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FINITE SAMPLE ECONOMETRICS USING ERA’S

P. C. B. Phillips*t

The paper considers approximate distribution theory as a way to deliver
practical improvements over asymptotic methods. Trials of the adequacy of
asymptotic series based approximations are conducted and the results exhibit
the need for further improvements. An alternative approach is suggested which
utilizes a family of extended rational approximants (ERA’s). ERA’s build on the
strength of primitive exact theory or asymptotic series; they allow us to blend
information from diverse analytic, numerical and experimental sources. The
ultimate objective of the approach is to incorporate directly into software con-
structive functional approximants relevant to statistical practice. An illustration
is provided.

1. Introduction

My subject today is concerned with attempts to improve upon asymptotic
methods in statistical inference. This is a field where scholars in mathematical
statistics and in econometrics have made many recent advances. My point of
view in this lecture will be that of an econometrician who wants to see such
improvements used in empirical work.

Let us start by considering the alternatives. On the one hand we have exact
distribution theory. Exact results are available for many statistical estimators and
tests, particularly under Gaussian assumptions; and the frontiers of the field are
expanding rapidly with modern developments on the algebra of functions of mul-
tiple matrix arguments. The final results of such distribution theory often have
a generality and a mathematical elegance that is very appealing. But the com-
plexity of exact theory makes numerical work very difficult. Even now, only the
simplest exact results are used in empirical work. Researchers in the field inevit-
ably recognize that much of the motivation for their work comes from the intel-
lectual challenge of unlocking the mathematical form of a distribution in a previ-
ously unknown case. They understand that exact results are seldom useful in the
operational transmission to the empirical researcher of knowledge concerning the
sampling properties of common statistical procedures. These considerations com-
bined with the mathematical difficulties of exact theory lead many scholars to the
view that approximations must provide the vehicle by which such a transmission
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is accomplished, as indeed they have in the past through the use of crude asymp-
totic results. Thus, the introduction of better approximations is seen as a way to
deliver practical improvements over asymptotic methods in statistical inference.

The most significant progress on approximations in the last ten years has been
based on asymptotic series expansions. These expansions provide refinements of
crude asymptotic theory and they apply in very general situations extending to
time series problems and nonlinear regressions. They can even be worked out by
computer symbolic algebra and built into regression programs. Considerable head-
way has been achieved on all aspects of this work, ranging from issues of mathe-
matical validity through to problems of practical implementation. Already we are
approaching the time when these expansions could be routinely applied in empirical
research. But, like new pharmaceutical medicines, these approximations should be
well tried in laboratory type conditions before they are dispensed on the general
public, here the empirical investigator.

The first part of this paper considers two simple trials of the adequacy of asymp-
totic series based approximations. These trials help to exhibit certain strengths
of the asymptotic series approach. They also indicate the weak features of the
approach where the results are not sufficiently reliable for use in empirical research.

The need for further improvements in approximations motivates the second
part of the paper. Specifically, we are often interested in improvements which
can repair the inadequacies of the asymptotic series approach. It is in this area
that some of my own research has recently concentrated. The natural intellectual
origin for work on this problem lies in the diverse field of applied mathematics known
today as approximation theory. For many years, physicists have drawn upon the
rich vein of technique in this field to assist in the solution of some of their more
complex problems. Those mathematical statisticians most familiar with the methods
of mathematical physics have also made good use of the field. The most celebrated
of these are Henry Daniels, Harold Jeffreys and L. C. Hsu who explored the use
in statistics of saddlepoint (SP) approximations and the Laplace method. To my
knowledge there has been little or no attempt to implement some of the other
promising techniques of approximation theory within mathematical statistics. My
own work endeavors to take such a step in a systematic way. The approach that
I have developed brings into play a new family of extended rational approximants
(which we refer to under the acronym ERA). ERA’s may build on the strengths
of a primitive exact theory or a less flexible approximation method such as an
asymptotic expansion; and they allow us to simultaneously blend information from
diverse analytic, numerical and experimental sources. In this way the approach
seeks to achieve a meaningful integration of earlier directions of research. Its
ultimate objective is to incorporate directly into regression software constructive
functional approximants to distributions which are relevant to testing problems in
statistical practice. This can be done with ERA’s in much the same way as com-
puter function routines presently embody approximants (usually rational functions)
for the commonly used transcendental functions.
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The second part of the paper is devoted to an exposition and illustrative appli-
cation of the new approach.

