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THE EXACT DISTRIBUTION OF LIML: I*

By PEeTErR C. B. PHILLIPS**

1. INTRODUCTION

Improvements in the algebraic machinery of multivariate analysis have recently
led to many advancements in our understanding of the finite sample properties
of statistical methods in econometrics, particularly with regard to the simultaneous
equations model. Modern multivariate methods provide a convenient stepping
stone to the solution of exact sampling distribution problems through manageable
algebraic representations of the joint density functions of the matrices of sample
moments upon which most common econometric estimators depend. These
matrix variates have, in general, noncentral multivariate distributions whose
algebraic forms and properties have been intensively studied in mathematical
statistics. Some of the most important contributions in this area have been made
by Herz [1955], Constantine [1963], James [1954, 1960, 1964] and Davis [1979,
1980]. All of these contributions have substantially facilitated the development
of econometric small sample theory in recent years. A detailed account of the
theoretical developments that have taken place in econometrics, largely in con-
junction with this analytic progress in multivariate methods, may be found in
Mariano [1982] and Phillips [1980a, 1982a].

The purpose of the present paper is to focus on a simplified class of problems
within the simultaneous equations setting where standard methods of multivariate
analysis allow us to extract the exact distributions of econometric estimators with
relative ease. Carefully chosen simplifications often enable us to work with
central rather than noncentral distributions, thereby facilitating analytic deri-
vations without sacrificing important elements of generality. The special models
and leading cases we consider are discussed in Section 2 of the paper. It is
shown that the exact finite sample distribution of the limited information maximum
likelihood (LIML) estimator in a general and leading single equation case is
multivariate Cauchy. When the LIML estimator utilizes a known error
covariance matrix (LIMLK) it is proved that the same Cauchy distribution still
applies. The corresponding result for the instrumental variable (IV) estimator
is a form of multivariate ¢ density where the degrees of freedom depend on the
number of instruments.

A sequel to the paper [Phillips (1983)] gives the exact finite sample density of
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LIML in full generality using noncentral multivariate methods.

2. SPECIAL MODELS AND LEADING CASES
We will work with the structural equation
M nw=rnl+2Zy+u

where y,(T'x 1) and Y,(T'x n) are an observation vector and observation matrix,
respectively, of n+1 included endogenous variables, Z, is a T'x K, matrix of
included exogenous variables, and u is a random disturbance vector. The re-
duced form of (1) is given by

T 2
@ [y, : Y2]=[zlszz][ Y }+[vlsV2]=zn+V,

T2t 22

where Z, is a T'x K, matrix of exogenous variables excluded from (1). The rows
of the reduced form disturbance matrix V are assumed to be independent, identi-
cally distributed, normal random vectors. We assume that the usual standardizing
transformations [see Phillips (1982a)] have been carried out so that the covariance
matrix of each row of Vis the identity matrix and T-1Z'Z=1I; where K=K, +K,.
We also assume that K, >n so that the necessary order conditions for (1) to be
identified are satisfied.

There are two special categories of models such as (1) and (2) in which the
exact density functions of the common single equation estimators of fin (1) can be
extracted with relative ease. In the first category are the just identified structural
models in which the usual consistent estimators all reduce to indirect least squares
and take the form

3 Bis = [Z5Y5]17'[Z5y,4]

of a matrix ratio of normal variates. In the two endogenous variable case (where
n=1), this reduces to a simple ratio of normal variates whose probability density
function (p.d.f.) was first derived by Fieiller [1932] and takes the following form
here (see Mariano and McDonald [1979])

v 2
exp— - (1+8? 2 2
@ pdf (r)= { n(12+r2) } 1 (1’ %; #2 (11_:-/3:2) )

where pu?=TT]5,11,, is the scalar concentration parameter. In the general
case of n+1 included endogenous variables the density (4) is replaced by a multi-
variate analogue in which the (F, function has a matrix argument (see Sargan
[1976] and Phillips [1980b]).

