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Some theoretical results published recently in Hendry (1979) for the limiting distribution of
inconsistent instrumental variable estimators in misspecified dynamic sysiems are incorrect.
In particular, the derivations there involve the use of an inappropriate control variate and
lead to an expression for the covariance matrix of the limiting distribution which, in general,
omits many additional terms. Correct formulae are given in the present paper. Further, the
accuracy of the asymplotic distribution in finite samples is investigated in a simple case using
the known exact small sample distribution. On the basis of our exact results and in view of
other strong theoretical and practical considerations, we argue for caution in the use of response
surface regressions of the type recommended by Hendry in Monte Carlo experiments; and we
emphasize the need for qualifying statements concerning the parameter environments in which
the adequacy of these regressions has been substantiated.

1. Introduction

The recent article by Hendry (1979) in this Journal contains some
theoretical results and makes certain methodological recommendations

*The research reported in this paper was supported by the National Science Foundation
under Grant Number SES 8007571. We acknowledge, with thanks, the work of Sidnie Feit in
programming the computations in the paper. Our thanks to the referees for their comments and
Glena Ames and Lydia Zimmerman for their time and skill in preparing the typescript.

We are persuaded to emphasize a point which may be quite evident. Our original version was
written in the summer of 1980 and, like the present version, is concerned with material actually
published in this Journal. Thus, the present article may inadequately represent Professor
Hendry's ‘current’ views, the true meanings intended in Hendry (1979) and elsewhere and the
circumstanices which may have led to the errors thercin. The original version of a chapter
prepared by Professor Hendry for a forthcoming book [Hendry (1980)] was presented as an
invited talk at the 4th World Congress of the Econometric Society at Aix-en-Provence and
convinced us of the need to make our own [indings more well known. Subsequent to the
submission of our paper to this Journal, a revised version of Hendry (1980), Hendry (1981) was
produced. The latter work should be regarded as the authoritative source for the author’s
current views of the subject matter.
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concerning the use of control variables (CV’). It is argued that CV’s can be
used as an cxplicit analytic tool to extract limiting distributions and to derive
expressions for their sccond moments. It is further argued, as in the earlier
article by Hendry and Harrison (1974), that CV’s serve as a numerical lever
in experimental studies to improve the cfficiency of the simulations.

Hendry (1979) is concerned with the behavior of inconsistent instrumental
variables (IV) estimators in a general linear dynamic model. CV’s are used
to find the asymptotic distributions of the estimators, to assist in
determining by simulation the accuracy of the asymptotic (second) moments
in finite power and to test the predictive accuracy of asymptotic theory in
finite samples. It was concluded that:

The theoretical analysis establishes, and the simulation findings confirm,
that the asymptotic results provide an extremely good guide to the finite
sample bchaviour of the second moments of the estimators
investigated. [Hendry (1979, pp. 308-309)]

Unfortunately, the general formula obtained in that article for the
covariancc matrix of the limiting distribution of the IV estimator and
employed in its response surface regressions and associated predictions is
incorrect. The error arises because the convergence theorem of Cramér, cited
in the paper, does not apply, leading to a control variate which does not, in
general, have the same limiting distribution as the econometric estimator
under consideration. Since the simulation results in Hendry (1979) employ
the incorrect variance formula, they do not provide valid general evidence to
be employed in the general context intended in that paper. The simulation
estimates of the sampling variances in these experiments do appear to be
close to the variance of a generally inappropriate CV but the value and
interpretation of this information is open to question. Moreover, as we will
discuss, the asymptotic formulae in Hendry (1979) do turn out to be correct
in certain specialised cases. We emphasize this point both for its relevance in
such special cases in practice and because such cases influence the overall
and summary analysis of simulation experiments. However, the precise
parameter valucs used in the reported simulation experiments are not stated
in Hendry (1979) and are, in fact, based on random draws from a finitc
population of arbitrary, selected values that were given in the closcly related
article by Hendry and Harrison (1974, p. 166). Lacking such information, it is
difficult for a reader to dectermine the share of special cases that occur in
these experiments and this accentuates the risks associated with
extrapolations from specialised simulation evidence.

