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We attach toe much importance to unbiased estimates.

Sometimes biased estimates are better than the best

unbiased ones. An example was gwen by Halmos.
Abraham Wald (1946)

This paper denves the exact density of the Stewn-rule estimator in the settng of the general linear
regression. The denvation 1s facilitated by the author’s development of new algebraic methods that
involve an extension of the Weyl caiculus. General formulae for the moments of the estumator are
also provided.

1. Introduction

The idea that biased estimators may dominate the best classical procedures
seems to have occurred to many early researchers in mathematical statistics.
The quotation that heads this article was unearthed by the author in the
unpublished research archives of the Cowles Commission and gives convincing
evidence that at least two prominent scholars in mathematics and mathemati-
cal statistics had thought seriously about this idea long before 1950. Neverthe-
less, it was the article by James and Stein (1961) that really excited professional
interest in this subject and which laid the foundation for subsequent work on
the class of biased estimators which now come under the generic name of the
Stein-rule family.

In view of the dominance of the Stein-rule estimator over classical methods
in multivariate settings, knowledge of the sampling properties of this estimator
is very important to us if we are to properly understand its behavior. Unfor-
tunately, and, in spite of the attention that the Stein-rule estimator has received
in the theoretical literature, its sampling properties are still very imperfectly
understood. Some scalar summary characteristics are known and these are
useful in determining the dominance property; but it would seem to be of
greater importance to study the whole sampling distribution of the Stein-rule
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estimator, particularly when it has been advanced as a serious contender for
estimation problems.

Undoubtedly the nonlinearity of the Stein-rule estimator has been the major
obstacle in the development of a complete distribution theory. The sumplest
way to proceed is, of course, by the use of Edgeworth expansions or by
approximating distributions that utilize known moment formulae. The first
approach has been facilitated by recent advances in the theory of asymptotic
expansions and is currently being pursued in other work [see, for instance,
Ullah (1982)}.

The object of the present paper is to show that an exact theory is also well
within reach, Specifically, this paper provides a mathematical denivation of the
exact probability density function ( pdf) of the Stein-rule estimator in the
setting of the general linear regression. Moment formulae are then deduced
directly from our general resuit.

These derivations are made possible by the deployment of new algebraic
methods that are developed in the article. These methods involve the use of
fractional calculus and have many exciting potential applications in statistical
distribution theory. They seem especially appropriate in the case of statistics
like the Stein-rule family that embody nonlinearities which cannot be treated
by more traditional algebraic methods. Matrix variate extensions of the tech-
niques given here are also being developed by the author in the context of
other work.

2. The model and notation
We will work with the linear regression model

y=XB+u, (1)

where y is a vector of T observations on a dependent variable, X is a T'X m
observation matrix of full rank m < T of non-random independent variables,
and u is a vector of disturbances that is assumed to be distributed as N(0, o27).
To simplify the formulae that follow without loss of generality we assume that
orthonormalizing transformations have already been performed which make
the reduction to canonical form 7~ 'X’X = . Results that apply directly to the
untransformed system are then obtained by transforming 8 — (X’ X/T)"i8.
The Stein-rule estimator of 8 in (1) is given by

1= 35 ®

where b= T"'X"y is the least squares estimator of B, s =y'(I ~ Py)y, Py=
X(X'X)~'X’, and a is a scalar constant. The dominance criterion of » over b
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under quadratic loss requires 0 <a < 2(m— 2) /(T — m+ 2) and m = 3 [see, for
instance, Judge and Bock (1978)].

3. The exact density of the Stein-rule estimator

We start by considering the characteristic function (¢f) of r. Since b is
N(B,(0%/T)I) and s/a? is independent and x3_, we have

of (1) =E(e")
= j exp{it’b — i(as/To'b)t'b } pdf (b) pdf (s) db ds.
(3)

To reduce the integral in (3) we introduce a new operator calculus, Specifically,
we now write

exp{it’b— i(as/Tb'b)t’b } = exp{it'dx —i(as/TA,)t'dx }e**|,n0,
(4)

where dx denotes the vector operator d/dx and 4, is the Laplacian operator
dx’ dx. Negative powers of 4, are interpreted in (4) by appealing to the
following definition of the (possibly fractional) operator 4;* (a > 0):

