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This paper derives the exact probability density funcuon of the instrumental vanable (IV)
estimator of the exogenous vanable coefficient vector 1n a structural equation contaimng # + 1
endogenous vanables and N degrees of ovendenuficauon. The derivations make use of an operator
calculus which simplifies the algebra of 1nvanant polynomials with muluple matnx arguments A
leading case of the general distnbution that 1s more amenable to analysis and computation 1s also
presented. Conventional classical assumptions of normally distributed errors and non-random
exogenous vanables are employed.

1. Introduction

Substantial progress has been made in recent years on the exact distribution
theory of econometric estimators and test statistics in simultaneous equations
models. The latest results cover general specifications of single-equation est-
mation which allow for the presence of any number of endogenous variables
and an arbitrary degree of (either apparent or effective) equation overidentifi-
cation. Thus, in earlier papers, the author (1980,1983a,1983b) has given the
exact distributions of the instrumental variable (IV) and limited information
maximum likelihood (LIML) estimators in this general setting; Rhodes (1981)
extracted the exact density of the limited information identifiability test
statistic; and Hillier, Kinal and Srivastava (1983) have provided exact moment
formulae for the marginal distributions of the IV estimator. For a recent review
of these and other developments in the field the reader is referred to Phillips
(1983c).

The structural equation distribution theory cited above concentrates on the
estimated coefficients of the endogenous variables. This is natural because
these coefficients form the nucleus of the simultaneity problem and are
therefore our primary concern. The coefficients of the exogenous variables are
also an important, if subsidiary, component in the study of structural estima-
tion. So far, our knowledge of the distribution of the estimated exogenous
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variable coefficients comes from the moment formulae that can be deduced
from the equations that define these estimators in terms of the estimated
endogenous variable coefficients [see, for instance, Phillips (1983c)]. But the
exogenous variable coefficients gain in significance in the transition from
structure to reduced form. And an understanding of the distribution of these
estimated coefficients provides an important stepping stone to the study of the
estimated reduced forms.

The present paper derives the exact probability density function (p.d.f.) of a
general IV estimator of the exogenous variable coefficient vector in the
single-equation setting. Conventional assumptions of normally distributed
errors and non-random exogenous variables are employed. A leading case is
presented in section 3.

2. The model and notation

We work with the structural equation
n=hnLBE+Zy+u, (1)

where y, (T x1) and Y, (T X n) are an observation vector and observation
matrix, respectively, of n + 1 included endogenous variables; Z, is a T X K
matrix of included exogenous variables; and « is a random disturbance vector.
The reduced form of (1) is written

11
[nin]l= [zlszzl["“ ”]+[ulsm=zn+ v, (2)
Ty Iy

where Z, is a T X K, matrix of exogenous variables excluded from (1). The
rows of the reduced form matrix V are assumed to be independent identically
distributed normal random vectors. We assume that standardizing transforma-
tions have been carried out so that the covariance matrix of each row of V is
the identity matrix and T-'Z'Z = I;, where K= K, + K,. These transforma-
tions involve no loss of generality and their effect on the parameterization and
resulting estimator distributions are fully discussed in Phillips (1983c). We
assume that K, > n and denote the degree of overidentificationby N = K, — n.
Finally we note that the relationship between (1) and (2) and the implied
restrictions on (1) yield the equations

m—HpB=y,  my—IB=0. (3)

We define H =[Z,!Z,], where Z; (T XAK3) is a submatrix of Z, and K, = n.
The IV estimators of B and y in (1) obtained by using H as the matrix of
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instruments are
’ ’ -1 ’ ’
BIV=(YZZJZJY2) (YZZJZJYL)s (4)
Y =T"'Z{y, - T7'Z\V, Byy. (5)
The number of surplus instruments in this estimation is denoted by L = K — n.
3. The leading case
We define the matrix variate
[6:B]=[T~'Zy,T7'2{v,| = T'2; X, (6)
which is normal with mean matrix {m;;:II},] and covariance matrix I (..

