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ABSTRACT

A method of extracting marginal density approximations using the multivariate
version of the Laplace formula is given and applied to instrumental variable
estimators. Some leading exact distributions are derived for the general
single equation case which lead to computable formulae and generalize all
known results for marginal densities. These results are related to earlier
work by Basmann (1963), Kabe (1964), and Phillips (1980b). Some general
issues bearing on the current development of small-sample theory and its
application in empirical work are discussed in the introduction to the article.
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I. INTRODUCTION

The general problem of extracting finite sample distributions in econometrics
has attracted attention since the early 1960s. One reason for the interest
has been the widely acknowledged shortage of results in the area and
the heavy reliance empirical investigators have, therefore, reluctantly
had to place on asymptotic distribution theory in estimation and inference.
That such a heavy reliance on asymptotic theory can lead to serious
problems of bias and low levels of inferential accuracy in small sample
situations is well understood, particularly by economists who have had
to deal with short data series in empirical work. Moreover, some of the
earliest results on small-sample distributions, particularly in time series
models [for example, the work of Hurwicz (1950), which clearly illustrated
the substantial small sample bias of the least squares estimator in the
first order autoregression], must have made many investigators in the
profession uneasy about setting the foundation for estimation and inferential
procedures on asymptotic theory alone. Nevertheless, these procedures
have out of necessity become firmly established, and the conventional
coding of asymptotic statistics in computer regression outputs has helped
to entrench the practice of a sole reliance on asymptotic theory in empirical
work.

Since the early papers 20 years ago (Basmann, 1961; Bergstrom, 1962,
Kabe, 1963, 1964), there has been a continuing and growing literature
on small-sample distribution theory in econometrics. Three major schools
of research emerged in the 1970s associated with the names of Professor
T. W. Anderson at Stanford University, Professor R. L. Basmann at
Texas A and M University, and Professor J. D. Sargan at the London
School of Economics. The research work of these schools has very
largely been complementary in extending the frontiers of knowledge in
this field and in stimulating the interest of new research workers. Although
the ultimate objective of this research has been to relieve the empirical
worker from the heavy reliance he has had to place on asymptotic theory,
as yet there has been no substantial payoff to this research in terms of
applied econometric practice. This situation is most likely to change
dramatically during the 1980s. In part, this is because the rather specialized
results of the early research have recently given way to general theories
and a powerful technical machinery that will make it easier to transmit
results and methods to the applied econometrician in the precise setting
of the model and the data set with which he is working. And, in part,
this is because improvements in computing now make it feasible to
incorporate into existing regression software subroutines that will provide
the essential vehicle for this transmission.
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Two parallel current developments in the subject are an integral part
of this process. The first of these is concerned with the derivation of
direct approximations to the sampling distributions of interest in an applied
study. These approximations can then be utilized in the decisions that
have to be made by an investigator concerning, for instance, the choice
of an estimator or the specification of a critical region in a statistical
test. Techniques that offer most promise in this regard are the Edgeworth
approximation, whose use has been explored in general cases by Sargan
(1976) and Phillips (1977, 1980a), and the modified Padé approximant
introduced in Phillips (1982).

The second relevant development involves advancements in the math-
ematical task of extracting the form of exact sampling distributions in
econometrics. In the context of simultaneous equations, the published
literature has so far concentrated on the sampling distributions of estimators
and test statistics in single structural equations involving only two, or
at most three, endogenous variables. Recent theoretical work by Phillips
and Rhodes has extended much of this work to the general case. In
particular, Phillips (1980b) extracted the exact density function of the
instrumental variable (IV) estimator in the most general case of a structural
equation with n + 1 endogenous variables and an arbitrary number of
degrees of overidentification. In the same setting, Rhodes (1981) found
the exact density of the likelihood ration identifiability test statistic. Work
that the author currently has underway should extend these general
results to the k-class estimators and limited-information maximum likelihood
(LIML). However, in spite of their generality, these results suffer a major
handicap in computational work. The analytical methods used in these
articles rely on the manipulation of matrix argument higher transcendental
functions, and the final expressions for the density functions that have
been obtained involve multiple infinite series in terms of zonal-type
polynomials.

