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ON THE CONSISTENCY OF NONLINEAR FIML

By P. C. B. PuiLLips'

Examples are given which show that normality is not necessary for the consistency of
the quasi-maximum likelihood estimator in the nonlinear simultaneous equations model
(nonlinear FIML) even when there are major departures from linearity. A possibility
theorem is proved which demonstrates that when nonlinear FIML is consistent under
normality it is always possible to find a nonnormal error distribution for which the
consistency of nonlinear FIML is maintained. The procedure that is developed for finding
a class of error distributions which preserve the consistency of nonlinear FIML can be
applied more generally and may be useful in other contexts.

1. INTRODUCTION

RECENT THEORETICAL WORK on the nonlinear simultaneous equations model
seems to have emphasized the importance of the normality assumption and,
more generally, correct distributional assumptions about the equation errors in
establishing the consistency of the nonlinear full information maximum likeli-
hood (FIML) estimator. For example, in [2], Amemiya argued that the proof of
consistency depends crucially on the assumption of normality of the error term;
and, in {3] Amemiya stated that if the true distribution of the error term is not
normal then nonlinear FIML? is not even consistent. In this respect, the general
nonlinear model appears very different from the linear simultaneous equations
model, where it is known that the consistency of FIML based on the hypothesis
of normally distributed errors is maintained for a wide class of alternative error
distributions.

As a result, it now appears to be a fairly common belief in the profession that
normality of the errors is necessary for the consistency of nonlinear FIML. Some
authors have been led to act on this belief in applied work. For example, Fair
and Parke [5] have recently proposed the Hausman [10] specification test to test
the hypothesis that the errors are normally distributed by comparing the nonlin-
ear FIML and three stage least squares (3SLS) estimates. This test might be
appropriate in a nonlinear model if the FIML estimates were, indeed, inconsis-
tent and the 3SLS estimates consistent when the errors on the equations were not
normally distributed but belonged to a certain wider class of distributions.
However, such a result has not actually been proved in the literature.

In addition to the common belief that normality is necessary for the consis-
tency of nonlinear FIML, there appears to be another widely held view, albeit
rather loosely expressed, that consistency of FIML in nonlinear models is the

'T am grateful to William Brainard for helpful discussions and the referees and Kenneth Wallis for
their comments. My thanks to Glena Ames for her skill and effort in preparing the typescript. The
research reported here was supported by the National Science Foundation under Grant Number SES
800 7571.

2Throughout the rest of this paper we will use the term nonlinear FIML to describe lhe estimator
obtained by maximizing what would be the likelihood if the normality assumption were correct.
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exception rather than the rule when the likelthood is misspecified.® This is a view
on which the statistical literature does not seem to provide complete guidance. It
has, on the one hand, been argued [15] that the cases in which maximum
likelihood (ML) estimates have been proved to have good properties are ex-
tremely restricted; while elsewhere [11] it has been shown that the true distribu-
tion underlying the observations does not need to belong to the parametric
family defining the ML estimator for the estimator to be consistent. These results
are not contradictory. The ML estimator can be consistent for a family of
distributions other than the true distribution, while the overall class for which
consistency obtains can itself be relatively narrow. The extent of this latter class
will depend on the form of the data generating process and on other components
of the model such as the assumed behavior of the exogenous variable sequence.
At present, the nature of this dependence is relatively unexplored. But it is, in my
opinion, going too far to assert that consistency of FIML in nonlinear models is
the exception rather than the rule. For, while it is recognized that the linear
simultaneous equations model is a very important exception, any major depar-
ture from linearity, such as the presence of levels and logarithms of the same
endogenous variable in the model, is thought by many to put us in a different
theoretical arena where normality of the errors or the correct specification of the
likelihood becomes critical for the consistency of FIML. One aim of the present
paper is to argue that this is not the case. We take an example which does involve
both levels and logarithms of the variables and illustrate a procedure for finding
an alternative class of error distributions other than the normal for which a
nonlinear FIML is consistent. This and other examples are discussed in Section 3
of 'the paper and, since the type of nonlinearity considered is common in applied
work, it should be of some relevance in practical econometric work where such
nonlinearities in the variables actually occur.

The fact that a specific example has been used in Section 3 naturally leads to
the following questions: (a) how important is this example to an applied
investigator who is working with what might be a complicated nonlinear model
and who wants to know if normality is, indeed, necessary for nonlinear FIML to
be consistent in his model; and (b) how generally applicable is the procedure for
finding nonnormal error distributions that is illustrated in Section 3. In an
attempt to resolve some of these issues, a Possibility Theorem is given in Section
4 which demonstrates essentially that, when nonlinear FIML is consistent under
normality, it is always possible to find a nonnormal error distribution for which
the consistency of nonlinear FIML is maintained.

