximm+DiZ|e | — e} r|T-Kim

. oty J172

© 1 9152] .
- Z ?(Kz) z wn(]l:JZ)

’ 7 ’ T ’ 7
'Ci[n(—g‘nzz(euﬁ*'exz) (e B’ +e12) T3y, Tﬁzz(ﬂ'ﬂ" YD,

'D22(1+’ﬂ')ﬁ'22)-

We transform D,,—(H, D), where H is orthogonal and D=D},D,; according to
the unique decomposition D,,=HD!2. The measure changes according to
(see equation (34) of LIML: I)

(30) dD,, = 2-"(det D)~'/2d D(dH)

where (dH) is the invariant measure on 0(n). Hence, by integrating over H and
using (James [1954])

Znnnllz

o(3)

G vol [0(n)] = Som (dH) =

we obtain
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(32) pdf (ey;, €42, 7, D)

2"7‘:"2/2 etr {_ % (I+ ﬁﬁ’)ﬁ’zznzz} e~ (e} el e12)/2

2m(T-Ku)/2z=m+2n] <"1§—2‘)F m (I—;_KJ F"<%>

-etr[— L+ rr’)D](det D)T-Ki-m)i2|g, | — ¢t r|T-Ki-m

z< £, :;[Jm ,J, PRI A

-Cit <‘-ﬁzz(euﬂ+e12)(euﬁ +312)H22’ ry Moa(1+Br)D (14 1B’ )ﬁzz)

where the additional factor (1/2") arises because of the original sign restriction
on the final column of E,, which is now relaxed. To integrate out D we use the
following result (where x is an nx 1 vector and X is an 7 x n matrix):

(33) S etr{—-—;—(ﬂ-rr’)D}(det D)T-K=m/2Cluds (xx', XDX')dD
D>0

- ~(T-K1)/2
=r,< T-&, Jz)[det {% (I+rr’)}:] Cludr (xx’, 2X(I+ 7)1 X)
which can be deduced from Davis [1980], equation (5.14). In (33) the explicit
notation J,, J, replaces J[2] in (32). Additionally, since xx’ has only one
nonzero latent root, the right side of (33) may be written in the form

(34) 2»<T*Kn>/2r,,< A, Jz)[det (I+rr')]-T-K0/2CL .02
(xx', 2X(I+rr) 1 X))

where [j,] denotes the partition of j; with leading part j; i.e. {j,, 0,..., 0}.
We now deduce

(35) pdf(ell) €12, r)
a2 etr {— TT(I-\\-BB’)H szz} e (e}, Tl e:2)/2

o (T

© Li1].J2 —
leyy — €T §2<K2 S AT E

K)/2

iz Jila! 2
P (Pej1d2)

'thjl]'h<% My(eq B+eir)(e B +ey2) My, %ﬁzz(l'*'ﬁ") (I+rr)?

~(I+rﬂ’)17’22) .
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In what follows we define ¢’ =(e,,, €3,), a’=(1, r) and g=T—K,;—m. Then
a typical term of (35) is a constant multiple of the following product:

(36) e-verlagiectn(Lm,08: 1]qq'[ﬁj] Mya, £ Moa(T+Br)(+r)"!

(1+1B) Ts).

We now define a vector d=a/(a’a)!/? and construct an orthogonal matrix D=
[d, ds,..., d,]. Under the transformation g—D’'q=p the density pdf(g, r)
becomes:

2 etr { - % (I+Bﬁ’)17’221722}

(37) pdf(p,n= Y- <%>F..<%) T,..( T;K>(l+rrr)(r-x,)/z

' pl2( & 1 g5/11.92 : T-K
erm@apipls £ S 5 Bt o, Gy nn, (TR 1)
T)w(”“'“)

a9 (L 1,,BD0)pp DOY B Mg, T Moy (4 Br) T4y U478 )

where B=[f : I,] and we write D=D(r) 1o emphasize the dependence of Don r.
We note that since C5/1):/2 is a polynomial in the elements of its argument
matrices we have the equivalence

(38) CYIIAXpp' X', Y) = CY12 (X0x0x'X’, Y) exp (p'X)lz=0

where dx denotes the vector operator 3/0x. To reduce (37), we may work first
with the integral

(39) 27t e oiaers|pjedp

since the order of differentiation and integration may be interchanged in view
of the uniform convergence of the integral. The domain of integration in (39)
is taken to be unrestricted (i.e. —oo<p;<co all i) while that of ¢ in (36)
satisfies the restriction 0 <q,, < oo and this explains the presence of the factor 1/2
in (39). We partition p and x conformably as p'=(p;, p2), x'=(x,, x3) and
integrate p, out of (39) giving:

@
(40) 271Q2r)r/2exi S_w e~PiPxpy|9dp,
o0 k o
= r1@ryiesn § ZL(T enipoptap..