Zonal polynomials were introduced by James (1961) and can be rep-
resented as symmetric homogeneous polynomials in the latent roots of
their matrix arguments. Extensions of these polynomials to include similar
polynomials in two or more matrix arguments have been made by Davis
(1979, 1980) and Chikuse (1981) and are also relevant in certain econ-
ometric applications (see Appendix B of Phillips, 1980b). These polynomials
we will refer to under the generic name zonal-type polynomials. Although
the series representations that involve these polynomials are very con-
venient mathematically, they present enormous difficulties in numerical
work. This is, in part, due to the fact that no general formulae for the
zonal-type polynomials are known. However, certain algorithms for the
computation of the zonal polynomials themselves are available [see, in
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particular, James (1968) and McLaren (1976)],' and a complete computer
program for the evaluation of the coefficients of these polynomials has
been developed and made available by Nagel (1981). This is an important
development and will in due course undoubtedly affect our present rather
limited ability to numerically compute and readily interpret multiple series
representations of probability density functions. Unfortunately, the avail-
ability of tabulations and algorithms for the zonal-type polynomials will
cover only part of the computational difficulty. As noted by Muirhead
(1978), the series that involves these polynomials often converge very
slowly. This problem arises particularly when the polynomials have large
arguments (large latent roots) and it becomes necessary to work deeply
into the higher terms of the series in order to achieve convergence. This
in turn raises additional problems of underflow and overflow in the computer
evaluations of the coefficients in the series and the polynomials themselves.
To take as a simple example the case of the exact density of the IV
estimator in the two endogenous variable case, the author has found that
in a crude summation of the doubly infinite series for the density a
thousand or more terms seem to be necessary’ to achieve adequate
convergence when the true coefficient parameter is greater than 5 and
the concentration parameter greater than 10. These are not in any way
unrealistic values, and the problems increase with the size of the coefficient
and concentration parameter. Expressed as a single series involving the
1F, function of a scalar argument, we find that computation of the series
requires computation of the |F, function for a scalar argument greater
than 225. Use of the conventional asymptotic expansion of the ;F, function
[which is normally recommended when the argument is greater than 10;
see Slater (1965)] fails here because one of the parameters of the |F,
function grows as we enter more deeply into the series and the series
itself no longer converges. Some special methods for dealing with these
difficulties in this case have been developed in programming work for
the author by Sidnie Feit and will be reported elsewhere. Undoubtedly,
the additional problems we have encountered in this example quickly
become much worse as the dimension of the argument matrices in the
special functions and the zonal polynomials increases and as we need
to make use of the more general zonal-type polynomials.

For direct computational work in the case of the IV estimator when
there are more than two endogenous variables in the structural equation,
the problems reported in the previous paragraph were overcome in Phillips
(1980b) by extracting an asymptotic expansion of the exact joint density
of the vector coefficient estimator. The leading term of this expansion
has an error of O(T ~') where T is the sample size, and in the univariate
(two endogenous variable) case the resulting approximation is the saddle-
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point approximation derived using other methods by Holly and Phillips
(1979). As shown in this latter article, the approximation gives high
accuracy for some plausible values of the parameters throughout a wide
domain of the distribution, including the tails.

The rather specialized early research in small-sample theory naturally
enough focused on problems that were essentially univariate in character
in the sense that the statistics under analysis were scalar rather than
vector random variates. Hence, in the context of a structural equation
with two endogenous variables, attention concentrated on the sampling
distributions of (1) estimators of the unknown coefficient of one of the
endogenous variables, (2) structural variance estimators, and (3) t-ratio
type test statistics. As the analytic theory has developed to encompass
the more general cases discussed in previous paragraphs, the final problem
has, at least in the important case (1) above, become multivariate® in
character. For example, in the work by Phillips (1980b) on the IV estimator,
the structural equation contains n + 1 endogenous variables, there are
n unknown structural coefficients of these variables, and the final probability
density function (pdf) of the estimator is a joint density in n dimensions.

In this multivariate setting, an important and outstanding problem is
the characterization of the joint density in such a way that the final
results can intelligently be used in practice. This problem bears an im-
mediate resemblance to that of characterizing multidimensional Bayesian
posterior distributions. Some of the current work in the latter area has
taken the direction of numerical computation of posterior moments by
Monte Carlo methods (see, for instance, Kloek and Van Dijk, 1978).
Direct application of these techniques is hampered by the difficulties
typically involved in the computation of the joint densities that have
been described earlier (although approximations to the joint density func-
tions could be used before applying this method). Moreover, Monte Carlo
methods have concentrated on the computation of low order posterior
moments. In many cases it will be preferable to work with the marginal
density functions directly, since attention is often focused on individual
parameters or coefficients rather than a group of parameters jointly.* In
principle, the marginal densities can be obtained by analytic or numerical
integration over the space of the auxiliary variables and for the domain
of values for which the marginals are required. In practice, analytic
integration currently presents severe techmical difficulties for all but
the simplest cases (and with the exception of the analysis of the leading
terms in the density expansions); and numerical integration methods
encounter dimensionality problems as well as/or computational difficulties
in the joint density series representations described earlier. It is interesting
to note that of the two significant parallel developments in small sample
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theory that were discussed earlier, the first of these yields marginal
density approximations directly. This is an attractive feature of both the
Edgeworth and the modified Padé approximants.