From eq. (B3) in Phillips (1980) we know the p.d.f. of 8, to be (using the
notation By =r)

etr{—-zz(1+ﬁﬁ')ﬁ;2ﬁn}rn(£+;—+l)
df(r) =
pdf(r) ﬂ"/2(1+r’r)(1‘+"+]’/2
(_’:) (!:_+”_+1) g/
2 2 )\ T2 )

xL L T Lo,

=0 k=0 9€yx iVt
J J j.k.I',,( 5P
X(
(7)

In this expression CJ'* is an invaniant polynomial in the elements of its two
argument matrices. Such polynomials were introduced by Davis (1979,1980) to
extend the zonal polynomials and the reader is referred to his articles for a
detailed presentation of their properties, together with a definition of the
constants 6" that appear in (7). ¢ is a partition of the integer f=; + k into
<n parts, x is a partition of k into <n parts and the notation ¢ € (. k)
which is defined by Davis (1979) relates the two sets of partitions in the
summation. The matrix IT,, in (7) depends only on the submatrix IT,, of
reduced form coefficients; it is defined in Phillips (1980).

We write v,y, as given by (5), in the form s =5 — Br. The maurix variate
(b, B) is independent of r since Z{Z, = 0. Thus, the conditional distribution of

Sl

ﬁzzﬁﬁlﬁiz’ ‘27:1-722(1‘*' Br)(I+ ”')—I(I‘*' ’B')ﬁiz)-
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s, given r, is N(m, —II},r,(1 +r'r)I). The jomnt distribution of (s, r) may
therefore be written as'

pdf(s, r) = pdf(s|r)odf(r)
=[22(1 +rr)] K2
xexp{ = 3(s —myy + Mypr) (s = my + I ,r)
/(1 +r'r)}pdf(r)
=[27(1 +rr)] _K‘/ZCXP{ —i(s—my ) (s—m)}
Xexp{%[(s =) (s =my)r'r=2r',(s = m,)
—r’I'I{ZI'Ilzr]/(l +r'r)}pdf(r). (8)
We now examine the leading case that is characterized by the null hypothesis
Hy,: II,=0, II,,=0. (9)

Under H,, the rank condition for identification of (1) fails, the parameter
vector B is no longer identifiable and estimation by IV "proceeds under
conditions of only apparent overidentification. Additionally, (3) reduces to
7, =Y. Moreover, the density (7) takes on the simpler form

L+n+1
r(*=5-)
L+1 L, M(Lens1/2
3 )(1+rr)

pdf(r)= (10)

ﬂ”/zl"(

11 am grateful to the referee for pointing out this derivation of (8) which is simpler than that
presented in the first version of this paper.
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and (8) becomes

r(E55 5 e~ 3= v/ (s =)

X exp{ (s =)' (s=y)r'r/(1+rr)}

pdf(s,r) =

(Zﬂ)K‘/zﬂ"/ZF( L ;’ 1 )(1 + r,r)(x,+1.+n+n/z

r(E555 Jero( ~3(s= 1) (s =)

(zﬂ)Kl/zﬂn/ZI'( L;’ 1 )(1 + r,r)(K1+L+n+1)/2

. EE {%(S“Y)TS“Y)}j(rV)J.

7=0 JN1+rr)!
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(11)

(12)

We transform r — (m, h) according 10 the decomposition r = ( r’r)%(r/(r'r)'g)

1 . . =
= m:h. The measure changes in accordance with the relation

dr=2"'m"=22dm(dhn),

(13)

where (d&) denotes the invariant measure over the Stiefel manifold V, , [see
James (1954, eq. (8.19))]. With this transformation we integrate out (m, #) and

extract the density of s as follows:

r(E5 e~ 4s= v (s~ 7))

pdf(s) =
Ki/2_np L+1 )
Q2a)"V n 1"(——2

y i {is=y)(s=v)}

;=0 2
% m"/2+j—1dm
Xj(; (1+m)(L+"+l*Kl)/2*ijl"(dh)

r( 555 Jexp( = (s = v (s~ 1)

(zﬂ)Kl/zﬂn/ZF(ﬂ)

2

y i {{s~y)(s=v)Y

;=0 2!