Term by term integration is permissable here because the series is uniformly
convergent. In fact, only even terms in the series are nonvanishing and we obtain:



THE EXACT DISTRIBUTION OF LIML: I 31

(41) (2m)r/2exixal? § xi (® epil2pi+alyg
=0 20! Jo 1 Py

r(a+20+1

2
= (Zx)ﬂlzex;lez 2 X1

2
=0 (20)! (1 )(a+zz-—1),z

2

g+1
£ ast(L3h)
o @n? ‘

Since (2N)!=nr~1/2221[(I+1/2)[(I+1) by the duplication formula we may write
(41) in the form

= (2n>n/2ex;x,/22w-n/zr( g ;1 )

42 ] +1

T © x% l<g )
(42) (Z )n/Zex;xz/Z 2e-1y/2 <g+2 1 > Z ( 1) 5 1
=0

11221 (%)l

=(27[)"/2ex;x,/22(9—1)/2['<g+1 ) <9+1 1. xf).
2 IF

2 722
Noting that (a’a)9/2 =(1+r'r)TK:=n=1/2 we now deduce from (37), (38), (39)
and (42) that

nmi2 etr{—z (I+Bp) 5,11 }p(k@)
(43) pdf (r)= r, <%> Fi(%‘) r, (Zz'z%lifz)(] +r'r)(n2;'1)/2
. i z 1 Z gg’j.],lz
=

. T—-K
e 2w, (Jj;, J f,,( ‘,J)
< 2) i d2 JI'JZ' (Jl 2) 2 2

2

° (eeji-J2)
. [CE’J;].h(% I1,,BD(r)oxdx’D(r)’ B' ;.

T 1,1+ Br'y (T4 0Py 11+ rﬁ')ﬁ;z)ex;x,/z Fy <._.___T— Ki—n 1.x} ] ,
2 2 27 2 /1x=0
4. THE LEADING CASE
When I1,,=0 each term in the series (43) is zero with the exception of the

leading term, for which f=j, =j,=0. The general expression for the joint
density reduces in this case to:

(50 (T - £ )0, 0
D) (T i
1

(44) pdf (r) =

- oC
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Thus, By v has a multivariate Cauchy distribution in this leading case as shown
by direct methods in LIML: L.

The reduction of the constant coefficient in (44) presents some difficulties
when n>1 in view of the multiple series expression for w,(0, 0), viz from (28):

(—Kz+m+l
45 0,0 0=rar, (2 +1)r.(F 23 7}, s,
_ r.(I= K T-K-1.,
.B(mlz—-’g +in% 2) (1(, BT, ) C,, (.

When n=1, direct evaluation of the series can be achieved as follows:

(46) wl(o’o)”_mr(z)r(;)r(:’" ~-3) ( K2+3>

( _§_> i: Ja!
2 2

(T—K

T2K < “B<T K+js, B2 ';")
> z)
I-K (Kz )r(:r . ( K2+3>
AR

(T-K)h(l':ﬁ_L)
o500
(I (g - dran

F.
1 K+_3_> (T— K2_1>3z
F( 2 2 r K+ 2 2

o T=K _ 1 —K+3 . T—K+3 B
(TK, - s T  T-k+ X -1)

The ;F, series is well poised (see, for example, Rainville [1963] page 92) and
therefore, sums to:

@7) rEFE e )r(I3E + J)r(r-x+ L2 - 2>F(—-L)
r(r-k+yr(3Hr(=Sh 21>F<T2K,>
We deduce that
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Thus, By v has a multivariate Cauchy distribution in this leading case as shown
by direct methods in LIML: L

The reduction of the constant coefficient in (44) presents some difficulties
when n>1 in view of the multiple series expression for w,(0, 0), viz from (28):

(—K2+m+1>
(45  ,(0,0=r"""T, ( +1>r ( X Ja!
_ r, .T_—E_:J;J
-B(m T2K +Ja, Igz —"’21_> r"(:l("—é(%l'" +l;313> CJS(I).

When n=1, direct evaluation of the series can be achieved as follows:

(46) @, (0,0) = n~1/2 )r<%>r(T K"") ( K2+3>

T-K 2 J3!
== 2) "

(T—K_L) X

(555 D% (2500,

(e h
o0, (1),

(T B D) (554D,

(I (- P

= F
T‘ 2 Kz __I_) 32
r( 3 >T<T K+ 52 -5
(o T=K _ 1 —K,+3 . T—K+3 _
(T K, — 3 T T K+ 52 7 1)

The 3F, series is well poised (see, for example, Rainville [1963] page 92) and
therefore, sums to:

o r(EE +)r(EgE « Dr(r-x+ & - Dyr(5&)
T r S a2 S

We deduce that



THE EXACT DISTRIBUTION OF LIML: II 33

(25 - Dr(S-Pra-or(TE )
AT Eeor (B D
(T3 (%)