When the starting point in our analysis is the exact joint pdf of a group
of parameters and we wish to sharpen our focus and characterize the
sampling behavior of an individual parameter estimator, an alternative
approach is required. This article presents a solution to this problem, a
solution that involves the use of the multivariate version of Laplace’s
method [see, for example, Chapter 8 of Bleistein and Handelsman (1976)]
to reduce the multidimensional integrals that define the marginals. This
approach should be quite generally applicable in both sampling theoretic
and Bayesian problems and seems to present no computational problems
even in high-dimensional cases.

Section II of the paper will outline the essential features of the method,
and an application to the marginal densities of the IV estimator in the
general single equation case will be presented in Section I1I. This application
enables us to assess, inter alia, the effect on the density of an individual
coefficient estimator of an increase in the number of endogenous variables
in the model, ceteris paribus. Some graphs that display this and other
effects are given. Some leading exact results will be given in Section
IV; these results lead to computable formulae and generalize all presently
known results for exact marginal densities in single structural equations.
Concluding remarks will be made in Section V.

II. ASYMPTOTIC EXPANSION OF THE MULTIPLE
INTEGRAL DEFINING A MARGINAL DENSITY

To set up a general framework, we assume that a model is specified that
uniquely determines the joint probability distribution of the system’s
endogenous variables {y, ..., y;} condition on certain fixed exogenous
variables {x;, ..., x;}, where T is the sample size. If, as is usual, this
distribution is absolutely continuous, it can be represented by its probability
density function (pdf), which will depend in general on an unknown
vector of parameters 0. Thus, we write pdf(y|x; 6) where y' =
(»1, ---»¥7) and x' = (xi, ..., x7). Estimation of 6 or a subvector of 0
leads to a function of the available data, which we will write as the n-
vector 8; = 0.y, x). Since most econometric estimators and test
statistics are relatively simple functions of the sample moments of the
data, which we will denote by m, we may also conveniently write 8, =
#%(m). Frequently, these functions will just involve rational functions
of the first and second sample moments of the data. In the more complicated
cases, 0 will be determined by a system of estimating equations, such
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as H,(0;, m) = 0, whose elements are usually rational functions of the
sample moments. In any case, the representation 8; = 6f(m) will be
general enough for a large class of applications.

Our problem is to characterize the distribution of individual components
of ;. In many of the relevant econometric cases, we can write down
directly the pdf of the sample moments, namely, pdf(m), using established
results from multivariate distribution theory. Otherwise, pdf(s) must be
obtained by transformation and analytic integration of pdf(y). The next
step is to find a suitable set of auxiliary variates b for which the trans-
formation m — (8;,b) is 1:1 and then the density of 6 is given by the
integral

am

3r.b) db 0}

pdf(r) = L pdf(m)

where B is the space of definition of the b variates and we use r to
denote 8, in the density. The marginal density of an individual component
of 8,—say, 0;—follows by further integration

am

a_(m dbdr(,) (2)

pdf(r,) = JR, L pdf(m)\

where 1, is the vector of redundant variables in r and R, is their space
of definition. In (2) we use r, to represent 0,.

Although the integral defining (2) can be obtained analytically in some
leading general cases for simultaneous equations estimators (we will give
some examples in Section IV), the complexity of the representation of
the joint density pdf(r) derived from (1) will normally present a severe
obstacle to this step. Typically, pdf(r) has an analytic representation as
a multiple infinite series involving zonal polynomials of argument matrices
that are themselves rational functions of the elements of r. In the absence
of analytic formulae for these polynomials in terms of the elements of
their argument matrices, the task of integrating out the surplus elements
of r to extract the marginals pdf(r,) will be possible only in the simplest
cases.

An alternative approach, which simplifies the preceding task and which
should lead to good asymptotic approximations in many cases, is based
on the multivariate extension of Laplace’s method applied to the multiple
integrals (1) and (2). A full discussion of the method in the context of
multidimensional integrals is given in Chapter 8 of Bleistein and Handelsman
(1976). The method is applicable to integrals of the form

I = L exp{Ad(x)}g(x)dx, X = (X1, ..oy Xn) 3)
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where D is a simply connected domain in N-dimensional x-space. If ¢(x)
and g(x) are continuously differentiable to second order, if ¢ obtains an
interior absolute maximum at x* in D, and if the Hessian 9’¢(x*)/dxox’
is negative definite, then [equation (8.3.52) of Bleistein and Handelsman
(1976)]

I\ ~ Qa /M) exphd(x)lg(x*){det] - d(x*)/oxox}'* @)

in the sense that A ~ B if A/B — 1 as A — «. The error on this
approximation is of OlexpAdx*)A"¥*2/2}] as A — . The right-hand
side of (4) is, in fact, the leading term in an asymptotic expansion of
I(\) as A — o« provided the functions ¢(x) and g(x) satisfy sufficient
regularity conditions. Equation (8.3.50) of Bleistein and Handelsman
(1976) gives this expansion explicitly. It is worth pointing out that (3)
holds when x* is an interior point of D and somewhat different formulas
apply when the maximum of ¢(x) is attained on the boundary of D.
Intuitively, the asymptotic approximation (4) is based on the notion that
as A grows large the main contribution to the value of the integral comes
from integrating in a small neighborhood of the point x* where ¢(x)
attains its absolute maximum.