The category of estimators that take the generic form of a matrix ratio of normal
variates, as in (3), also includes the general IV estimator in the overidentified case
provided the instruments are non-stochastic, that is, if B, =[W'Y,]-1[W'y,]
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and the matrix W is non-stochastic, as distinct from its usual stochastic form in
the case of estimators like 2SLS in overidentified equations. This latter case has
been discussed by Mariano [1977]. A further application of matrix ratios of
normal variates, related to (3), occurs in random coefficient models where the
reduced form errors are a matrix quotient of the form A~'a where both a and
the column of A are normally distributed. Existing theoretical work in this area
has proceeded essentially under the hypothesis that det 4 is non-random (see
Kelejian [1974]) and can be generalized by extending (4) to the multivariate case
in much the same way as the exact distribution theory for the IV estimator in the
n+1 endogenous variable case.

The second category of special models that facilitate the development of an
exact distribution theory are often described as leading cases of the fully para-
meterized simultaneous equations model. In these leading cases, certain of the
critical parameters are set equal to zero and the distribution theory is developed
under this null hypothesis. In the most typical case, this hypothesis prescribes
a specialized reduced form which ensures that the sample moments of the data
on which the estimator depends have central rather than (as is typically the case)
noncentral distributions. The adjective “leading’’ is used advisedly since the
distributions that arise from this analysis typically provide the leading term in the
multiple series representation of the true density that applies when the null hypo-
thesis itself no longer holds. As such the leading term provides important
information about the shape of the distribution by defining a primitive member
of the class to which the true density belongs in a more general setting.

It is with such leading cases that the present paper is concerned. We will
consider, in particular, the leading subcase of (1) and (2) in which [],,=0. Under
this hypothesis the reduced form (2) becomes

2" [yii Yol =Z[myy i TTia] + [og V2]

3. THE IV ESTIMATOR

Statistical analysis of the leading case arising from (2") can be simply illustrated
in terms of the 1V estimator of §:
©) Biv = [Y32Z5,Z5Y,]7 [ Y2 25Z5y,]
where Z3(Tx K3) is a submatrix of Z; forming instruments additional to Z, and
where it is assumed that K;>n. This is the representation of the IV estimator
given in equation (3) of Phillips [1980b]. We note that the conditional distri-
bution of (T ~1Y4Z,Z4Y,) VAT 1Y;,Z,Z5y,) given Z3Y, is N(0, I,). This is
independent of ZiY, and is also, therefore, the unconditional distribution.
Further, T-1Y3Z,Z%Y, has a central Wishart distribution of order n with degrees
of freedom K; and covariance matrix I,. We may therefore write ;5 in the form

(6) By = (T AYLZyZ3Y ) R (T 1Y 5,25 25 Y,) MA(T 1Y 4, 25 Z3y4)]
[VVn(K?,» In)]_llzN(O7 In)
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so that B, is proportional to a multivariate ¢ variate (see, for example, Dickey
[1967]). The p.d.f. of B, is therefore given by

K3+1>
r(%
Tc"/21"< Ks—n+ 1) (1477 Est )2

2
L+n+1>
r(=

nn/zl-'(L;‘ 1 )(1 ) LEnt2

(M pdf (r) =

where L=Kj;—n is the number of surplus instruments used in the estimation of g.

The density (7) specializes to the case of two-stage least squares for K;=K,
(where the result was given by Basmann [1974]) and to the case of ordinary least
squares for K3 =T—K, (where the result was given by Wegge [1971]). As shown
in Phillips [1980b], (7) is in fact the leading term in the multiple series represen-
tation of the exact density of B, in the general single equation case where [],,
is not necessarily the zero matrix. Moreover, the leading marginal densities can
be readily deduced from (7) (see Phillips [1982b]) and standard properties of the
multivariate f confirm that integer moments exist up to the order L (i.e. the number
of surplus instruments).