In section 2 we consider the source of the error in Hendry’s derivation and
in section 3 give a correct general formula for the covariance matrix of the
limiting distribution of the IV estimator. As usual, the derivations leading to
the limiting distribution suggest a control variate which does have the same
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limiting distribution and which could be used for (finite sample
approximations or in numerical simulations if these were considered to be of
value. Section 4 details somec numerical results which compare the
asymptotic and exact small sample distributions of an inconsistent IV
estimator in a simple case. These results endorse the strong evidence which
has appeared elsewhere in the literature [for example, in Phillips (1977b) and
in Evans and Savin (1980)] that the discrepancies between asymptotic and
finite sample behavior are parameter dependent and do not permit such
general conclusions as those in the above quotation. Section 5 is concerned
with what appear to us to be important limitations in the practical use of
response surface regressions of the type discussed in Hendry (1979) and
Hendry and Harrison (1974). We demonstrate that more care is needed in
specification and testing of such regression devices and that there are
limitations to their usefulness as inferential tools.

Summary and conclusions appear in section 6. The same section points
out that there remain parts of Hendry (1979) which are valuable for further
research. In particular, we applaud a general goal that has been pursucd by
Hendry in the past. This goal is to improve upon crude simulation
experimentation by means of analytic tools and to improve upon the
analyses of experiments through the greater use of thcoretical results and
better design of experiments. One of the points that will become evident in
the present paper is that the ‘capital intensive’ approach, generally favoured
by Hendry and strongly advocated by him in seemingly analytically
intractable situations, may not offer quite the level of ‘labour saving’ which is
desired. Certainly, the reader of Hendry (1979) could go away expecting
.much from a capital intensive approach supplemented with a little input of
labour by way of analytic derivations. It i1s clear, at least to us, that good
capital intensive research along the lines suggested in Hendry (1979) is a
great deal more labour intensive than many an investigator may be led to
expect. More so and somewhat ironically, when the capital intensive
approach is seemingly the most called for. That is, when analytical results are
hard to obtain.

From Hendry (1981) it appears that some legitimate differences of opinion
remain between us. However, we do agree on the necessity for correcting the
error in Hendry (1979) and on the necessity for the cautions we have called
for here.

2. The model and derivations

We will work with the same model and notation as Hendry (1979), using
{ )y to indicate equation numbers in that article when we need to reference
them. The observable variables, collected into the (2n+m)x 1 vector f, and
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representing n current period endogenous, n lagged endogenous and m
exogenous variables are generated by the system [see (S)]

f=Df_,+w, t=1,...T, (1)

which is assumed to be stationary and where the w, arc independent N(0,Z.).
(1)y—(3)y detail the structural system giving rise to (1). The particular
equation under study is written [sce (6)y] as

y=Xf+u, 2)

where the vector u is multivariate N{(0,4) and the Tx | vector y and Txk
matrix X are composed of observations on a subset of the variables f; of (1).
An instrument matrix Z of T observations on x instrumental variables is
introduced, which are also taken from the set of variables in (1). Inconsistent
estimators result since at least some of the instruments are correlated with w.

Hendry considers the following IV estimator of the parameter vector f in

eq. (2)
B=(X'NX)"'X'Ny, (3)

[sce (8)y] where N=Z(Z'Z)"'Z'. In view of the statioparity and
distributional assumptions of (1), we have

el F) AT e

zz\ [(ZZ
G =pli ~E2Z) 5
gi{f( T ) ( T ) ©
X'Z\(ZZ\"'(ZX
K =plim{ 22 22\ - 64, 6
wn(F)5F) () 0

Z'u Z'u
o= plim =E , 7
p( T) ( T) 7

[see (9, (12)y and following paragraph]. We deduce

plimf=p+K ' da=p+p=p. say, (&)

T—=w

[see (13); but we are omitting the tilde on f;], so that p is the vector of
inconsistencies in the estimator f.
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To find the limiting distribution of an appropriately centred statistic based
on the estimator 5, Hendry follows the usual procedure of writing

f—Bi=p—p=(X'NX)"'X'Ne, )
where p is the pseudo-cstimator of p given by
F=(X'NX) 'X'Nu, (10)

and where e=u— Xp=y— X, It follows from the definition of p that

T-x T—w T

ZI Z/
plim T“IX'NezAplim(_Te>=AE(—‘f>=0. (11)

The argument now hinges on the use of the simplified statistic [see (16)y],
p*=p+T 'K 1AZe, (12)

as a control variate for f. In fact, this is an inappropriate choice of control
variate and, contrary to the assertion on page 301, the limiting distribution
of ﬁ(ﬁ— f,) cannot in general be derived by obtaining that of ﬁ(p*—p).
We will, in fact, derive an appropriate control variate for § below.