In applying (4) to the multiple integrals that define pdf(r) and pdf(r,),
we first need to represent the integrand in each case in a form that
corresponds to that of (3). To fix ideas, we assume that (1) has the
alternative representation

paf(e) = (r) | exp{ATI(e b)le(rb)db )

for sufficiently smooth functions s, ¢, and g and where AM(T) — = as
T — = If ¢(r,b) attains an interior absolute maximum at b* = b*(r)
in the interior of B, we have directly the asymptotic representation

pdfr) = [27/MTIN? hEexpMT)$*E* @] (6)
where
¢*(r) = lr,b*()]
g*() = glr,b*(r)]
and

A(r) = det{-8’¢[r,b*(r)]/obob'}.

To approximate the marginal density (2), we apply the method again,
this time to the integral (2) giving
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pdf(r,) = [20/MT)IV "2 hir,, et )expMTS*e, 1)} (7
- g, rE)Ar,, K] AT
where
A(r) = det{—8°p*[r,,r¥,(r,)1/or o))}

and where ¢*(r) = ¢*(r,,rf,) attains an absolute maximum in the interior
of R, given r,, at rf, = r{(r,). The dimension of the vector r{, here is
n— 1.

II. AN APPLICATION TO INSTRUMENTAL
VARIABLE ESTIMATORS

As in Phillips (1980b), we work with the structural equation
i=Y. 8+ Zy+u ®

where y, (T X 1) and Y, (T X nr) are an observation vector and matrix,
respectively, of n + 1 included endogenous variables; Z,; is a T X K,
matrix of included exogenous variables; and u is a random disturbance
vector. The reduced form of (8) is given by

[yi: Y] = [Z15Z2]|:wll glz:' + [viiVy] =zll + V ©)
2

™

where Z, is a T X K, matrix of exogenous variables excluded from (8).
The rows of the reduced form disturbance matrix V are assumed to be
independent, identically distributed, normal random vectors. We assume
that the usual standardizing transformations (Basmann, 1963, 1974) have
been carried out, so that the covariance matrix of rows of V is the
identity matrix and T"'Z'Z = Iy where K = K, + K, and Z = [Z,iZ,].
We also assume that K, = » and the matrix I, (K; X r) in (9) has full
rank, so that (8) is identified, although this latter assumption will be
relaxed in our discussion of some leading cases in Section IV. We let
H = [Z,:Z;], where Z, (T X K3) is a submatrix of Z, and K, = n, be
a matrix of IVs to be used in the estimation of (8). The IV estimator of
the parameter vector B8 in (8) is then

B = (YéMHY2)~](Y£MHy 1)

where M,, = HH'H)"'H’ — Z,(Z{Z,)”'Z{, and under orthogonality this
reduces to By = (Y3ZZ3Y,)~ (Y3Z5Z3y)).
The exact joint probability density of By obtained by Phillips (1980b)
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is given by
etr{ = (7/2)A + BRI, I(L + n + 1)/2]
W”/Z[det(l + rrr)](L+n+l)/2

3 (L/2)
= JTIL + n)/2 + 1

pdf(r) =

{(T/2)B' T3, [adj(d /6W)]

IL,,B}[detd + W)J&~ "2+ (10)
S FAWL +n+ 1D/2, (L +n)/2+j;,T/DA+ W)
ﬁzz(l + Br)yd + I‘I")_](I + rB')ﬁéz}]wzo

where I = K; — n (the number of surplus instruments used in the
estimation of B) and II,, is an n X n matrix [nonsingular when II,, in
(9) is of full rank] defined by the equation II},IL,, = TI,IL,,. In (10) as
in (1), we use r to represent the estimator (in this case Biy), and W is
a matrix of auxiliary variables.

The matrix argument in the F, function that appears in the preceding
expression for the exact density (10) has elements that are rational functions
in the components of r. The multiple series representation of (10) will
similarly involve zonal polynomials in the same matrix argument; and
as discussed in the previous section, this feature of the problem combined
with the absence of analytic formulae for the polynomials in terms of
the elements of the argument matrix makes the analytic determination
of marginal densities difficult except for specialized leading cases.