4. THE DISTRIBUTION OF LIMLK

In the overidentified case (K,>n+1), the LIML estimator, B; ar, of B
minimizes the ratio B, WB,/,SB, where B,=(, —pf), W=X '(Pz—P,)X,
S=X(I-P;)X and where X=[y, :Y,] and P,=A(A'A)"'4. When the
covariance matrix of the rows of X is known, the corresponding estimator is
called LIMLK (see, for example, Anderson [1982]) and it will be denoted here by
Brimrkx- Since the model is already in canonical form, B, ;5 x minimizes the ratio
BuWB.4/B4B4 and satisfies the system

6)) (W=2.DBs=0
where B’ =(B 41, B>) is the latent vector associated with the smallest latent root

Am of W. This yields the estimator By yrx= —PB42/B41 by normalization. In
the just identified case (K, =n), both LIML and LIMLK reduce to indirect least
squares since the reduced form (2) is unrestricted ; and the analysis of the preceding
section applies.

Under the null hypothesis that [],,=0 in (2), W has a central Wishart
distribution W,(K,, I), where m=n+ 1< K,, with density

(9)  pdf (W)=2-mKs2 [rm (%)T etr(— 1 W) (det W)®a=m=13/2,

In order to extract the exact distribution of B, ;,; x We introduce the orthogonal
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transformation H by which Wis diagonalized so that H' WH = A=diag(4,..., 4,)-
This transformation is unique if we specify that 4, >A4,>.-->4,, and that the
elements in the first row of H are positive. (The latter eliminates the possibility
of multiplying columns of H by —1.) From (9) we can deduce the joint dis-
tribution of (A, H). It is most convenient to work with the probability element,
pdf (W)dW. Under the transformation W—(A, H) we have

pdf (4, HYAA(dH) = pdf (W)W

(10) = pdf (M) [T ~A)(fT d2)@m

TT (u=2,) (1] d2)(dR).

1<j

Line (10) involves the jacobian of the transformation and is given, for example,
in Constantine ([1963], equation (43), p. 1280). (dH)is the invariant measure on
the orthogonal group 0 (m) (the group of orthogonal m x m matrices) and can be
renormalized so that the measure over the whole group (restricted so that h,;>0)
is unity. The resulting distribution of H is called the conditional Haar invariant
distribution (see Anderson [1958, p. 3227). We see from (11) that H is distributed
independently of the latent roots that form the diagonal elements of A, a result
obtained by Anderson [1951].

To find the distribution of B, ;) rx We concentrate on the final column of H.
We write this m-vector h, say, in partitioned form as h'=(h,, h5). The invariant
distribution of H implies an invariant measure for h over the Stiefel manifold de-
fined by h'h=h3+h5h,=1 and denoted by V,,. The latter is the unit sphere
in (n+ 1)-dimensional Euclidean space and the invariant measure on this manifold
is given by the exterior differential form

(12) (dh) = /"\1 b, dh
A

(see equation (5.1) of James [1954]) where by, b,,..., b, are orthogonal column
vectors all of which are orthogonal to h and A denotes the wedge product. Using
the parameterization of the manifold in which h, =(1—h5h,)!/2 and restricting
the region so that h, >0, the invariant measure (12) can be written in the alter-
native normalized form

_ kdh,
(see Farrell [1976], equations (7.7.3-4)) where the constant k is selected 1o ensure
that the measure over the restricted (h,>0) region of the unit sphere is unity.

Since the measure over the entire unit sphere in R**1 is 2zt 0/2/1 (%l—> , that
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is the surface area of the sphere (see James [1954], equation (5.9)), the normalizing
constant in the invariant measure (13) over the restricted region is (ignoring
questions of sign in (13) since we are working with a positive probability measure):

(14) k =n-wwer(2EL)

We now renormalize the latent vector h to yield the LIMLK estimator. Setting
Brimrxk=", we find that this involves the transformation h,— —r/(14r'r)!/2
with b, =(1—h%h,)"2=1+r'r)~1/2. Taking differentials we deduce that

dhy = — (L+r vy V2[I+rr' ]~ tdr

and the modulus of the jacobian of the transformation is (14 r'r)~(»+2)/2,  Thus,
the invariant measure (13) defined over the appropriately restricted region (for
which h, >0) of the unit sphere in R**! transforms as follows:

r n;1>dr

(d_h) = 7.c(n+1)/2(14_,./,.)(n+1)/2 .