2. Two trials of asymptotic expansions

2.1. Testing linear restrictions in the multivariate linear model
We work with the linear model

(1) y;:AxH—u; R t=1, ey, T

where ¥, is a vector of # dependent variables, A is an # X matrix of parameters,
%: is a vector of independent variables and the #, are i.i. N(0,%) errors with I
positive definite. The hypothesis under consideration takes the form:

(2) H,: Dvec(A)=d

where D is a ¢x#nm matrix of known constants, d is a known vector and vec (A)
stacks the columns of A.

In econometrics, this framework is a common one. The matrix D can take
many different forms and it is necessary to allow for this degree of generality
rather than restrict D to a Kronecker product form as is common practice in
multivariate statistical analysis [2]. For example, in applied demand analysis where
Y: is a vector of expenditures or budget shares on different commodity groups and
Z: is a vector of prices and total expenditure (or income) the theory of consumer
demand implies certain restrictions on the parameter matrix A. When the model
is based on the Rotterdam system [12] or almost ideal system [1] the leading sub-
matrix of A of dimension #x#» is symmetric. The hypothesis (2) then involves
q=n(n—1)/2 restrictions.

This is an important case for empirical econometric practice when the restric-
tion coefficient matrix D cannot be reduced to a Kronecker representation. A
typical value of # in applied studies of aggregate consumer demand lies in the
range 7-14, although cases as high as #=40 have been studied empirically. When
n=10 the symmetry conditions of demand analysis lead to ¢=45 restrictions in
H,. Thus, H, can achieve considerable parameter parsimony in econometric studies
of demand; but its validity is important to subject to statistical test. The fact
that sample sizes in such studies are often less than 50 observations makes the
need for a good sampling theory more acute in such a context. For, in such cases
when H, severely reduces the dimension of the parameter space, asymptotic theory
and (as we shall see) its series refinements can lead to very low inferential accuracy
in statistical testing.

Unrestricted estimation of (1) leads to A*=Y'X(X'X)! where Y'=[yi, - -+, yrl,
X'=[z1, +++, ®r]; and the covariance matrix of vec (A*) is N® X where N=(n:)=
(X'X)*'. We consider the commonly used Wald statistic for testing H, given by:

(3) W=(Dvec A*—dY{D(N® Z*) D'}~ (D vec A*—d)

where X*=T;'Y'(I-Px)Y, Px=X(X'X)'X"' and Tn=T—m.
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The exact distribution of W has been derived by the author elsewhere [8].
This generalizes earlier results by Constantine and others (see [2] for details) on
Hotelling’s generalized T,? statistic, which is a special case of (3).

The Edgeworth expansion to O(7T-!) of the cumulative distribution function
(cdf) of W is given by the following formula:

(4) P(WSx)=Fq<x[1~—g-°'H;1;f——7£—gH'—2)D+o(T—1)

where Fy ) denotes the cdf of a y® variate and the coefficients that appear in (4)
are given by the tensor sums:

(5) o= 11 i1 QipOar+ Cgear— X gt)
(6) 1= 14300 0301+ Qgria+ s srr)

and as=tr (D/Q'Dy),
ars=tr D/ QDI D’ Q' Dy) ,

Q=DN®2D ,

D=[Di:D:: -+ :Dnl,

D;=q xn submatrix of restriction coefficients relating to the i** independent
variable.

The expansion (4) was first obtained by Rothenberg [11] in unpublished work and
special cases of it have been known in multivariate analysis for some time. Ap-
pendix A gives a direct derivation of (4) using a method and a notation different
from Rothenberg’s. The special cases reported in [2] can be deduced immediately
from (4) and its noncentral extension for local alternatives.

When D=¢’ ® D, for some m vector ¢ and ¢xX»n matrix D, , the restrictions
(2) take the simpler form D,Ag=d. We assume D, to have full rank ¢<# and
the the Wald statistic (3) then reduces to the form:

(7) W=(DyA*g—d) [Dy2*DiI* (D A*g—d)lg’ Ny
=U[DZ*DiT, =Dy A*g—d)/(g’ Ng)**

which we identify as Hotelling’s T? statistic. Specifically, (Tw—g+1)W/qT» has
an Fyr ¢+ distribution.