Using the asymptotic representation of the ,F, function, namely, as
T — = and for a nonsingular matrix R

1Fila, b; TR) = [T,(b)/T (a)letr(TR)(det TR)*~*[1 + O(T "]

(Constantine and Muirhead (1976), Theorem 3.2) in (10), we obtain the
following asymptotic approximation of the joint density of By

pdfi(r)
- _I{M(r - B)(I: - B)’}(det M)/
2 1 +r'r (1 + B!
-~ 2n/27_rn/2(1 + I./I.)(L+n+2)/2 : (1 + ZBIr _ B/B)L/Z

(11)

[see Phillips (1980b) equation (15)] where M = TI,II,, and which holds
with a relative error of (T~ ') as T — = for values of r in the domain
defined by 1 + 2B8'r — B'B > 0. Alternatively, (11) can be extracted
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using an asymptotic expansion of a multiple integral similar to (5) but
of the Fourier type (see Note 5).

We can now apply Laplace’s method directly to extract marginal densities
from (11). Without loss of generality, our attention will concentrate on
pdf(r,). We start by partitioning the matrix M and vectors 8 and r as

— [mll mél], g = [Bl]’ and r = [rl:l
my My B: r;
where m,,, B;, and r, are scalars. We define
my = mpy — méle_zlmzl
=150r)=86—-0 — Bl)Mi]mzl

(ry — Bl)zmll + (r; — F)'Myr, — )
1+ 7+,

(F, 1) = 1+ Bir + ﬁérz)LH
VL) = A v )T (1 + 28y, + 2B, — BB

¢(rls rZ) =

By use of (4) in the N = n — 1 dimensional integral defining pdf(r,),
we obtain the following asymptotic approximation to the marginal density

T\? det M)'2 T
pdf(ry) = (%) [det(H?rl ,r;(rl)]‘“ el ’rﬂr‘”e"p{ —zélner (”)]}

where
H(r,, ;) = 32[(1/2)(15("1 1)1/ 9r,0r;

= [oy(r,r)] + ay(ry, ) r, — 1) 1My,
+ a(ry,r)l + ay(r,ro)rr;
and the «, are scalar functions given by
ay(ri,r) = (1 + rf + 1) ™!
a(r,r) = —4(1 + 1} + riry) 72
as(ri,ry) = —(1 + 71 + 1) 7y — By + (2 — ) Mofr, — Fy)]
adr ) = 41 + 17 + 1)Vl ~ B + (12 — T)'My(r; — F))]

In (12), r¥ = ri(r,) is the value of r,, given r,, for which ¢(r,,r,) attains
its minimum. The approximation (12) is valid for r, in the domain defined
by 1 + 28, + 2Bir(r;) — B'B > 0 and has a relative error of O(T™")
in this domain.
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To compute the marginal density approximant (12), we first evaluate
r§ for the required values of r; by direct optimization of ¢(r,,r,). This
is a simple and inexpensive computation in practice. It is most useful
to commence calculations for r, = 8, at which point r§ = ¥, = 8, by
inspection of ¢(r,r,). The same point can be used as a starting value in
the iteration to minimize ¢(r,,r,) as we move away from r, = 8,, and
successive optima can similarly be used in later iterations. By continuity,
we should always be close to the minimum at the start of each iteration,
provided the grid of r, values is sufficiently fine. No problems of multiple
minima were encountered in this particular application of the algorithm.
Once r§ = ri(r,) is found, the function (12) itself can be directly computed.

Marginal densities based on (12) were computed to explore the form
of these densities for variations in the number of endogenous variables
in the structural equation and to examine the sensitivity of these densities
to various changes in the parameters on which they depend. Some graphs
that illustrate these effects are shown in Figures 1-7. Each of these
graphs refers to an equation with n = 3 (that is, an equation with n +
1 = 4 endogenous variables) except those in Figure 5, which show the
densities for values of n ranging from 2 to 7. The case of n = 2 has not
been considered in any detail here because results for that case were
obtained by numerical integration and reported in Phillips (1980b). Monte
Carlo results for the same model with n = 2 (the three endogenous
variable case) have been obtained by Richardson and Rohr (Chapter 2,
this volume).

Some features that emerge from the densities graphed in Figures 1 to
7 are as follows:

[. For comparable parameter values, the marginal distribution appears
to concentrate as T — o« more slowly when n = 3 than when n = 2 or
n = 1. This can be seen by comparing the apparent rate of convergence
in Figure 1 with that of Figures 1 and 5 of Phillips (1980b) (the latter
two figures are not reproduced here). The differences seem to be more
marked between n = 2andn = 1 (and n = 3 and n = 1) than between
n=3andn = 2.