2. ON THE GRADIENT OF THE LOG-LIKELIHOOD

As in [2] we write the nonlinear simultaneous equations model in the form

() f;(yl’xl’al) = U, (i=1....n

>Such a view was expressed by one referee of a preliminary version of Section 2 of this paper.
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where p, is an n X 1 vector of endogenous variables, x, is a vector of exogenous
variables, and «; is a vector of parameters. The disturbance vector u, = (u,) is
assumed to be independent and identically distributed N(0,Z) where £ is a
positive definite matrix.

In deriving the asymptotic properties of the maximum likelihood estimators of
the parameters in (1), Amemiya makes extensive use of the following lemma:

Lemma: If u,, ..., u, are jointly normal with mean zere and covariance matrix
(0;) and h(u,, .. ., u,) is such that E(h) and E(3h/3u,) are finite, then E(3h/0u;)
= E(hZj-10").

This lemma is used to establish that there is a consistent root of the likelihood
equation, provided a number of other more usual assumptions are made concern-
ing the existence and nature of convergence of certain summations that appear in
the likelihood and its first two derivatives. In particular, if L denotes the log
likelihood function concentrated with respect to the a; (i=1, ..., n), then we
have in the notation of [2, equation (3.8)],

T [ g A
=T7'% { ail _git“;"'}

g t=1 it
T -1
(T_' > u,u,’) - o'
i

1 dL
) T 3,
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where o is the ith column of -, ( ), ! denotes the ith column of the inverse of
the matrix within the bracket, g, = 9f, /9, and «ay is the true value of a = (a,).
When the conclusion of the Lemma holds, we deduce from (2) that the mean of
the first term on the right side of (2) is zero. It then follows by elementary
arguments that plimT,m[T“laL/aoz,»]ﬂ0 = 0. This conclusion is of vital impor-
tance in establishing that there is a weakly consistent root of the likelihood
equation.

Similar arguments apply in the case of a misspecified likelihood function. In
this case the conclusion of the Lemma can be replaced by the direct condition
that the expectation of the gradient of the misspecified likelihood vanishes when
it is evaluated at the true values of the parameters and when the expectation is
taken with respect to the true distribution. Such a condition has been assumed by
Huber [11] and Inagaki {12] in their discussion of consistency in misspecified
situations. Their approach has already been mentioned in the econometrics
literature by Hatanaka [9]. An alternative approach which involves no differen-
tiability assumptions and which extends Wald’s consistency proof [20] beyond
the correctly specified case has also been developed by Huber in [11]. This
approach relies on assumptions which ensure that a suitably standardized objec-
tive function (on which the estimator is based by optimization) has a limit with a
unique optimum at the true value of the parameters. Related work in a general
framework for nonlinear econometric models has recently been done by
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Burguete, Gallant, and Souza [4]. These authors require, for the purpose of
identifying a certain point in their estimation space, that at this point the limit of
their objective criterion has a unique optimum. In Sections 3 and 4 below we
consider the extent to which the conclusion of the Lemma continues to hold as
we move away from the normality hypothesis. A similar approach can be taken
with regard to the results of {4] by considering the extent to which the unique
optimum property of the limit of the objective function is retained as we move
away from the assumed error distribution on which that limit is based.

Some difficulties arise in the proof of the Lemma which appeared in [2]. We
can illustrate with the scalar case in which n = 1 and ¢(u) represents the normal
density. The conclusion of the Lemma is now derived {2, equation (3.7)] from the
equation [%{d(h¢)/du} du = [h¢]’, by allowing the limits b—> o0 and a— — oo.
For this to be valid we need h¢ to be absolutely continuous over [— oo, co}. If we
also assume that E|h’(u)| is finite, these conditions are sufficient to ensure that
h(u)p(u) >0 as |u|— oo and the formula E(h’) = ¢~ 2E(hu) is valid. A complete
statement and proof of this Lemma has recently been published by Stein [18].%

The fact that the restrictions on the class of allowable % functions for the
validity of the lemma ensure that A(u)¢(u) tends to zero as |u|—>occ has a
meaningful interpretation 1n terms of the model (1). In using the lemma to
develop an asymptotic theory for the model (1) we want to be able to set ~{u)
equal to the functions that appear in the structural specification and their
derivatives. The fact that A(u)p(u) tends to zero as |u|—> oo means that the
maximum allowable growth of these functions as u becomes large is controlled
by the rate at which the probability density of the error decays to zero in the
tails. This condition therefore moderates the influence of outliers in the error
distribution on the behavior of the endogenous variables. Such moderation
would seem to be necessary in the development of an asymptotic theory in which
certain summations involving the structural functions and their derivatives are
assumed to converge in some stochastic sense as the sample size grows large. For,
if the structural functions take on values which become very large for certain
realizations of the errors relative to the probability that the errors actually
assume these realizations, then the summations which involve these structural
functions may not converge as the sample size tends to infinity. It is apparent
that this problem is also relevant to estimators other than nonlinear FIML. The
problem also arises when we relax the assumptions that the errors are normally
distributed and follow instead a law which gives a different and possibly greater
probability to outliers. It will be referred to again in the next section.