In this special case the coefficient formulae (5) and (6) reduce to as=¢* and a:=
q(qg+2), and the expansion (4) has the form

(8) P(WSx)qu<x[1——%:l>+o(T‘l) :

We deduce from (8 that, if x. is the critical value for the y* distribution at the
upper 100a% level, then

% q+ X«
(9) xa—xa{1+—“—2Tm }

is the corresponding critical value for (8) correct to O(T-%).
With these formulae comparisons of the asymptotic, Edgeworth corrected and
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Table. Asymptotic, Edgeworth corrected and exact critical
values for the Wald statistic (7) at a nominal 5%
significance level.

q 1 5 8
Tm

2,=3.84 2,=11.07 x2,= 15.51

10 x2¥=4.77 2%¥=19.96 r¥= 33.74
Exact=4.96 Exact=36.58 Exact=235.73
2,=3.84 2,=11.07 2,= 15.51

20 xr¥=4.31 x¥=15.52 xX= 24.62
Exact=4.35 Exact=17.81 Exact= 34.09
z,=3.84 2,=11.07 z,= 15.51

30 rk=4.15 x*¥=14.03 r¥= 21.58
Exact=4.17 Exact=14.94 Exact= 24.83

X, =~asymptotic critical value for test at 1000¢% nominal
significance level.

xf=Edgeworth corrected (to O(7—1!)) critical value for
same test.

exact critical values for tests of various sizes are simple to perform. The table
below provides some numerical computations for empirically relevant values of Tn
and ¢ at the 5% level of significance.

These numerical computations make it clear that the number of restrictions ¢
plays a critical role in the adequacy of asymptotic based approximations. For ¢
small (unity or close to unity) the error on the asymptotic critical value is less
than 25% even for quite small degrees of freedom Tn. Moreover, for these cases,
a large fraction of the error is removed by the Edgeworth correction. Thus for
q=1, T»n=10 the error on the asymptotic is 22!/:% while the Edgeworth correction
reduces this to 3.8%, which is acceptable by most standards. On the other hand
when ¢ is moderate or large (relative to T..) the error on the asymptotic formula
can be very substantial indeed. Moreover, while the Edgeworth correction works
to remove the error in this case the error that remains after the correction is still
substantial. Thus, when ¢=8, T,=10 the asymptotic error is 93% and the error
after the Edgeworth correction is 86%. When T. doubles in size to 20 the latter
error is still as high as 28%. By most standards these incorrect critical values
would lead to seriously misleading inferences in empirical work.

Evidently, the approach to the limiting y* distribution is much slower as ¢ gets
large. As the error on the asymptotic formula increases the Edgeworth correction
has more work to do in order to narrow the gap to the exact critical value.

2.2, The distribution of the serial correlation coefficient
We will consider the autoregression

(10) Ye=aYestu, t=-.---10,1,-...

in which the #; are ii.d. N(0,¢?. Our attention will concentrate on the distri-
bution of the least squares estimator of a« in (10) given by &=3T., 4. /2Ly’..
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This statistic is a non circular serial correlation coefficient and it can be used to
estimate the correlation between consecutive observations in an ordered sample.
Unlike most correlation coefficients, however, its distribution is supported over
the entire real line and approximations to the distribution which remain adequate
in the tails are difficult to obtain.

In earlier work [3,4] the author derived the following explicit expression for
the Edgeworth series expansion of the distribution of TV2(1—a?)Y%(4d—a):

a P (%’Q gx> =0() + ()] T-/a(l — a1+ 2%)

+AAT) Q- {(1—-a?)z+ 1+ a®)x?— 20225} 4+ O(T-3/%)

where @(x) and ¢(x) denote the cdf and pdf of the N(0, 1) distribution, respectively.
The corresponding series expansion for the density of TY*(1—a?y""/%(d—a) is obtained
by differentiation of (11).

As explored in [3] the approximations implied by (11) deteriorate in performance
as a11. This is to be expected since the asymptotic normality of & (on which (11)
is based) holds for |a|<1 but not for a=1 nor for |¢|>1. The following Figures
exhibit this phenomena by graphs which trace the asymptotic and Edgeworth ap-
proximations (to O(T!)) against the exact density for T=5, 10, 20, 50 and =0,
0.9.