2. The density is particularly sensitive to the degree of correlation
(p) in the matrix of products of reduced form coefficients, M = II}II,,
{see Figure 2). This confirms similar results noted in Phillips (1980b).
The dispersion of the density also increases with |p|. Since M approaches
singularity as |p| — 1 and the equation becomes unidentifiable, this
behavior accords with what we might expect from intuition. The central
tendency of the distribution seems to be more sensitive to negative than
positive values of p, a phenomena also noted in Phillips (1980b). The
important factor in this phenomena is that the sensitivity occurs when
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Figure 1. Densities of B,y for various values of T when

B, = 0.6 40 3.6 3.24
n=18=06M=[36 40 36 |, L=23.
B, = 0.6 3.24 3.6 4.0
).0- T=50
1.51
1.04
.54
).0-
-0.4 0.0 0.4 0.8 1.

B, and p are of different signs. Thus, when the coefficients 8, and p all
have the same sign, the common set of exogenous variables are compatible
as instruments for Y, in the regression and the marginal distributions
appear to be adequately centered; but when 8, and p take opposite signs,
the exogenous variables are less compatible as instruments for the columns
of Y, and the marginal distributions become less well centered about the
true coefficients.

3. The dispersion and central tendency of the distribution can be very
sensitive to the relative magnitude (u) of the lengths of the reduced form
coefficient vectors, as is clear from Figure 3. In other cases it is not, as
in Figure 4. The rather dramatic difference between the two cases illustrated
in Figures 3 (with u varying) and 4 (with A varying) can be directly
explained from the analytic formula for the density given in (12). As A
increase in the matrix M, it is clear that the parameter 7,, increases,
and from the form of &(r,,rf) in the exponential factor of (12) it follows
that the density will display greater concentration about 8,. This is es-
sentially equivalent to a direct increase in the size of what would be the
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Figure 2. Densities of B,y for various values of correlation p in M

when
B, = 0.6 40 p40 0
n=36=06M={p40 40 0 | L=3 T=20.
By = 0.6 0 0 4.0
p=0
2.0
1.0-
0.0+,
-0.4

concentration parameter (u*> = Tw,;) when n = 1 (the two endogenous
variable case). As A increases on the other hand, there is no such direct
effect on the distribution of B, . In fact, the graphs seem to suggest the
contrary: that the increase in the concentration about 8; in the distribution
of Bs1v, which will result from the increase in A (corresponding to the
effect of an increase in w on the distribution of 8,y just discussed), may
be achieved partially at the cost of a slight reduction in the concentration
of the distribution of 8,y (see, in particular, Figure 4). This is an effect
that warrants some further investigation.

4. Figure 5 illustrates the effects of increasing the number of endogenous
variables, ceteris paribus, on the marginal density of 8,v. The effect is
clear and monotonic in this case as a decrease in the precision of estimation.
Further exploration of this case would also be of interest, for example,
with the parameter values 8, = 0.6, 8, = 0 ({ = 2,...,n), which would
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Figure 3. Densities of B,y for various values of u in M when

B =06 pdo 0 0
n=38=06M=| 0 40 0| L=3T=20.
Bs = 0.6 0 0 4.0
61 B=5.0
] \
A
/“ \
41 p=3.0| '\,
\
\
_ f
Iﬂ'”-\~\‘\t\
21 IJ:]O //;III \‘\‘
| H=0.1 v \\;\\
l,' //// \\\\ -
o e e == ; e e
-0.4 0.0 04 0.8 1.2

correspond to the erroneous inclusion of additional endogenous variables
as regressors in the equation. Note that the recorded reduction in precision
of estimation in this case accords with known results for the classical
regression model.

5. The effects of variations in the coefficients of the other endogenous
variables in the equation is explored in Figures 6 and 7. Once again we
notice some rather interesting differences between the two cases. In both
cases, as 3, — @B, increases and as 8; — B, increases, the dispersion of
the marginal distribution of B,y increases rapidly. However, as 8, — 8,
increases. the bias becomes positive; when it decreases, the bias becomes
negative. By contrast, there appear to be no major bias effects as 8; —
B; changes. The difference between the two cases arises from the difference
between the correlation pattern in the matrix M of cross products of
reduced form coefficients. This seems to confirm the point made earlier
in (2) and noted first in Phillips (1980b) that the correlation pattern of
this matrix has a very important influence on the form of the marginal
densities.
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Figure 4. Densities of 8,y for various values of A in M when

B, = 0.6 40 0 0
n=38=06M=|0 40 0| L=3 T=20.

B = 0.6 0 0 A0
2.0
A=1.0 o~ _
“ A= 5.0 ,I, \“\‘ A - O.]
1.0 \
0.0
O'Odl- —‘——l"' L ¥ T \~:~~ T
0.0 0.4 0.8 1.2

IV. EXACT DENSITIES IN SOME LEADING CASES

The exact joint density function given in (10) admits much simpler rep-
resentations in certain leading cases. Some of these were already discussed
in Section I1I of Phillips (1980b). Somewhat earlier, and before the general
form of the exact density (10) was known, Basmann (1974) pointed out
that the leading term in the multiple series could be obtained under a
certain null hypothesis concerning the parameters. This built on the work
by Basmann (1963) and Kabe (1964), which dealt with a specialized,
leading three equation case.