The p.d.f. of By ark then takes the form

(19) o L)

AT 7 7) D2 ’

that is, a multivariate Cauchy distribution.

In the two endogenous variable case (n=1), (15) reduces to the univariate
Cauchy. It is an interesting exercise (that we leave for the reader) to verify that
this distribution provides the leading term in the multiple series representation of
the exact density given by Mariano and McDonald [1979].

It is instructive to illustrate the workings of the argument leading to (15) in the
restricted setting where n=1. The orthogonal transformation H can be given
the explicit form:

cos 6 —sin 6
H={ ] E—SBSZn
sinf cos 0 2

—sin 8 cos 6
=[ },iﬁsego
cos f sin 6 2

There is only one free variable, 0, in this representation of H. Note that the
domain of # is restricted and the form of H=(h; ) is defined to conform with the
condition that h;;>0 and to allow a full range of values for the ratio h,,/h,,.
The invariant measure (12), normalized and signed so that the measure over the
manifold is unity, is
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1 —cos i
(——)(cos(), sin 8) a0 =1 g, T <o<om
& —sin 0 m

(dh) = .
1 —sin 6 1 .
(——)(—sin 9, cos 6) a0=Lap - Z<o<o
T cos 0
We deduce that
sl —coto, X <o<2m
BLIMLK = - hzz/hu = in 6
_SnY _ tang, - T <0<0
cos 6 2

and the density of B apx is:

1
K
pdf (r) =

L (~tanm1¢), r=0

l—ad? (Cot‘l(r))l, r<o0

= [n(14+r3)]"1, — 0 <r < 0.

This specializes (15) to the univariate case.

5. THE DISTRIBUTION OF LIML
The LIML estimator satisfies the system
(16) (W—15)B, =0

where 4 is the smallest latent root of the matrix S~1/2WS~1/2. Manipulation of
(16) shows that 8, also satisfies

(n [S—f(W+S)1B, =0

where f=(1+2)~1 is the largest latent root of (W+S)~1/2S(W-+S)~1/2.
Let the m=n+1 roots of the equation

(18) det [S—f(W+S)] = 0

be ordered f,>f,>--+>f,>0 (the probability of equal roots being zero) and
assembled in the matrix F=diag (fy, f5,...,fs)- Let the corresponding vectors g;
satisfying

(19) [S—f(W+8)]g: =0

be normalized by
g, (W+8)g; =1

and assembled into the matrix G=[g,,..., g,.]. It follows that
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(20) G'(W+S)G =1,

(see, for example, Anderson [1958, p. 309]). We now define E=G™! and consider
the transformation (S, W)-(E, F) arising from the equations

(21) S = E'FE, W= E(I-F)E.

This transformation is one to one if we impose a unique sign on a particular
column of E=(e,;). Let us take the final column and set e, ,, ;>0 for all i.
This requirement removes the indeterminacy in G associated with the fact that
columns of G can be multiplied by —1 without disturbing the validity of (19)
and (20).