When a=0, we see from Figures 1, 2 and 3 that the approach to normality is
reasonably fast. This is partly explained by the symmetry of the exact distribution
and the fact that the error on the asymptotic distribution is O(T") for this case.
Thus when T=20 (Figure 3) the error on the asymptotic is generally quite small
relative to the exact density. The Edgeworth correction is so good in this case
that the exact and approximate densities are almost indistinguishable on the scale

1.0
0.9-
0.8-
0.7
0.6
0.5
0,4
0.3
0.2

0.14

exact pdf

0.04

~0.1- Edgeworth
-20 14 -0.8 -0.2 0.4 1.0
Fig. 1. Distribution of Serial Correlation Coefficient; a=0, T=5.
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Fig. 2. Distribution of Serial Correlation Coefficient: a=0, T=10.
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Fig. 3. Distribution of Serial Correlation Coefficient; a=0, T=20.

of Figure 3. When T=5, however, the errors on the asymptotic are more sub-
stantial and the corresponding errors on the Edgeworth approximation (shown in
Figure 1) are of the same magnitude but generally of different sign, due to over-
correction. We may conclude that for a=0 the Edgeworth approximation performs
well for moderate and large sample sizes but needs refinement for small T.

When a=0.9 the situation changes dramatically. We see from Figures 4 and
6 that the asymptotic delivers a very poor approximant not only for T as small
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as 10 but also for T as large as 50. The rate of convergence to normality is
here very slow indeed. Correspondingly the Edgeworth approximations (shown in

Figures 4, 5 and 6) are also poor and are particularly unreliable in the tail regions
where they are worse than the crude asymptotic approximant.

Only in the central
body of the distribution for 7=50 is the approximant adequate.

This visually
apparent difference in the rate of convergence is explained by the fact that at

2£=0 the errors on the Edgeworth approximant are of O(T2) rather than O(T~%2).
We conclude that for the case of @=0.9 the errors on the asymptotic distribution
are sufficiently large (even for large sample sizes) to make the Edgeworth correc-
tions quite unreliable.

It seems reasonable to deduce from these computations the following general

4

Edgeworth

asymptotic

00 01 02 03 04 05 06 07 08 09 1. ' '

Fig. 4. Distribution of Serial Correlation Coefficient; a«=0.9, T=10.

asymptotic

15 25 35 45 55 ' : '

65 75 85 .95 105 115 125

Fig. 5. Distribution of Serial Correlation Coefficient; a=0.9, T=20.
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asymptotic \

0.4 0.5 0.6 0.7 038 09 10 11 12
Fig. 6. Distribution of Serial Correlation Coefficient; a=0.9, T=50.

verdict concerning the adequacy of Edgeworth corrections: asymptotic expansions
of low order (to O(T-')) do well and can provide significant improvements when
the error on the crude asymptotic formula is not too large (in rough terms under
25%); but when the asymptotic error is large (above 75%) the asymptotic expansion
is usually poor and can, in some cases, be worse than the crude asymptotic.

3. An alternative approach based on constructive functional approximants

In [5] and [6] the author has recently been exploring mechanisms by which we
can build on the strengths of less flexible methods such as asymptotic expansions
and primitive exact theory with the object of providing improvements in distri-
bution approximants where they are most needed. Before we describe the approach
taken in these papers it is worth pointing out that improvements inevitably carry
a cost. For example, asymptotic expansions yield improvements over crude asymp-
totic theory by utilizing more information about: (i) the distributional properties
of the underlying random processes (typically expressed in terms of the knowledge
of cumulants of higher order than the second); and (ii) the behavior of the likeli-
hood or other objective criterion in the locality of a certain point in the parameter
space (this information being carried through knowledge of the partial derivatives
of the criterion up to an order determined by the expansion). Note that these
elements involve not only an informational cost but also a computational one (which
can be substantial in the more complex cases). The methods I will describe involve
similar costs of information in terms of underlying distributional assumptions.
Their computational costs should be classified into two types: fixed and variable.
The fixed costs refer to the once and for all costs that are involved in finding the
approximant; the variable costs refer to the computational cost of using the ap-
proximant (which will typically be carried in a computer function subroutine) in
practical applications. In general, fixed costs will be high and variable costs will
be very low in these new methods. Moreover, they have the advantage of a flex-
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ibility which enables them to blend information from diverse analytic and numerical
sources. In this latter respect they differ from methods based on asymptotic ex-
pansions which rely on rigid analytic formulae.