In this section we shall give some further leading results for the general
case of n + 1 equations.
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Figure 5. Densities of 8,y for various values of n when
B.=06(=1,.. n),M = diag[4.0,...,4.0], L = 3, T = 20.

0.04

-0.4

Casel: B=0
From (10) we deduce that

etr{ — (T/MIL,T (L + n + 1)/2]
7" ?[detd + )] VP + n)/2) (13)

F{L 4+ n+ 1D)/2,(L + n)/2; (T/DI0 + rr’) "'y}

pdf(r) =

When, in addition, IT,, = 0, this reduces to the leading term in the
complete multiple series for the exact density [that is, the leading term
of (10)], namely,

pdf(r) = LI + n + D/2YTIL + n)/2)

7Tn/2(1 + l_lr)(L+n+l)/2 (14)
_ I'(L + n+ 1/2]
7T + D/2)1 + rr)Er
The probability density function (14) was given for the two-stage least
squares case by Basmann (1974), who also deduced the leading marginal
densities, which follow directly from (14) by a simple integration, namely,
. (L + 2)/2]

7 PTUL + 1)/2)(1 + ) E+D7

pdf(r,) = (15)
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Figure 6. Densities of B,y for various values of 8, when

~ 4.0 3.6 3.4
n=3 B =06 {3.6 40 36 },L — 3. T =20

B =06 324 3.6 4.0
‘32 ="0.6
1.50+
] ‘32 =0 52 =1.0
N TN
].0 0' /’, /// ‘\\‘ ’l\ B2=20
| ,’I/ /// //‘ \?
,,’I/// / \\ \
0.50+ P AN AN
i AN AN
- /, \\\ \
—— = T~
0.00". = T T T T T T T T T —
-0.5 -0.1 0.3 0.7 1.1 1.5

The leading marginal density function (15) has integer moments up to
order L. = K; — n (the number of surplus instruments).

The matrix argument ,F, function in (13) is readily calculated for the
three endogenous variable case (n = 2). Specifically, Herz (1955) and
Muirhead (1975) give a series representation of the | F, function in terms
of the same function with a scalar argument. The form that (13) then
takes is as follows:

etr{ — (T/)MLIL,IT,[(L + 3)/2]
alL[(L + 2)/2)(1 + ¢'r)&¥72

_ i (L + 3)/2],(1/2),
ol + D/2AIE + 2)/2),,5t

S FAL +3)/2) +j, (L + 2)/2] + 2j; (16)
T/2[tr(I,00,,) — (' IM0r) /(1 + ¢'r)l}
{—(T/2) [det(TILIT,)1/(1 + r'r)Y

pdf(r] ’ r2) =
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Figure 7. Densities of By, for various values of 8; when

~ 40 3.6 3.4
n=13 PBr=06 M={3.6 40 3.6 },Lzs,rzzo.

By = 0.6 324 3.6 4.0
By=00
50"
] By= 1.0 -
.00-
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// ,/ >N
] T N
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-0.4 0.0 04 0.8 1.2

The marginal densities can now be extracted from (16) by integration.
Since the derivations are lengthy, I only give the final formulae here.
Specifically we obtain

(L + D/2)exp{— T/2)(mi, + mxn)}
w1 + T

pdf(r,) =

_ i D (L +3)/2),(1/2), (L + 3)/2 + jli
k=0 u+2v+w=k [(L + 1)/2]1[(14 + 2)/2]2/[(L + 2)/2 + 2]]/(

T +2/2+j+k—v—wlllv+w+ /U= (T/DAmmy — mP)
UL + 3)/2 +j + k1 ul2v)iw!

[(T/2){m,; + mxp(1 + r%)}]u(T"]mlz)Zv[(T/z)mn]w
(1 + r%)/+k——u-‘w

a7

where we use the notation M = (m,) = II},IL,. This result generalizes
all previous known formula for exact marginal densities in leading si-
multaneous equations cases. The following sections present special cases
of (17) already in the literature.
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Case2. B=0,L=1,m, =20
This function was presented by Kabe (1964), equation (4.14), where
the multiple series is in a somewhat different form).

exp{—~(T/2)(m,, + my)}
m(1 + r})¥?

_ i D (4 DA/, + DL + k- w+ G/ w + (1/2)]
JK=0 ut =k J'G/212% + G/DULL + k + ulw!

VI 2myl I(T/ 2)map (T 2){my + my(1 + r)H-
(1 + r%)j+k~u——w

pdf(r,) =

Cask 3. ﬁ=0,L=1, m22=0, m12=0.
This function was presented by Basmann [1963, equation (4.18)].