=5

48 ,00,0)=

It now follows from (44) and (48) that when n=1

(T (5 (5 e ()
@) pdf ()= (1/2)nr2(_’§1)r2( T;K>F(T—K+1)(1+r2) '
Note that

L ()-ror($)r (1)

(T o () (T35 - )
so that

~ 2F(T—-K)I"(T;K +1>
pr )= nr(T-K+1)r< T;K>(1+r2) '
Finally, using the duplication formula for I'(z) we deduce that
r(T—K
rr-x)y _1 2

T(T-K+D _ 2 r( T;K +1> :
Hence,
(50)

pdf(r) = 7y -

the univariate Cauchy distribution which we obtained by other means in LIML: L

5. FINAL REMARKS

The exact theory for the LIML estimator developed in this paper has application
beyond the realm of the simultaneous equations model. There is a well-known
formal mathematical equivalence between the model studied here and the linear
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functional relationship in mathematical statistics. This equivalence has been
explored in detail by Anderson [1976], who applied the distribution theory for the
LIML estimator (in the two endogenous variable case) within the setting of a linear
functional relationship involving only two variables. Upon appropriate symbolic
translation, our distribution theory for the LIML estimator in the general case may
be applied directly to the maximum likelihood estimator in the multivariate linear
functional relationship. Thus, our results generalize the presently known exact
theory in the latter setting as well as the simultaneous equations model.

The numerical implementation of the general expression for the joint density
given by (43) is hampered by computational difficulties at present. First, -
multiple series involving matrix argument polynomials like (43) are often very
slow to converge, particularly when the argument matrices have some large latent
roots. Second, available tabulations of the polynomials and constants that appear
in (43) are currently limited to low orders (involving only single digits in most
cases); and algorithms for their generation are only in the incipient stages of
development. (A recent discussion of these issues has been given by the author
elsewhere [1983b].) Computational work with the series (43)n its general form,
therefore, must await improvements in technology which enhance computational
speed and the development of general purpose software for the algorthmic
generation of the required polynomials and constants. In the meantime, these
practical shortcomings of the general exact theory increase the present value of the
leading case analyses developed in LIML: L

The exact distribution theory given here and in my earlier paper LIML: I
provide results which apply not only in finite samples but also go beyond conven-
tional asymptotic theory in the sense that they provide a limiting distribution
theory in cases where conventional asymptotic methods break down. Presently
known limiting distribution theory for LIML and other simultaneous equations
estimators proceeds from the assumption that the model is identified; this assump-
tion is critical to the mechanics of traditional asymptotic methods. But, as is well
known (and contrary to some textbook analyses), it is not necessary that a struc-
tural equation be identified for that equation to be estimated by simultaneous
equations methods. Moreover, strong arguments have recently been advanced
which suggest that the restrictions in simultaneous equations models are often only
apparently identifying or overidentifying the structures of these models in practice.
The analysis of underidentified models is, therefore, of some considerable interest
in itself and possibly of greater relevance than has earlier been thought. When
an equation is completely underidentified (/1,,=0), our analysis shows that
simultaneous equations methods like LIML have distributions which continue,
even for infinitely large samples, to represent the uncertainty about the coefficients
that is implicit in their lack of identification. In particular, the distribution of
LIML is multivariate Cauchy and this distribution is invanant to the size of the
sample. Thus, the limiting distribution of LIML is in this case multivariate
Cauchy also. In this sense, therefore, our results provide a limiting distribution
theory for LIML (and other estimators in LIML: I) which correctly applies to
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underidentified models, unlike existing asymptotic theory. More general cases
in which IT,, has less than full rank may also be considered and yield a greater
variety of finite sample and asymptotic results.

Finally, it may be worth mentioning the effect of departures from the assumption
of nonrandom exogenous variables. Observations on these variables affect the
distribution (43) through the parameter matrix I1,,. When the exogenous vari-
ables are random but statistically independent of the reduced form errors (43)
provides the conditional distribution given Z. Note that when the reduced form
coefficient submatrix IT,,=0, (43) reduces to a multivariate Cauchy distribution
as we have seen. Since this distribution is independent of Z, it is also the uncon-
ditional distribution. Thus, our leading case analyses here and in LIML: I also
to models with independent random exogenous variables. The standardizing
transformations which transform TZ'Z—I do not affect these results since the
LIML (and IV) estimators of the endogenous variable coeffcients are invariant to
these transformations (Phillips [1983a]). We may also note that in the leading
case both LIML and instrumental variable estimators of f are invariant to the
scale parameter of the reduced form. It is easy to deduce that the leading
case densities we have obtained for these estimators remain valid for error
distributions within the spherically symmetric class of compound normal
distributions.

Yale University, U. S. A.
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