3.1. pdf approximation

We start by considering the problem of approximating a certain probability
density function (pdf) in Ci[— oo, ], the class of continuous, positive valued func-
tions that vanish at infinity. For the direct approximation of densities, we intro-
duce the following family of extended rational approximants (ERA’s) of maximal
degrees m and #n:

Yo+t +ymd™
1+Tm+1x+ <ot YmanX™

(12) era (x; r)=s(@)m/n](x; y)=s(x)

where s(x) is a given coefficient function usually in Cy[—co, o] and 7 is the vector
of rational coefficients.

The first steps in the practical implementation of the approach require im-
portant elements of judgement in three areas: (i) choice of the coefficient func-
tion s(x); (ii) selection of the degree of the rational function [#me/#]; and (iii) de-
termination of the coefficients in 7. The problem is one of constructive functional
approximation within the general family defined by (12). The solution to this
problem in any particular case will rely intimately on the information that is
available about the true distribution. Typically, we will want the approximant
to embody as much analytic and reliable numerical data about the distribution
as possible. This directly affects the choice of s(x) and the prescribed degree of
[mfn]. As argued in [5], theoretical and practical considerations often suggest a
specialization of the family (12) to that in which numerator and denominator poly-
nomials are of the same degree (i.e., m=n).

Primitive analytic structures will frequently provide a good choice of s(x).
Obvious examples are: (i) knowledge that the true distribution has finite moments
up to a certain order (<g, say, where pg=supremal moment exponent), in which
case we may set s(x)=[14|x|**']!; knowledge that a primitive form of the distri-
bution is of a simple type, such as the Cauchy distribution in the case of the
limited information maximum likelihood estimator (see [7]) leading to the form
s@)=[z1+z*]"!; knowledge of the Edgeworth approximation to a certain order,
say

13 ed @=e@){1+ T/ @)+ T'q(@)} ,  @(x)=(2x)""/2 exp [—2?/2]

in which case we may set s(z)=ed(x) except for those regions in which ed ()
becomes non positive, where we may splice in a scaled primitive density such as
the standard normal or univariate #. In addition to analytic structures like the
above we may also use numerical data in the construction of s(x), an example
being nonparametric density estimates based on experimental simulations. These
choices of s(x) are discussed in greater detail with some numerical illustrations in
[5] and [6].

The main role of the rational coefficients y in [m/#] is to build on the strengths
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of s(x) as a primitive approximant and to allow the direct use of numerical data
in the approximant when s(x) is furnished by rigid analytic formulae such as
Edgeworth series. In [b] the author explored the use of multiple point Padé pro-
cedures based on Taylor series expansions of the true pdf at certain points including
infinity. For example we may utilize the two series expansions:

14) pdf (B)=avt+ sz +awx?+ -+, z—0
(15) pdf (r)=|z|""{Bo+Bufx+po/2"+ - -},  [x| >0
to select r so that to a certain order
era (z; y)=s(x) [m/n](x; 1)

has the same asymptotic behaviour at =0 and x=+c as (14) and (15). The
examples in [5] and [6] show that this multiple point Padé procedure can work
very well even for low degree rational approximants (m, n<4 say). Direct numerical
inversion of the characteristic function also provides pointwise computations of
pdf (x) that can be used in such Padé procedures. The example we give later
makes systematic use of this latter approach.

[6] develops a theory of approximation for the class Cyf— oo, o] in terms of the

uniform error norm:

|pdf—era| =sup:|pdf (x)—era (z)| .

This theory establishes the existence of a unique best uniform approximant era*=
era (x; 7*) to any pdf € Co[—o0, 0], where y* is such that

| pdf—era* || =inf, sup, |pdf (x)—era (z; 1)| ,

Denseness and characterization theorems are also established. The latter theorem
verifies the following error alternation property of the best approximant: if the
number of alternations of the error e (z)=pdf (x)—era (x) (i.e., the number of con-
secutive points at which e (x) attains a maximum with alternate changes in sign)
is at least N=n-+m-+2 then era(x;y) is the best approximant to pdf (x) in the
family defined by (12). These theorems extend the classical theory of approxima-
tion (given, for instance, in [10]) to density approximation over the entire real line.