3. AN EXAMPLE IN WHICH NONLINEAR FIML IS CONSISTENT WITH
NONNORMAL ERRORS

It is not difficult to construct models with minor departures from linearity in
which nonlinear FIML is consistent for a wide class of error distributions. One

“In Lemma 1 of [18] Stemn requires 4 10 be an indefiniie mtegral of # This 15 equivalent to
requiring 4 to be absolutely continuous (AC) and since ¢ 1s AC the product ¢ 1s AC also [19, p. 375],
as required above. A multivanate version of this result 1s proved in Lemma 2 of [18].
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such example is given (although this feature of the example is not discussed) by
Malinvaud [16] (see, in particular, page 732); another by Phillips and Wickens
{17, problem and solution 6.22]. The following example involves what may be
regarded as a major departure from linearity and is based on an example used by
Gallant [6] and Gallant and Holly {7] to illustrate the venfication of the
conditions they used in the development of an asymptotic theory for nonlinear
FIML and 3SLS.
The structural model is

3) Iny,+a=u,

“) Y+ by, =uy,

and its reduced form

—a,+‘u,

) Ju=¢€ >
©) Ju= _ble—-aﬂ—u“+ Uy,-

The concentrated log likelihood (or quasi likelihood) function is

@) L(a;,b))= — %ln[{T‘lz(lny“ + al)z} { T_lzt()’zt + bl.ylt)z}

- {T“'Zt(yz, + by )Iny, + al)}Z]

= - %lnAT(al,bl) say
and ats first derivatives

8) OL _ _ %TA{I[{ZT“lz(In)’n + al)}{T"E(yn + bl)’n)z}

34
—2{T“$(y2,+b1ylt)}
X {T“Z(yzt +b,y,)(ny, + al)”,
©) S_Ll --1 TA;‘[{T”'?(Iny” + al)z}{2T_1§t:(y2, + bly,,)y“}

- 2{ T (o + byyy)(ny,, + al)}
!

X {T“zy”(lny“ + al)”.
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It follows that at the true values a?,b{ of the parameters we have

(10 plim 7~ '9L(a},b7)/3a,=0,

T—oo

(1D plim T—‘aL(a?,b?)/ab1

T
1 - —a u —a,rih,
= -4 '[ a0 E(uy,e 1) — 201,E (uy,e ) ],

where the disturbance vector u, = (u,,) is assumed, as in (1), to be independent
and identically distributed with zero mean and covariance matrix 2 = (¢, for all
1; but not necessarily normal. For the expectations in (11) to be finite, we also
require that the moment generating function of #,,

(12) mgf(s) = E(e*™),

exist for certain nonzero values of the vector s' = (s,,5,). A precise region within
which we will require (12) to exist will be specified later. In (11) A4 is given by
A = plim,_, A (a},b?) = det=. Note that (10) and (11) can also be derived
from (2) by setting g, = 1 and g, = e ~41**,

To prove that nonlinear FIML applied to (3) and (4) gives consistent estimates
we set o’ =(a;,b)) and it will be sufficient to show that the following two
conditions hold:

(13)  plim(7~'3L(a},b{)/3a)=0;  and
T—cc

(13i)  plim (7 ~'3L(a?,b7)/3ade’)  is negative definite.
T—oo

If (13i) and (13ii) hold and the convergence in (13ii) is uniform in a neighbor-
hood of (a},b?), then it follows from the argument in the Appendix of [2] that
nonlinear FIML is consistent.> ‘

To establish (13i) and (131i)) we need to make explicit distributional assump-
tions so that the expectations that appear in the limits can be evaluated. It is easy
to verify (13) when u, is multivariate normal. Since we are interested in specifying
a nonnormal error distribution for which (13) continue to hold, a convenient
point of departure is to specify a class, such as the following mixtures of the
multivariate normal, which includes the normal as a special case. Specifically, we
consider the class of probability densities given by

(14) pdf(u,) =fow(zww)_l(deti)”l/zexp(— %ut’i_‘u,/w) dG(w)