The transformation (21) is discussed at length by Anderson [1958, pp. 310-313]
where it is shown that the jacobian is

(22) 2mdet E[™ 2 [T(f.—f ).

i<y
Under the null hypothesis that [],,=0 in (2), Wand S have independent central
Wishart distributions W,(K,, I) and W,(T—K, I) respectively, with joint p.d.f.
etr(—- Lo+ S))(det W) Kam=1)12(det §)T-K-m=1)/2

. X T—K
m(T—K1)/2 2 -
it F'"(2>F'"< 3 )

(23) pdf (W, S) =

We deduce that

— L EE )(det E/E)(T—Kx)/Z—(mH)ldet E|m+2

etr( 5

24) pdf (E, F) =

( ) P ( ) 2m(T—K1)/2—m1" (_&)1" (T_K>
"\ 2 " 2

(det F)(T—K—m—l)/Z (det(I_F))(Kz*m—l)/Z I_I (fl _f_/)-

In order to integrate out F we will use the multivariate beta integral

1 - - I, (a)T,(b)
a—(m+1)/2 _ b—(mt+1)/2 — m nm .
(25) So (det R) (det(I— R)) dr = TH@ul®)
a,b>m-1)/2
(see, for example, Tan [1969]). Let H be an orthogonal matrix for which H' RH =
diag (ry, 73,..., 1,). To ensure the transformation is unique we order the roots

as ry>r, > >r, and specify the first element in each column of H to be positive.
Under this transformation, as in (10) above, we have

(26) dR = T](r;—rp Il dr(dH)

where (dH) is the invariant measure over the orthogonal group or, strictly speaking,
that part of which is defined by the stated restriction on H. We know that
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Zmnmzlz

(James [1954]) so that taking the fraction 1/2™ of (27) corresponding to the restric-
tion on H and using (25) and (26) we deduce that

(28) S ([Tr)e = DRI (A =r,))om DR T] (ry—r I T drs

Tu(@T, )T, (%)
I, (a+b)rm/2 ~°
where the region of integration is {1 >r,>r,>--->r,>0}. It follows that

27) So(m) (dH) =

(%)
(29) pdf (E) = T
ImT-K)/2-mpm?2[" ( —2K1 )

etr ( - % E/E> (det E'E)(T-K0/2-(=*+1)|det E|m*2,

It is now convenient to partition the inverse of E, viz. G, as follows

1 n
1 911 912 911 912
(30) G= =
n ga1 Gy, —g11r Gy,
where we use the fact that
(31 Brimr = — g21/g1, =7, say.

The corresponding partition of E is

[ 9111_91119/12((;22+'g'12)—1'§ —93%9/12((;224"‘9'12)_1]

...................................................................

(Gyatrgi)~'r ; (Gya+rgin)™t
€11 €2
(32) = , say.
E,,r  Ej,

Thus, from (29) and (32) we find

r ( )
(33) pdf (ey(, €1z, 7, Epy) = 2 X
2m(T—K1)/2—mnm2/21"m< T—Z 1 )

-exp [— % (e3,+eleq2) :Ietr[— % I+ rr’)Engzz:I

[det(Ej2 Epp) ] T RKimmt 2|,y — ef,pr|T—517m,
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E,, occurs in the density (33) only in the form E5,E,,. Moreover, when E,, is
integrated out of the density the value of the integral will be unchanged if we
relax the (positive) sign requirement on the final column of E,, and multiply the
integral by 2=*. To assist in the integration we transform E,,—(H, D) where H
is orthogonal and D=E),E,, according to the unique decomposition E,,=
HD'/2, The measure changes in accordance with the relation

(34) dE,, = 2-"(det D)~2dD(dH)

proved by James [1954] (see also Muirhead [1982]) where (dH) is the invariant
measure on 0 (n).
From (33) and (34) we deduce that

T, (@_) 32
(35) pdf (e1s, €15, 7, D)= 2
zm(T—Kx)/Z—lan/ZI"m< T—2K1 )ﬂ(-n‘)

- exp [— % (e, + e’lzelz)} etr l:— é— I+ rr/)D}

(det D) T-Ki=m)i2jg,, — g r{TKi—m,

Integrating out D in (35) and simplifying the constant we obtain

F(n;—l

)exp|:— % (et + 3'12912)}|e11 — epr|TKim

36 df (eqq, €42, 7) =
(36)  pdf (e, €12, 7) Z(T‘Kl)/z_lﬂ”+1/21-'< T—2K1 _121_>(1+,/,)(T-K1)/2