3.2. cdf approximation
The following modification of the family of approximants given by (12) allows
us to treat cdf and tail probability functions directly:

Yotz -0 +rax”
Itrnad+ «oo +remx™’

(16) Era (x; 1)=S(x)[n/n]{x; r)=S(x) n even

where S{x) is a primitive cdf, perhaps directly of the form s(t)dt, with the

—co

properties that St1 as £1o, |0 as 2} —o and >0 for all x. It will sometimes
also be useful to set ya=y2s if we wish to preserve the correct asymptotic (as z— )
behaviour. Approximants of the form (16) yield density approximations by simple
differentiation and they can be used directly for the tail area probability calcula-
tions that are needed for statistical testing.
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[9] extends the theory of approximation of probability densities that is given
in [6] to cdf approximation in the family defined by (16). This theory provides
existence, uniqueness, denseness and characterization theorems for approximants
of the form (16) within ¢Ci*[—oo, ], the class of continuous functions F over
{(—o0, ) for which FF11 as 2t e, F|0 as 2| —co and F>0 for all z.

3.3. Composite functional approximation

The research reported in [5] and [6] is currently being extended to treat the
inherent multidimensionality of most practical problems by functionalization of the
rational coefficients in (12) and (16). This work is being conducted jointly with
Professor P. C. Reiss of Stanford University. The process can be demonstrated
by considering the simplest problem in which a cdf is parameterized by 7T (the
sample size) over a discrete point set {7>7:}. Let this function be denoted by
cdfr(x) and suppose that Sr(x) is a primitive cdf, also indexed by 7, suitable for
use in (16). Further, let

an Era (z; ¢(T))=Se(x) [n/n](x; 1 (T))

be the best uniform approximant to cdfr(x) for a given 7, where ¢(7T) is the
vector of rational coefficients. We may now construct a composite approximant
to cdfr(x) by direct approximation to y(7") over 7. Specifically, we introduce the
family

aio+aiz77+ tee +aw777
1+‘Bu77+ e +‘st77s

(18) [7/sk(n)=

of rational coefficient function approximants for y«(7'); »=7T" is a suitably chosen
power of T as the argument of the function. Frequently »=7T"%? will be a good
choice in practical applications.

We now let [r/s].* denote a suitable approximant to r(7T) over the discrete
point set {7T>7,}. Then

(19) Erar(x)=Era (x; [r/s]*)

is called a composite approximant to cdfr(z) over x€(—oo, ) and {T>7T,}. In
certain cases (for example polynomial coefficient functions of the form [#/0](y)) we
may establish the existence of a best composite approximant to cdfr(x) in this
family (see [9] for details).

3.4. Preservation of asymptotics

It is interesting to explore ways in which the composite approximant (19) may
be formulated to preserve the validity of asymptotic series approximations. This
is important from the point of view of the refinement of asymptotic methods and
from a practical standpoint. The latter is significant because the point set over
which the functionalization (18) is relevant itself becomes finite, say {7, <7T< T}
when (19) builds on a primitive asymptotic theory, such as an Edgeworth series
which is known to be adequate for 7> 7T°.

The simplest procedure involves the refinement of Edgeworth asymptotic series
to improve their performance in regions of the distribution and for parameter
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domains where there are inherent weaknesses (see Section 2 for examples). Sup-
pose we are working with a statistic ar for which 7/*(ar—a) has a limiting normal
distribution and admits a valid Edgeworth series under general conditions at least
to O(TY). We may write

(20 P(T'V*ar—a)<2)=0(z/o+ T~*pu(z/0)+ T px(2/0))+0(TY)

where ¢ represents an asymptotic standard error, @ is the cdf of a N(0,1) variate
and p: and p. denote the appropriate Edgeworth polynomials. Then

@D Edez)=0T"*x—a)e+ T p( T x—a)/o)+ T~ p TY*(x—a)/0))

is the associated Edgeworth approximation to the distribution of ar.
Now set Sr(x)=ZFEdr(x) as the primitive approximant in (16) and the resulting
ERA for the distribution of ar has the general form:

(22) Era (x; r)=Ed«(x) [n/nl(x; 7).

As usual, # is an even integer (say »=2m) and we confine our attention to positive,
bounded rational functions [n/#] over (—oo, o). Decomposing [#/#] into partial
fractions and noting that there are no real poles we may write

O 7 N
@3) [#/n](x; T)—Co—i‘]Z:l{x_dj—I_x—C?J}

where ¢, is real, cj=cu+ic;: and diy=dun+ids .