© k
pdt(r) = 2D 5 L opaya, 32 4k, (T/z)mn)[ﬂ“;]

210+ P Sk

Cask 4. B=0,L=1,m|1=0, m22=0, m|2=0.
This function was presented by Basmann [1963, equation (4.13)].

1

pdf(r) = 0+ 7"

The general expression (17) for the marginal density may be used for
numerical computations or, alternatively, the joint density (16) can be
summed and the marginal densities extracted by a one dimensional quad-
rature. At present the author has no numerical experience to report with
either of these approaches. However, the formulae suggest that numerical
computations of the exact marginal densities are now possible for these
leading cases when n = 2.

Working from the general leading case (Case 1), further analytic results
can be obtained. We illustrate with the following final example without
going into all the algebra.

Case 5. B = 0, I, = diag@, ..., I1,, ..., 0).

We let r, be the ath element of r and use r, to denote the vector of
the remaining elements. II?, is a concentration coefficient representing
the squared length of the coefficients of Z, in the reduced form equation
for the ath endogenous variable. TTIZ, therefore corresponds to the usual
concentration parameter in the two endogenous variable case (when
n = 1). Then, from (13)
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expl = (T/ML LI + n + 1)/2]
71 + ryr, + r2)ETORE (L + n)/2)
TIE(1 + rjr,) J
2(1 + rpry, + #2)

x

exp[ - (T/)IL, UL + n + 1)/2] D [(L +n+ 1)/21k

pdf(r,, ry) =

. ,F.[(L +n +1)/2, (L + n)/2;

7T (L + n)/2] izo (L + n)/2] k!
e ¢ (1 + )"
. 2““ . (1 T r},rb T rtzl)k+(L+n+1)/2

We transform using r, = (1 + r2)"/*z where z has dimension n — 1.
The Jacobian is (1 + 2)*"~ "2 and the marginal density is given by

expl = (I/ILITLL + n + 1)/2]
I°T (L + n)/2](1 + p?2)E+2/2
S+ 1)/z]k<m§a>k

pdf(r,) =

=0 (L + n)/21 kN 2 (18)

é k 1 J' (z'2)* ' dz

= l (1 + r(Zl)l (1 + zrz)k+(L+n+l)/2
The integral in the final expression can be reduced analytically in the
usual way by writing z' = (z., z;) where z, is scalar and by changing
the variable to x via the transformation z; = (1 + z/z.)"*an x. We can

proceed in this way, taking each component of z separately, until the
integral is evaluated.

V. FINAL COMMENTS

The method discussed in Section II should have fairly general applicability
to the problem of extracting marginal densities and should be useful in
the wider context of characterizing multidimensional distributions in both
the sampling theoretic and Bayesian approaches. The numerical illustrations
of the method as it is applied to the general single equation IV estimator
in Section III show that the technique works well even for high dimensional
cases and is successful in isolating the parameters that are most critical
in determining the form of the marginal densities.

The exact density results for leading cases in Section IV extend the
earlier work of Basmann and Kabe. The results are also amenable to
computation, at least in the three endogenous variable case. Further
work, which is currently in progress, will analyze the effects of misspe-
cification within the same general single equation set up.
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POSTSCRIPT

Since this article was written the author has developed some technical
machinery which facilitates the analytic determination of marginal densities
in full generality. Details of this research will be reported later.
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NOTES

1. It seems likely that a new algorithm for computation will soon become available
based on the work of Towber (1979) on the wrreducible polynomial representations of the
general linear group.

2. Careful analysis of this problem has shown that series rearrangements prior to
summation allow adequate convergence to be achieved using fewer terms 1n this case.

3. Of course, even mn the two endogenous vanable case, the usual analysis of case (1)
starts off in a multidimensional framework. For example, Basmann (1961) initiates the
denivations that lead ultimately to the density of the scalar coefficient estimator by considering
the multivanate normal density of the least squares estimators of the reduced form coefficients.
Bergstrom (1962) commenced his denvations with the joint density of the sample data
vector in 7 dimensions Kabe (1963) derived the same exact density as Basmann (1961)
by working with the noncentral Wishart representation of the second moments of the data
His work formed the basis for the general two equation exact results obtained later by
Richardson (1968) and Sawa (1969)

4. Kloek and Van Dijk (1978) do present some Monte Carlo estimates of margmal
densities n thewr model 1n addition to moment estimates.

5. In certan cases, it will be more convenient to represent the density as a multiple
mtegral of the Fourier type with an exponential kernel of the form exp{iAM(T)¢(r,b)} In
such cases, the major contribution to the value of the integral as T — o can come from
pomts 1n the domain where the smoothness conditions on ¢ and g fail as well as stationary
pomts of ¢. An mntroduction to the asymptotic treatment of multiple integrals of this type
1s given by Bleistein and Handelsman (1976) 1n 8.4.
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