Define ¢'=(e,, €1), a’'=(1, r)and g=T—K,—m. We must evaluate
(37) femereriarqiodg

where the integral is over 0< ¢, < 00, —00<g,<00, i#m. Setd=a/(a’a)l/? and
construct an orthogonal matrix D=[d, d,,...,d,]. Under the transformation
q->D’q=p (37) becomes

(38) 1/2) (a/a)a/zg e 22| p, |0/2dp,

The factor of (1/2) in (38) arises because the domain of p is taken to be unrestricted
(i.e. —oo<p,<oo for all i) while that of g in (37) satisfies 0<g,,<c0. We may
interpret p, as a N(0, 1) variate and expression (38) then reduces as follows:

39 2m2=Agmi2(g'a)9/2 E| py |6/ = 20m+a)2-igm=)i2[ (——g;1>(a’a)"’2.
We deduce from (36) and (39) that the required density is:

2mrey2-lgm-1)i2 (_g +1 )1" (ﬁn +1 )(1 +r'r)er2
pdf () = 2 2

Z(T—Kl)/z—1nn+1/zF<T—2K1 _%) (1+7'7)T-Kv)2 )
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Since g=T—K,—m=T—K, —n—1 it follows that
n+1

pdf(r) = nFD2([ 4 /) ¥ D/2

and the distribution of f; ;. is therefore multivariate Cauchy.

6. DISCUSSION

The exact distributions obtained above apply when [],,=0 and correspond,
therefore, to a particular structure of the model (1) and (2) in which the true
coefficient vector f is not identifiable. None of the exact finite sample densities
(7), (15) or (43) actually involve §. All are, in fact, centered on the origin. When
B is 1tself zero, there 1s an absence of simultaneity in the model and, in this case,
OLS (with K;=T—K, in (7)) is a consistent estimator. We observe, on the other
hand, that the exact densities of LIML, LIMLXK and 2SLS (the latter with K; =K,
in (7)) are invariant to changes in the sample size T. Thus, as T— o0 these dis-
tributions (unlike that of OLS) continue to demonstrate the uncertainty about
that is due to its lack of identification.

Our results show that LIML and LIMLK have identical finite sample Cauchy
distributions in this leading case. Knowledge of the error covariance matrix
therefore adds nothing to the precision of the LIML estimator. While the lack
of identification of § has a role in explaining this fact, the crucial factor behind the
result is that an entire block of reduced form coefficients, viz. [r, : I'1,,], is zero
under the null hypothesis. This implies that the system of equations
731 — 1122 B=0 which usually define §, also carry no real restrictions on the
reduced form. Estimation by LIML or LIMLK under these condifions is
essentially (that is, from the point of view of their distributional properties) equi-
valent to estimation under conditions of (apparent) just identification. This
explains not only why LIML and LIMLK have identical distributions; it also
explains why these distributions, viz. (15) and (43), are invariant to changes in the
(apparent) degree of overidentification. Readers who find these intuitive argu-
ments convincing can rely directly on the elementary proof given in Section 3 of
the exact distribution of the IV estimator for the (apparent) just identified case to
deduce the results for LIML and LIMLK obtained by more sophisticated methods
in Sections 4 and 5.

Finally, it is of interest that the exact distributions studied here in primitive
forms retain certain important properties, notably their tail area behavior, when
the null hypothesis [],,=0 is relaxed. This is already confirmed in the two
endogenous variable case where the exact distribution of the LIML estimator
was derived under the alternative [],,#0 by Mariano and Sawa [1972] for
the special case of even degrees of freedom. A sequel to the present paper will
provide the exact distribution of LIML under the same general alternative [],,
#0 but for a structural equation containing an arbitrary number of endogenous
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variables, and arbitrary degrees of freedom in the sample.
Cowles Foundation for Research in Economics, Yale University
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