Best approximation in the class (22) to a given cdfr(x) leads to the functional
dependence y=y(T") in the rational coefficients, as in (17) above. The reparameteri-
zation suggested by (23) is useful in the development of composite approximants
which preserve asymptotic behaviour. It is therefore convenient to write ¢(7) in
future as (7). d(T)).

We now use coefficient function approximants in the family (18) for the com-
ponents of ¢(7") and d(7"). First let us suppose that Edr(x) delivers sufficient ac-
curacy as an approximant of cdfr(x) for T'>T° Next we develop a first stage
ERA of the form (22) leading to the coefficient functions (¢(T"),d(T)) under the
new parameterization. Then we utilize the family (18) to produce coefficient ap-
proximants of the form:

__ Coot+Corpt - A-Corf”
14+eon+ <« +eosn® ’

©24) Cor p=T-

. _CJko+CJ}c177—I— cee +Cjkr7]r
(25) R T

p=T"1% (j=1,.--,m; k=1,2)

26)  dur= ”’j{“fff’,ff;’if.Ij’!}f;’? L =T =1, m; k=1,2)

over the interval of discrete points {7, < T<T°}; and

(27) cor=1 , CjkT=0 (]21, e, My k‘:l, 2)
for all T>T¢.
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When this second stage is completed we have the composite approximant
Erar(x)=Era(x; cr, dr)=Edr(x)[n/n](x; cr, dr)

which preserves the asymptotic behaviour of Edrz(x) as T -» co and which modifies
the Edgeworth series approximant in the domain {7, <T<T"}.

3.5. Application

Research with Professor Reiss on a major application of the above procedure
to tests for serial correlation and for unit roots has recently been completed and
will be reported in [9]. This work concentrates on the distribution of the first
order non circular serial correlation &, discussed earlier in Section 2.2. The ap-
proximant developed in [9] belongs to the composite function family of ERA’s
described in Section 3.3 and yields an error corrected Edgeworth approximation
which preserves the latter’s asymptotic behaviour. The approximant relates to the
case in which a=0 so that it can be used to construct exact tests of serial corre-
lation and unit roots (where a=1 and & is based upon consecutive observations of
Le=1:—7Y:—1). Other applications to tests based on regression residuals are de-
scribed in [9].

The Edgeworth approximation to O(7*) in this case is given by:

Edzv(x)=q)< T1/2x+—4—71.—1/7(x+ Tx3)>

and in this form therefore satisfies the conditions on the coefficient function S(x)
in (16). With this coefficient function a first stage ERA of the form (16) with
n=2 was found for 16 values of T between 7=5 and 7=50. The algorithm used
to find the best first stage approximants used non linear least squares and is de-
scribed in full in [9]. The first stage ERA was then cast in partial fraction form
as in (23) and the partial fraction coefficients were approximated using [5/2] ap-
proximants as in (24)-(26). The final composite approximant to the cdf of & has
the form

(28) Erar (&)= Edr(x)[2/2] (x; [5/2]*) .

The precise numerical values of the coefficients in the coefficient functions repre-
sented by [5/2]* in (28) are given in Table 1B of [9]. After extensive trials we
have found that this approximant delivers at least 3 decimal place accuracy to the
cdf of & for all values of T'>5. Since (28) can be readily embodied in a computer
function subroutine and evaluated at a negligible cost, this approximant is con-
sidered to be ready for implementation in regression programs. Figure 7 graphs
the errors on this ERA and the Edgeworth approximations for various values of
T. The substantial improvements over the Edgeworth approximation that are
achieved by this low order rational fraction come over clearly in the figure. Similar
improvements apply for higher values of T until at 7=50 the Edgeworth approxi-
mation delivers accuracy to the fourth decimal place and then the two approxi-
mants are equivalent by definition (see (27)).

(28) can also be used to produce highly accurate approximations to the pdf of



FINITE SAMPLE ECONOMETRICS USING ERA’S 121

Error X 102

-.12
-.254
-.37+
-.50+
-.63-
-.767

-.884

Alpha

-1.01
.00 .25 .50 75 1.00 1.25

Fig. 7. ERAO and EdgeworthT Errors.
Error X 103

105+

T T T Alphd
.00 15 .30 45 .60 75

Fig. 8. Implicit PDF Error Curves.