SMore accurately, this approach establishes that there 1s a consistent root of the lkelthood
equation We recognize the vahidity of Wald’s argument 1n [20] that this does not strictly imply that
the root corresponding to nonlinear FIML 1s consistent. An alternative approach 1s possible based on
the line of argument n [20] and mvolves extensions of the work m [11 and 4] It has already been
suggested n Section 2
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where G(w) is a distribution function supported on the half line [0, 00) and
= (6,) is a positive definite matrix. One immediate restriction on G(w) is that
the moment generating function (12) exist and since

(15) mgf(s) = E(e’™) =f0°°e‘”'is/2 dG(w)

we have

(16) dmgf(s)/ds = {fowwe“'is/sz(w)}is

and

a7 d*mgf(s)/ 3535’ = {fowwe“'is/sz(w)}i
{f we wszs/sz(w)}iss’i.

We deduce that E(y,) =0 and E(uu) = {[§w dG(w)}E. For compatibility with
(1), we then require that

(18) {fo“’wd(;(w)}i -

Nonlinear FIML will now be consistent for every error distribution in the class
(14) for which conditions (13) hold. From (11), we see for the present example
that condition (13i) requires that

(19) E(uf,)E(uzte““) — E(uyuy)E(u,e") =0.

That is

si=1

(20) (= 0125011)( 8;2 )mgf(s)

5=0

=(—0mn; 011)2((1)) {fowwewa,,/z dG(W)}

=(—012,0”)2((1)){fowwew‘;“/sz(w)}/{fowwa’G(w)}

=0
provided G(w) is such that the integral

@1) fowwew‘;”/sz(w) < .

Taking the restrictions (18) and (21) together we have a whole class of non-
normal error distributions given by (14) for which condition (13i) holds. (13ii)
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mmposes only a very mild additional restriction on G(w) as we see in the special
case below. This procedure therefore provides a very natural way of determining
a class of nonnormal error distributions for which nonlinear FIML is consistent.

We end this section by illustrating a nontrivial nonnormal member of the class
prescribed by (14), (18), and (21) for which nonlinear FIML is consistent. We
take the continuous exponential distribution for G(w) with density
(22) gw)=G'(wy=re"™, A>0.
We deduce from (14) that the corresponding density of the error vector u, is
(23)  pdf(y) = A(zw)—‘(deti)"‘/zf”w-lexp{ —Aw — B(u)/w) dw

0

where B(u,) = %ugi“ lu,. Let v = Aw and transform variables in (23) to get

24) }\(27r)"l(deti)_l/zfowv_lexp{ —v—AB(u)/v}dv
= A2m) " '(det )" 22K,(2/AB )
2

~ S\
= A~ (det 2)“/21(0(2( u)

where K((z) is the modified Bessel function of the third kind.® We note from (18)
and (22) that A "!X = = so that we can write the density of u, as

/E—l 1/2
@5) pdf(u,)=w-‘(detz)‘l/zKo(z( “ . "’) )

In the general case, where u, is an n X 1 vector the corresponding density is given
by

26)  pdf(u,) =2(27)" " *(det=)” '/

<K 5 w2y, 12 W=y, 172
n/2—1 ( 2 ( D)

and the moment generating function of u, is simply

—n/2+1

@27 mgf(s) =1~ 15Zs] -

6See, for example, Lebedev [14] and, 1n particular, equation (5.10.25) on page 119 of [14] for the
representation of the integral m (24).
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This can be viewed as a multivariate generalization of the Laplace distribution
and we note that in the case n = 1 (26) reduces to

(28) pdf(u,) = (27)—le_|"|/Y’ Y= 06y,/2,

which is the univariate Laplace with variance equal to 2y’ = 6,; and moment
generating function equal to [1 — y%?]~ .

The tail behavior of the density (26) can be determined from the following
asymptotic expansion of the function K,(z) for any real »:

@ K(@)~(LZ) e

as |z| = oo [12, page 123]. We deduce from (26) and (29) that

(30)  pdf(u)~2"" ("= D/2(det B) V2 (Jus ~hy) VAT

. exp{ —(2u=" 1ut)l/z}

as ||u,|| - oo. Thus, although (26) has exponentially thin tails as described by (30)
these tails are thicker than those of the multivariate normal distribution.

We now return to the verification of conditions (13) for the density (25). For
(131) to hold it remains only to check (21). We have

foowew‘;“/sz(w) = }\fwwe)“’“w/ze_"wdw
0 o

which will be finite provided o, < 2. This condition can also be obtained directly
from the moment generating function (27). Setting s, = 0 in (27) we require, for
the moment generating function to exist,

31 sio, <2,

and if E(e") is to be finite this requires a,, <2 as stated.”® This verifies
condition (131).