AZf(x)= T&;Lw[cxp{—dxw}f(x)] w* ldw, a>0, (5)

provided the integral converges. This definition is inspired by the form of the
gamma integral and, if 4 were the simple differential operator d/dx for a
scalar variable x, then (5) would correspond to one form of the Weyl fractional
integral. As it stands (5) extends the Weyl calculus by the use of fractional
powers of polynomials such as 4, in the operator dx. Further generalizations
along these lines are possible and some of these have been developed in other
work by the author (1983). Readers unfamiliar with fractional operators are
referred to Ross (1974) for an introduction to the subject.
Using (4) we may now write (3) in the form

of(t)= f{exp{it’ax ~i(as/TA,)t'dx}

X[e“ df(b)db} By pdf(s)ds, (6)
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since the integral over b-space converges uniformly. Upon evaluation we find
of(¢) =ﬂexp{it’3x —i(as/TA, )t 9x }e"'B*"z""‘/"] cmo P (s)ds
s
v -]
= {exp(it’c?x)f exp{ —i(as/TA, )¢’ dx }2=T-™/2
0

X T((T~m)/2) " o= T-mig=s/2"

xs(T—m)/!— 1 ds ex’ﬁ+azx’x/2T] (7)

x=0

= [exp(it'ax) { 1+ Zi( aazt'ax/TAx)} - (T”"Vzex'ﬁﬂzx'x/zrj

x=0’

(8)
The order of differentiation and integration may be interchanged once again in
view of the uniform convergence of the gamma integral in (7). If we set ¢t = sh
for an arbitrary real scalar s and m-vector A we deduce from (8) the character-
istic function of the linear form y = h'r,

of (s) = [exp(ish'dx) {1 + Zis(ao?wax/Ta,)} 7™
X ez’ﬁ+u1x’x/27'] 0 (9)
We observe that, since exp(x'8 + o2x'x/2T) is analytic,
exp(ish’dx Jexp( x'B + 6*x"x/2T)
= exp{ B'(x +ish) +o*(x +ish)(x +ish)/2T },
and (9) becomes
of (s) = explisp’h — a%s*h/2T)[(1 + 2isg,) T~
xexp{ x’(B+ise?h/T) +o2x'x/2T}| _,, (10)
where {, =ao’h'dx/TA,.
Inversion of (9) now yields the pdf of y in the integral form

Pdf(}’) = -z-l;f'fj;e“”exp(isﬁ’h - azszh’h/zT)[(l + 2is§x)~(7'—m)/2

xexp{ x'(8 +iso?h/T) +02x’x/2T}] ds. (11)

x=Q
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Using the integral representation of (1 +2is{,)™"~™72 in (11), and inter-
changing the order of the operators, which is permissable because of the
uniform convergence of the integrals and the series, we obtain

1 * *® _
d) T e ~w(T-m)/2-1(1 1 gt Al
M= T b ¢ a2
xexp{ ~is(y— B’h~ 0°x’h/T )~ o’s*n'h/2T } dsdw
X ex’,8+uzx’x/21"lx_0

= 1 T-m)/2+
R m7a) A e

x ( —2{,)"(1/2«)[_& (is)kexp{ —~is(y—B'h—o*x’h/T)

~0%s2h'h 2T} dsexB-o'x=2T| o
2 w [( -2 )"

X {( dz) (1/2«17)'[‘& exp{~is(y- B'h-ao*x'h/T~2z)

~a’s*hh/2T } ds} ex'B”“’*/"]
x=0

z=0

= i (T=m)/2)k {"(25',‘)1([(c?z)k(vazi‘x’h/T)'l/2

BT
xexp{ = T(y = B'h—o’x'h/T~z)/20%'k}] _|

Xex’ﬁ+uzt'x/ZT]
x=0

Thus, the pdf of y = h'r is given by

1/2 = m «
) (r- )/2) [

—_— -2¢, k
211’02’!"}! ) k=0 ( f )

pdf(}*)*(

X [(az)kexp{ ~T(y- p'h—~o*'h/T~- z)’/20%h }] =0

X ex'B-f—a’x'x/zT] (12)

x=0’

where {,=ac’h’dx/TA,.
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Note that when a = 0 only the first term of the series in (12) is non-vanishing
and we are left with

T 1/2 ’ v ¥y
(.._.__._Zh - ) e~ T-4'B)/2e%h h’ (13)
2molh

corresponding to the density of 4’6. Note also that the analogue of (12) for the
case of regressors that are not orthonormalized is obtained by transforming
h—>(X'X/T) Y.