& by simple differentiation. Figure 8 shows the error curve of several implicit
approximants to the pdf of & obtained in this way.

4. Final remarks
Composite functional approximants of the type discussed in the last section
can be directly written into regression software. With the use of some additional
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minor subroutines they can be employed to revise asymptotic critical regions or

113

significance levels on a simple “user call” basis.

Many additional applications of this machinery are now possible. One that is
presently within reach and probably well worth the fixed computational cost (dis-
cussed in Section 3) involves an extension of the work in [9] to the distribution of
higher order serial correlation coefficients. The final composite approximants in
this case could then be directly incorporated into the first stage of the Box Jenkins
modeling procedure.

5. Acknowledgement

I am grateful to my coauthor, Professor Reiss, and to the publisher JAI press
for permission to reprint Figures 1 and 8 from our joint article [9].

Appendix
We derive the Edgeworth expansion to O(7') of the Wald statistic
(AD) W=(Dvec A*—d)Y{D(NQZ*)D'} (D vec A*—d)

given by equation (3) in the paper. We start with the characteristic function of
W

(A2) cfw(s)= Se“W pdf (A%, 3*)d A*d>*

1
T
(2r)/*+0Twl2]",, (T) (det 2)7~/2(det Q)'/*

xg exp {—%m—d)'[Q—l—zisTmK—l](a—d)}
X etr (—%ZHS ) (det S)Tn/2~"+112dqdS

where
Q=DINR>D', K=DIN®S)D' and a=Dvec A*.

We transform S— 3-¥/:S3Y/2=B and upon evaluation of the normal integral in
(A2) we find:

1

(A3) cfw(s)=
27”'7”/ ZF n(

T, S etr <—%B > (det B)n/t—(nt/2
7)
x (det [I—2is Tw@*{D(N ® B)D'}~Q"/*]y"/*dB

=Fg[ (det [[—2is TwQ/*{D(N @ B)D’y1Q"2])~1/%]

where D=D(I® 3'/*) and the expectation Ep is taken with respect to a central
Wishart variate with covariance matrix I, and degrees of freedom 7Tm.
We define
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G(B)=D(N® B)D’
g(B)=In (det R)=In (det [[—2is Tn@Q'/*G~Q*/?))

and

h(B)=exp {—%g(B)} .
Evaluated at Bo=FEzs(B)= Twl. these functions become:
Go=T7'Q, R=Q1-2is)l,, h(B)=1—2isy«*,
The Taylor expansion of g(B) at B, to the second order is:

2is

(A4) qln (1—2is)+ m

tr (Q~'dG)— tr dGQ1dGQ™)

2is
Tn(1—2is)
where dG=D(N® dB)D’ and where we interpret the differential as dB=B— Tul.
We may also expand A(B) using (A4) as follows:

A5 1B)=exp |~ 0(B)]

(1t __is 1 _L{ s$____# }
Qi L s @0~ (1o

X tr (dGQ-dGQ) (tr (Q—idG))Z} .

32
C2TA1—2is)
Since Ez(dB)=0 and E[vec(dB)vec(dB)|=Tu(lx»+Ky), where K, is the commuta-
tion matrix of order #2%, we deduce that:

(A6) E{tr (Q'dG)}*= Tmnusnm e sm+ ot jue) =2 Tt i1 it
(A7) E{tr (@dGQdG)} = Tmn el sncter+asm)
where

ars =tr (X D,’Q'Ds)

trs=tr (XD, Q*D:I Dy’ Q' Dy)
N =)

D =[DiiDyi -t Dyl

and D; is the gx# submatrix of restriction coefficients relating to the i** exogenous
variable in (1) and (2). The usual summation convention of a repeated index ap-
plies in (A6) and (A7). Using these coeflicients in the expectation of (A5), we find
the following expansion of the characteristic function of W to O(T-Y):

— (1 9y aols aiis } 1y
A9 oi=0-2iere|1+ 2Tw(1—2i5) T 2Tw(1—2isy | 7O
where

(A9) Bo= N1 Q00+ Aglir — Qe jir)

(A10) @1 =N 0@t Qs+ o) .
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Upon inversion (A8) yields the following approximation to the cumulative distri-

bution of W:
(A11) P(ng)=Fq<x[1—%WD—i—o(T—l)
where Fy{ ) is the cdf of a y,® variate.
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