For condition (13ii) to hold we need plim,.,,3°L(a},bY)/dade’ to exist and
be negative definite. Calculations show that the probability limit will exist
provided

(32) E(e™1) < oo,

"Note that this condition is also needed, at least as far as the proofs m [1] and [6] are concerned,
for the consistency of the nonlinear 3SLS estimator as some simple manipulations will show

8This condition will also ensure that e*''pdf(#,)—>0 as |u,,| > co as can be venfied directly from
the asymptotic form (30).
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that is, from (31), provided ¢,; < 1/2. If this restriction on var(u,,) holds we find

; azL(a?,b?)
2_1,1:: dada’
= —(detz)"!
61 i o “E(e"")
o,  “E(e") i o e MME (e — e_z"'(E(e““u“))2
20,
022 e

(33)

|
|
—(det=)”" PR Se 3
( ) 207" ie—Za, O 40,
2—o0y i 1 =20y (2—(;”)2
§

which is certainly negative definite for a range of values of o,; < 1/2. This
verifies (13ii).

It follows that nonlinear FIML applied to (10) will be consistent for the
nonnormal error density (25) provided o,, < 1/2 and (33) is negative definite.
The inequality constraint ¢,, < 1/2 is really innocuous because it is just a
necessary condition for var(y,,) to be finite when errors driving the equation
system (3) and (4) follow the distribution (25). Moreover, this condition is also
needed in justifying the asymptotic normality, although not the consistency, of
nonlinear 3SLS according to the proofs of {1 and 6]. In this connection we may
refer back to the final comment of Section 2.

The example just discussed may be regarded by some readers as highly
specialized. We note, for example, that it has a recursive structure, only a single
nonlinearity and there are no exogenous variables in the system. When any or all
of these special features of the example are removed, rather different results
might be expected. For example, does the class of nonnormal error distributions
for which nonlinear FIML is consistent substantially contract as we move away
from the simplicity of (3) and (4)? This question is difficult to answer in
generality because much will depend on the form of the departures taken. The
following two models, in which x, is a truly exogenous variable, help to throw
some light on the question.

Model A: Iny, + a, + ayx, = uy,
Yo+ byt byx,=uy,.

Model B: Iny,+any;+a,=u,
Vet b1yt byx, = uy,,

Inyy, + ¢ ln y,, = us,

Yart Ay Yy = Uy
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Model A is simply the model of the above example with an additive exogenous
input. Model B involves an additional nonlinearity in the second equation, an
exogenous input, and the recursive structure has been removed. An analysis of
these models along the same lines of the above example will show that nonlinear
FIML is consistent for a similarly broad class of mixtures of normals. Only very
weak supplementary conditions on the exogenous variables are required for this
to be true; it will be sufficient, for instance, that the sample mean and variance
of x, converge to a constant and positive constant respectively as T— oo and, 1n
the case of Model A, that in addition, as T— 00, T~ 'ST_| e72%* converges to a
finite positive constant.

An alternative way of addressing the question asked in the previous paragraph
is to start with a general nonlinear system for which nonlinear FIML is known to
be consistent and, without specifying functional forms, ask if it is possible to find
nonnormal errors for which this consistency is preserved. This is the approach we
take in the next section.

4 A POSSIBILITY THEOREM

As is clear from equation (2) and the working of the example in the previous
section, the critical condition we need to verify for nonlinear FIML to be
consistent is that the probability limit of the standardized gradient of the log
likelihood is zero at the true values of the parameters being estimated (that is,
condition (i) of Section 3). If the conclusion of the Lemma holds, viz. that
E[0g,/du, — g,u/0'] = 0 where g, = 3f, /dqa, and the f, are the structural func-
tions in (1), then condition (i) will usually follow directly from the law of large
numbers for suitable exogenous sequences {x,}. But, since the functions g, are in
general dependent on the exogenous variables x, as well as the errors in the
model (1) it is not in fact necessary that the conclusion of the lemma hold for
each ¢ in order that

T
(34) pim7T'> ¢=0  where § =§(u,x,;0,2)=0g,/0u, — g.uo'

t—>o0 t=1

It will instead be enough that realizations of the (possibly dependent) exogenous
variable sequence {x,} and the ii.d sequence {} be compatible with (34), as
they will be if the following two conditions hold:

T
(a) T'SE¢)>0 as T, and
t=1

®) { (g} &- B )2}

2
{z(g Eg} -0 as T-ow

t=1

—1
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[8, p. 250]. In (a) and (b) above, expectations are now taken with respect to the
joint probability distribution of (u,x,). In order to explore the implications of
these conditions in terms of an allowable class of error distributions it will be
helpful to make more specific assumptions about the process generating the
sequence {x,}. Condition (a) is the essential requirement for consistency and, for
certain classes of exogenous sequences {x,} such as when the x, are i.i.d. from a
certain probability distribution, it will indeed be sufficient that E(£,) = 0 for all 7,
where the expectation is taken with respect to the joint probability distribution of
(14,,x,). While this is far from being the most general situation, it is an important
special case.