When a is of O(T"!) in (2), as the dominance criterion requires, (13) gives
the crude asymptotic approximation to (12). Higher-order approximations may
be obtained from (12) by selecting more terms of the series according to their
order of magnitude after application of the operator {, . The algebra quickly
becomes quite heavy in this process.

4. Moment formulae

Exact formulae for the moments of A'r can be deduced quite simply from
(12). We note that

12
( : ) 7 yrexp{~T(y—Bh=ox'h/T~z)/20%h} dy
-5

27eihh
{p/2} 2L4h \ 4
p , , -2;{ o*h'h sz
= ,§o (2j)(ﬂh+alxh/7'+z)’ ’(—-——'—-27. ) ik

where [ ] denotes the integer part of its argument. Then, in view of the uniform
convergence of the series which defines the moment E(y?), we integrate
termwise and deduce the following general expression:

) - {pr2 '
E(y?)= Y ﬁ—’-—-"-—'—’—/i’-"-{(—z:y(az)* r —~£

k=0 k! = (P28

257 1
X(B'h+o*x'h/T+ z)"z’ ( E-Z%.—}-‘-) e""""'z""‘/"] .(14)

xe0

zmQ

This general formula may be written out more explicitly by using rules for
composite function differentiation. But for low-order moments these are not
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needed. Thus, when p = 1 we find directly that

E(y)= B —(T-m)[ter® 7], (1)
Consider

[ {xe;’B+¢2x’x/27'] =0

-sgemeimienl gl B (- B

- ggie“[h’awA;le““"”ﬂT] R, (16)

where
§="TBB/2¢> and w=x+18/0"
Now
AZleowAT = j’ ® o —sBuaWw/2T 4
0

(17)

0 - i
=j‘°° Y ( -:') Alweazw’w/szs,

0 =0 i
and

] 2 q9
A T = ¥ '(i'/"ziz;)—' A (ww)?
q=0 7

= (a?21)™"
- L (I+u)!

2ww)(u+1),( 5 +u),
o (2 )1
where we use the fact that

&, (ww)i=0, q<i,

. (18)
=22 (ww)“(u+ 1),(-2- + u)l, g=l+uzl,

as can be verified by direct differentiation. Next, we apply the operator hdw
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that appears in (16). We have

K awe~sd,‘eazw’w/2T

i+u

2
(ko 3 S ({igv 22(ww)* (u+ 1) (5 +u),

{0 u=Q

-2 Y ¥ % (07727 () s 1, 3 )

[=0 y=0

- i) 5 5 2TV /21 2y e

u=0Q /=9

-n/2-u

(1 + Zazs/T)

=(ozh’w) 2 (g*ww/2T)*™" (19)

T |2 (w=1)

The above proof applies when s lies in the interval 0 <5 < T/20?%; but the
formula holds by analytic continuation over the entire interval (0, c0). We may
therefore deduce from (17) and (19) that

’ - azw'W/ZTg azh'W) 2 (GZWIW/ZT)U —.7.:.
(how)AZk ( EO v!(n/2+ ) ( )

-(u) 2 (o*ww/2T)"(n/2),I(n/2)
2 ol(n/2+1),I(n/2+1)

o=0

_(hw\_I(n/2) (11_ n_. olww
( 2 )F(n/Z-%-l)lFl SR IR S )

(20)

Term-by-term integration is justified by the uniform convergence of the series.
Evaluating (20) at w = T8/6” and substituting in (16), we obtain

%ah’ﬁe"ﬁll;—zéf—_ll-)—lﬂ( Z+1:9). (21)

Hence, from (15) and (21) we deduce that

—e_T(n/2)
I'(n/2+1)

g L=m
E(y)= KB - —5—ahBe F(3.5+18)  (22)
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where 6 = TB‘B /202 (22) yields as a special case the expression first found by
Ullah (1974) for the bias of the Stein-rule estimator of an individual element
of B.

5. Conclusion

Formula (12) is very convenient for mathematical work with the exact
density, as the moment derivations of section 4 demonstrate. But the gener-
alized operator form of (12) is not the most convenient for numericai exercises.
More explicit reductions of the formula to a form that is amenable w0
computational work can be achieved by direct use of the extended Weyl
calculus developed here. These reductions will be reported in subsequent work.
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