(14)
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5 +)r{(=5) 5o

F(L+Kl2+n+l+j) F(g)

(A (2 oo (- s = 1) (5= 1)

+ K, +n+
(ZW)K‘/ZF(L+1)F(L Lrn 1)

2 2

L+K
B[ 5 B s 5= ). as)

It is simple to verify that the density given by (15) integrates to unity. In
considening the order to which moments exist it is convenient to set y = 0 and
examine the convergence of the following series of positive terms:

L+n+1 L+K +1
o g

(Zﬂ)x‘/zr([,;-l)F(L+K12+n+1)

= (3)0

XZ
A (n+L+K1+1)
=0y 1 =
J

E{(s’s)d/z} =

fe—s’s/Z(s;s)l“d/z ds

2
L+n+1 L+K +1
) S Ll e
(2 )KI/ZF(L+1)F(L+K1+;1+1)
2
n d+ K,

i (E)J(%)J 1—-( > +j)2'lfk‘/2
X

1_01!(n+L-*‘-2K1+1) 2(%)_,+(d+l(|)/21..(_]§_1_)

J

(L+n+l) (L+K1+1)F(d+2K1)2d/2

(L+1) (L+K1+n+1)r(£(2_l_)

(16)

d+
szl(%’ K, n+L+K1+1;1).

2 2
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The series converges absolutely provided d < L and diverges otherwise. Thus,
integer moments of yy are finite up to the number of surplus instruments
L =K;— n (or, in the case of 2SLS, to the degree of overidentification), as we
know from earlier results on B,y and from the form of (5).

4. The general case
From (7) and (8) the joint p.d.f. of (s, r) under the alternative hypothesis
m,#0, I,,#0is

I,

n

L+n+1 T R
( 2 )etr{—'i(1+Bﬁ )sznzz}
(Zﬂ)K‘/zfr"/z(l Hpp)brnrkirnsz

X exp{ = (s —m,)(s —m,)/2}

pdf(s,r)=

1 (s=my)(s=m,)r'r=2r',(s—m,) ""'Hl'znlz"}
Xexp{z 1+r'r

(L) (L+n+l) .
® ™ E "-_"—'2 ,‘0(;,‘
XZ Z Z - L+n

J=0k=00pE)x j!k!Tn(—z—Ap)

(N

— _— T— - 17
XCQ{'“( szﬁﬁ'ﬂiz’i‘szu*'B")(I+”') I+ ’B')sz)‘

(17)

It will be convenient in what follows to use the identity

(1+Br)(I+r) (14 gy =1+ ppr - LB B) g

1+r'r

Since the polynomial CJ'* is an analytic function of its matrix arguments we
employ the Taylor expansion

etr{ =3Z(r=B)(r=B) /(1 +rr)}C}*

T— . — To .
X(EHZZBB sz"z‘nzz(l*'ﬁﬁ +Z)H22)

Z=0

x T~ T T— T
= (EHZZBB 115, ‘Z‘sz(f‘*‘ BB") T3,

- 3 Tn(r=B)(r= BVl /(14 77)), (19)
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which converges uniformly in r. The matrix Z in (19) is a matrix of auxiliary
variables and dZ denotes the matrix operator d/dZ. The left side of (19)
provides a simple algebraic representation of the multinomial expansion of the
right-hand side polynomial, which involves a sum of matrix arguments. The
latter no doubt admits an expansion in terms of polynomials with more matrix
arguments; but the explicit form of this expansion has not yet been derived in
the multivariate literature and (19) is a simpler alternative that is very
convenient for our purpose.
From (17) and (19) we obtain

T,

n

(E—;Ll-)etr{ - —27:(1 + BB')ﬁizﬁzz}

pdf(s,r) = (22) " g2 (1 4 pr) LR

xexp{—(s—m;)(s— m1)/2}

‘32 oy (_24)(5_%1;_1)%

1=0k=0¢€)x J!k|1"n(L+n’(p)

2

INARK

1o "o L _1\lz2p _1\itis
x¥ {3(5 7, ) (s ‘”u)} (=) (=1)
!

( r'r )I’ P\ P (s = m,) \°
1+r'r 1+r'r 1+7r'r

" (=proztr=p))*

1+7r'r

I
2 4

Z=0

Fr 1T T ’ 7’
xXCg* ( 115, BR’ 115, EH22(1+BB +Z)H22)

(20)

where ¥, denotes & lo1y. 1.1, Since the series converges uniformly in » we may
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integrate termize to remove r. The typical term is then

j‘ ("Hl'zﬂlz’)lz{”nlz(s"‘”11)}13{(""3)'32(""3)} ,‘(""'),l dr
(1+r,r)(L1~n1~K11~1)/2+l

, {; : ’ 3
= (= 9x'I{,IT,,0x) " { —i6x' Ty (s = "Tu)}l

x {(idx + BY dZ(iox + B)}

. !
e (r'r)'dr
Xf (1+r,r)(L-&n+K‘+1)/2+/ ° (21)

x=0

where /=/,+/,+1;+1, and dx denotes the operator d/dx taken with
respect to a vector of auxiliary variables x.