To provide a framework for our own discussion we start off by assuming that
the {x,} form a random sample from a probability distribution with distribution
function F(x;0) on a Euclidean space X, where 4 is a vector indexing a
parametric family of possible probability distributions and that the sequence {x,}
is truly exogenous. Then, by Theorem 2 of Jennrich [13], it follows that for
almost all sequences {u,,x,}

T
(35) T'> £t—>f dF(x;O)fi(u,x;a, )pdf(u)du as T—>oo
t=1 X u

uniformly in « and =. For (35) to be valid as in [13] we require that &(u, x; a, Z)
be dominated by a function independent of the parameters and integrable with
respect to the joint probability distribution of (u,x). We also require that £ be a
continuous function of the parameters for each (, x) and a measurable function
of (u,x) for each parameter value. An alternative approach is to assume as in
Gallant [6] that the joint sequence {,, x,} generates Cesaro summable sequences
with respect to the joint probability distribution on (u, x). Either approach leads
to a representation of the limit as in (35) above. It is this case, where the limit
representation is of the form (35) for a parametric family of distributions
{F(x;0)}, that we now consider. We allow 8 to lie in some subset © of R? where
q is the dimension of § and require F(x; #) to be a continuous function of § € ©
for each x.

The possibility of finding nonnormal error distributions for which the consis-
tency of nonlinear FIML is preserved is illustrated by the construction in the
following theorem. To make the essential ideas behind the construction as clear
as possible we confine ourselves to the single equation and single parameter case
(i.e. n =1 and «a = scalar in (1)) and eliminate the corresponding subscripts on
the variables and functions.

TureoreM (Possibility of Nonnormality and Consistent Nonlinear FIML):
Suppose the following conditions hold: (i) {w,} is i.i.d. (0, 6) with probability
density

(36) pdf(u,) =f0°°(27rw)_1/26"'exp{ - utz/2w62} dG(w)
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where G(w) is a distribution function supported on [0, o), 6°>0 and o
= 6 [F wG(w).

(1) g(u,,x,)pdf(u,) is absolutely continuous on [— oo, 0] for each x, where
g, x) =0f(y,,x,; ) /0.

(iii) E,(|g'|) < oo for each x, where E, indicates expectation with respect to u,
and g’ = dg(u,,x,)/0u, is continuous on — oo < u, < c0.

(iv) All summations that appear in the standardized (normal) log likelihood and
its first derivative are assumed to converge almost surely and uniformly in the
parameters. In particular

T
37 T°' (g - o_zgu,) %de(x;O)f(g’ — 6 “gu)pdf(u) du
=1 X u

a.s. and uniformly in (a,6%) as T—> oo where F(x;8) 15 a parametric family of
probability distributions on X indexed by 8 € © just as in (35) above.

(V) Nonlinear FIML is consistent when the probability density (36) is normal (i.e.
when G(w)=0,; w<L,w>1).

Then, given 0, there exists a nonnormal error distribution of the form (36)
involving a mixing distribution Gyg(w) which depends on @ (and, in fact, an
uncountable infinity of such distributions) for which the consistency of nonlinear
FIML is preserved.

PrOOF: It follows from (2) and (iv) that
(38) T“[aL/aa]%%fxdF(x; 0)fu(g' — o %u)pdf(u)du  as.
as T— oo. Since g(u)pdf(u) is absolutely continuous, it follows that
() [ gpdi(uydut [ gpdt () du= gpaf(w)];

over any interval [a, b]. We let a— — o0 and b — oo in (39). The first integral is
finite by (iii) and it is easy to show that [ g pdf(¥)],—0 as b — 0 and a > — 0.
Hence, the second integral in (39) remains finite and we have

f g pdf(u)du

= —fgpdf’(u)du

= o—2f gufw(wa)_l/zﬁ"lexp{ —u? /2wy m,w ' dG(w)
u 0
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where m,, = [§ wdG(w). The limit of (38) can now be written as
o—2de(x;0)fgudu
Xfw(27rw)_l/25—'exp{ ~u?/2w8*} [m,w™" = 1]dG(w)
0

= =3y 1/2 °°2 -1/2 -1 _
6 °m, fo (27w) [mww 1]1dG(w)

xde(x;O)fguexp{—u2/2w62} du
(40 =fom(wa)"/z[mww_l - l]h(w;a,oz,O)dG(w), say

where 4 is a continuous function of w and of the parameters a, 6%, 0.