We transform r — Hr=p for H orthogonal and integrate over the orthogo-
nal group O(#n), normalized so that the measure over the whole group is unity.
The latter measure will be denoted by (d H). (21) becomes

/[(— c?x’Hl’ZHuc?x)I’{ —idx'IT (s —m,)} b

p

x{(idx+ B)IZ(idx+ B)} /‘j;) .etr(inp’)@__H_)]
(n)

x=(Q
(p'p)"dp
(1+pp) ot
=/ [( = 9T}y, 9x) (= i9x Ty (s = my) )}
4
. , . ls n . 1 ore 2
X ((10x + B 9Z(i0x + B)} 0Fy( 5+ — xxp P)Lo

(pp)idp

X
, ML+n+K +1)/2+1
(1+p'p) '
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’ ’ I‘.' . ’ 3
=) [(-—ax lenlzax) {—19x'I,5(s “”u)}l

T

X ((idx+ BY9Z(i0x + B)}*(~ dxx)] _,

i+t

f (pp)* 'dp

1
X »
’!(g) » (1 +p,p)(L+n+x,+1)/z+l
t

(22)

where the summation Z, is over all values of ¢ for which the quantity in square
brackets is non-zero. Since the latter quantity is zero whenever 1>/, + [/, +1,
the integral in (22) is convergent within this summation. Upon evaluation of
this integral [as in (14) above] we obtain

ﬂn/Z

— ¥ (- w01, 0%) * (=i0x' T 5 (s = m,y))
r(3)

X {(idx+ B)IZ(idx + B)}Il(-%x'x)']x-o 1

“(3),

dq+§+ﬁd£i%il

dL+n+Kﬁd
2

(23)
+g+5+g+g)

From (20) and (23) we deduce the following general expression for the p.d.f. of
Yiv-

T,

n

(Ligj—l')etf{ - '%:(I + ﬁﬁ')ﬁizﬁzz}

e il

pdf(s) =

xexp{ = (s—m,;)(s—m;)/2}

.o (5] (R g
2/, 2 x 7

XZZZ L+n

J=0 k=0 gp; x J!k!r,,( 3 » P
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x Z {%(s_'”11),(5‘7711)}11(—-}_,)[2(—1)13+l4
!

TTATATA]

+
F(11+§+t)1‘(—]“——1§—‘i-l+12+13+14—1)
XY
L+n+K, +1-
. t'(")F( n+K;+1
l

'\ 3 5 +11+12+13+14)

x {(idx + B)9Z(iax +B)} “(~x'x)']

x=0

T

T— - - -
X o T T 88T, S Ta(1 4+ 887+ 2)TIg )|

(24)

The leading case that occurs when II;, =0, II,, = 0 may be deduced from
(24) by noting that non-zero terms in the various summations arise only when
j=k=1=1l=1,=1=0. Moreover, I,,(L+ n)/2; ¢)=I,(L+n)/2) when
@ is a partition of zero. We find in this case

I,

n

(L+;1+1 )eXp{-(s—qru)'(S_.,”“)/z}

EEEEES

pdf(s) =

X i {%(S‘Wn)'(s—ﬂ’u)yx F(h*’%)f’(ﬂ_’%ﬁl)

=0 L! F(L+n+2K1+1+[1)

Fn(L+;+1)F(L+I§l+1)exP{'(S"Wu)'(S"'”u)/z}

2 +n+
(2W)Kl/'F"(L;n)F(L n 2K1+1)

n L+n+K +1 ,
XIFI(E"——'Q_I_—; %(5‘7’11)(5"7711))
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r( B2 o 25 Jexp( (s = ma) (5= m)/2)

(ZW)K‘/zF(L-ZFI)F(L+n+K1+1)

2

n n+L+K +1 )
XlFl(E’__z—l—'; x(S_Wll) (s—'”ll))’

which is the same as (15) derived earlier by direct methods.

5. Remarks

The exact densities (15) and (24) relate to the standardized model. The
corresponding densities for the non-standardized model may be obtained from
these results by transformation using the formulae in Phillips (1983c).

Accurate approximations to these densities that will permit wide-ranging
numerical computations and the analysis of marginal distributions are the next
step in studying these distributions. Methods used by the author (1983d)
elsewhere seem promising in this respect.
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