We now require a mixing distribution G(w) for which (40) is zero, so that (38)
tends to a zero limit as T— co. In the normal error case, this follows directly
since we have G(w)=0,1 for w <1, w> 1, and m, = 1. To construct a non-
normal error distribution for which (40) is zero we can proceed as follows.

We take a discrete mixture of normals with mixing distribution given by

0, w < wy,
«, wi<w<w,,
“D Gw) = l—-e+a wl<w<w2
s 2> 3

19 W3SW,

with 0 < a@ <e. Then as €—>0 or as (w; — w,)—>0 the mixture density (36)
approaches normality and (40) is zero because, in the limit, w = m, with
probability one. We now wish to show that we can move away from this case of
a degenerate mixture in a systematic way so that, for every mixing distribution of
the form (41) on this path, the limit function (40) maintains the value zero and
nonlinear FIML remains consistent within this class of nonnormal error densi-
ties.

Take 5 >0 and suppose the mass points w, lie respectively in the intervals
F—p<w <1, w <w,<ws, | <w; <1+ 7. Suppose also that we select w, so
that m, = aw, + (1 — €)w, + (e — a)w; = 1, which implies that we can write
wy = {1 —[aw; + (¢ — a)w5]} /(1 — €). For any ¢* >0, however small, we can
select €, > 0 in such a way that for all 0 < e < ¢, we have |w, — 1| < €*. Given
w; <1 and w, > 1 we can also select ¢, > 0 so that for all 0 < e <¢, we have
w, < w, < wy. In what follows, we take € < ¢, = min(e,, ¢,). The limit (40) is now

“2)  @m)"ah(w)(wi ' = w2
+(27) 21 = h(wy)(wy ' = N)w; /2

+(2m) (e - ayh(w3)(ws ' = yw; /2.
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Let us assume that A(w; a,0%,8)=0 for 1 — < w <1+ 7 and in some neigh-
borhood of the true values of the parameters («,02,8). If, on the other hand,
h(w) were zero in some interval of [0, 0c0) then the construction of a mixing
distribution G(w) for which (40) were zero would become straightforward. Note
that in the example of Section 3 4(w) is identically zero, since from (20)

h(W) = (— Glzgll)z(é)wgw‘;n/me—l

=0

for all w on [0, o0).
(42) will be zero if we select « in such a way that

(43) oc[h(wl)(w,“1 - l)wl_‘/2 - h(w3)(w3_‘ - 1)w3_‘/2]

= —eh(wi)(wi ' = Iyw; 2= (1= h(wy)(wy ' = Djwy /2.

It remains to show that if « is the solution of (43) for certain w; < 1 and w;y > 1
then 0 < a < ¢, as required for G(w). Suppose 4 (1) > O (the case ~(1) < 0 can be
dealt with in the same way). By contmuity, we can select n >0 so that the
coefficient of « in square brackets on the left side of (43) is positive. The second
term on the right side of (43) can be made arbitrarily small since |w, — 1| < e*
for all € < e,. The first term on the night side is positive and the modulus of the
coefficient of € in this term is less than the coefficient of «. It follows that we can
select 7 >0 and €>0 in such a way that for any w, and w, satisfying
1 -7 <w, <1<w;<]+n there exists a unique « satisfying (43) for which
0 < a < e. A mixing distribution G(w) constructed according to (41) with these
mass points and weights will annihilate the limit function (40). Note that (43)
gives us not one but an infinite class of mixing distributions G (w) for which (40)
is annihilated. As w; and w, move away from unity (43) will determine the path
of mixtures of normals for which the limit of the gradient of the (normal) log
likelihood 1s zero at the true values of the parameters. We might also note that to
the extent that 4 is a conunuous function of § we can regard « in (43) and hence
G(w) as dependent on #. Thus we have an implied parametric family G,(w) of
mixing distributions corresponding to the family of exogenous variable distribu-
tions { F(x; 8)}.

Finally, we observe that by (v) nonlinear FIML is consistent when the error
density (36) 1s normal. It follows that the limit of the standardized log likelihood
has a global maximum at the true values of the parameters. When the error
density is of the form (36) with the mixing distibution G,(w) constructed as
above it follows by continuity that the limit of the standardized (quasi-) log
likelihood retains a global maximum at the true values of the parameters. This
proves that there exists a family of nonnormal error densities of the form (36)
involving a mixing distribution G,(w) constructed as above for which the
consistency of nonlinear FIML 1s preserved. O
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Generalization of the construction in the proof of the Theorem to cover the
multi-equation, multi-parameter case will involve the use of multiple mass points
in the discrete mixture of normals, with the number of points required depending
on the number of parameters and equations. The essential ideas behind the
construction stay the same however and we end up with a system of linear
equations in place of (43). Other more general methods of generating nonnormal
error distributions could have been used and will be necessary if we are to
investigate the class of nonnormal errors for which nonlinear FIML is consistent
rather than simply establish the possibility as we have done here.

5. FINAL REMARKS

The examples in Section 3 of the paper show that normality is not necessary
for the consistency of nonlinear FIML even when there are major nonlinearities
in the structural functions and the analysis suggests a general procedure for
constructing nonnormal error distributions for which the consistency of nonlin-
ear FIML is maintained. The analysis also demonstrates the intimate relationship
that exists between the form of the nonlinear functions admitted into the
structural specification of the model and the tail behavior of the error distribu-
tion which is permissible if an asymptotic theory is to be developed. This
compatibility between the nonlinearities in the structure and the probability of
outliers in the error distribution prevents the influence of outliers interfering with
the operation of the law of large numbers and is, in large part, independent of
the estimation technique that is being used. In the main example of Section 3, the
presence of both a level and a logarithm of an endogenous variable in the model
is seen to substantially curtail the class of allowable error distributions. In
particular, if the mean and variance of this endogenous variable are to exist,
which in many cases will turn out to be near minimal conditions for an
asymptotic theory to be developed for many estimators, not just FIML, we find
ourselves already confined to an error distribution with exponentially thin tails.
The example further demonstrates that nonlinear FIML will indeed be consistent
for a Laplace-type error density with exponential tails. In this case, therefore, the
predominant influence in curtailing the class of allowable error densities turns
out to be the form of the nonlinearities in the structural functions. This is likely
to be the case in many nonlinear econometric models where both levels and
logarithms of the same variables appear in different parts of the equation system.
This is not to say, however, that nonlinear FIML and 3SLS will be consistent for
an identical class of error distributions in the main example of Section 3 or for
the other models. On the contrary, the asymptotic properties of the nonlinear
3SLS procedure are likely to be more robust than those of nonlinear FIML. The
extent to which this is so deserves further investigation.

The approach T have taken to the subject of nonlinear FIML in this paper is
rather different from the existing literature. In part, this has been motivated by
my unease over the common belief that normality is necessary for the consis-
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tency of nonlinear FIML. Intuition suggests that if nonlinear FIML is consistent
for a given model and a given constellation of exogenous variable sequences
under normally distributed errors then the same should be true for certain
departures from normality, at least locally. This is now established by the
Possibility Theorem in Section 4. As we increase the complexity of the model, we
can expect a narrowing in the range of allowable alternatives and those depar-
tures from normality which are allowable can be expected to sustain a corre-
sponding increase in their own complexity. This approach, of course, invites the
critique that the allowable nonnormal alternatives are model and exogenous
variable dependent and as such might be regarded as artificial or even pathologi-
cal. While there is some force to this argument, it is worth bearing in mind that
compatibility between the nonlinearities in the structure and the distribution of
the errors is always necessary, as I have pointed out in the last paragraph, in
order to prevent the tail behavior of the errors interfering with the operation of
the law of large numbers. The necessity of such compatibility s by itself a major
force in narrowing down a feasible class of error distributions, as the examples in
Section 3 demonstrate.

This paper has left untouched a host of mnteresting problems associated with
the asymptotic distribution of nonlinear FIML and other estimators under
plausible alternative error distributions such as the normal mixture (14). One
relevant aspect of the asymptotic distribution of nonlinear FIML is that although
the Possibility Theorem shows that the limit of the gradient 7~ '8 L(a,)/d« is
zero at the true parameter value for a certain class of nonnormal errors it does
not necessarily follow from the construction that — T~ '9°L(a%)/3ada’ and
T '(OL(a%/3a)dL(a)/3a’) converge in probability to the same limit. On the
other hand, the construction could be made in such a way that there was
equivalence, but this equivalence would then apply only to (what may then be) a
narrower class of error distributions. This will have an important bearing on the
suitability of the formulae employed for the asymptotic covariance matrix of
nonlinear FIML. Moreover, when the likelihood is misspecified, the usual
asymptotic efficiency ordering of nonlinear FIML and 3SLS no longer necessar-
ily holds under the true distribution. These issues deserve further investigation
before the nature of the Hausman specification test in the context suggested by
Fair and Parke [6] is fully understood.

Yale University

Manuscript receved August, 1980; revision recerved September, 1981.
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