The difficulty in the above treatment can be seen explicitly in the final
paragraph of page 300. In this paragraph, the convergence theorem of Cramér
(1946, p. 254) is applied to derive the limiting distribution of ﬁ(ﬁ—p) and,
hence, \/ T(f — B)). Unfortunately, the conditions under which Cramér’s theorem
is valid do not generally hold in this particular application and the limiting
distribution that is consequently obtained for ﬁ(ﬁ— B) 1s incorrect.
Specifically, the error occurs in the last four lines of page 300 where it is
argued that

...since

_(XNX\"YXZ\[ZZ\"' |

then p and p* have the same limiting distributions in that
F=p*+O(T™ Y and plim TV —p*)=0. [Hendry (1979, p. 300)]

In fact, it is not generally truc that plimy_  TY3(p—p*)=0 as is claimed.
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To see the error in this reasoning we write

Ne _x-1gZe [(XNX '1(X’Z>(Z’_Z>‘1
To=n= ﬁ*[(T ) AN

XNX\" Y XZ\/Z'Z\"!}
-0+ (FF) (FIF)
—KAIA:|£E—. (14)

The argument would hold, in view of (13), if T '?Z’%¢ had a limiting
distribution. For, in this case, the second term of (14) tends in probability to
zero [see, for instance, Proposition 4 on p. 370 of Malinvaud (1970)] so that
ﬁ(ﬁ—p} and ,ﬁ(p*—p) have the same limiting distribution. But, as is
clear from the defimtion of A4, G, and P,

E(Z'¢)=E{Z(u—Xp)} =Ta—TGA'p=T(I— GA'K "' A, (15)

[see (18)y] so that T~ Y2Z’e has, in general, a non-zero mean which tends to
infinity with T Therefore, we cannot, in general, assert that T Y2Z'¢ has a
limiting distribution as T—o0. For this reason, the second term of (14) will
not generally vanish as T-o0 and it will not generally follow that V’?(p”~p)

and ﬁ(p* —p) have the same Hmiting distribution.

Only in certain special cases will the argument and the stated results be
valid. Some examples where this is so are: (i) when the set of instruments
includes only truly exogenous variables; (ii) when the number of instruments
is identical to the number of coefficients in the equation to be estimated; and
(111) when the set of instruments includes all regressors in the equation to be
estimated together with a sct of truly exogenous variables that are
uncorrelated with these regressors and that are stationary with zero means.
In the first case, of course, E(Z'u)=0, the IV estimator is consistent, p=0 and
E(Z'¢)=0 (an nadmissable special case in the study of inconsistent IV
estimators); while in the second case, the fact that E(4Z'e)=0 will ¢nsure that
E(Z'e)=0 provided E(X'Z) (and, hence, the matrix A) is of full rank (this is
already an implicit assumption in Hendry’s article for the existence of the IV
estimator), in the third case, we may partition the instrument matrix as 7
=[X:Z,] and it now follows from the definition of e that E(X'e)=0; and
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E(Zje)=0 becausc the variates in Z, are truly exogenous and have zcro
means. It 1s worth noting in this last case that the zero mean assumption
implicit in thc general set up [see (1)g—(5),1] of the model (1) is an important
simplification. For, this assumption will sometimes reduce E(Z'¢) to zero in
cases where this would not normally be so, as indeed 1n the special case just
considered. In such special cases, \/"f(ﬁ—p) will have the same limiting
distribution as \/:]._(p* —p).

In general, however, when the number of instruments is greater than the
number of regressors we will find that the expression for E(Z'e) in (15) is
non-zero and the limiting distribution of ﬁ (p—p) will depend on terms
involving the elements of /T{T ™ 'X'Z—E(T 'X'Z)} and /T{T 'ZZ
—E(T7'Z'2)} as well as the term ﬁ(p*——p). Specifically, we nced to
decompose (14) further as’

JT(G=p)=/TE*—p)
) ) ()
o0 BN B
(A%

L (ZZ\ N[ Ze
(%) (%) 1

Now the second term on the right side of (16) tends in probability to zero,
since the first factor has limiting distribution, while the second factor has a
limit in probability of zero because

SN—

plim (T~ X' Z\T~1Z'Z) T 'Z'¢)} = A plim (T~ Z'e)

T—w T—w

=AE(T 'Z¢)=0.

On the other hand, since T 'Z'e—a-—GA'p in probability, which is in
general a non-zero vector, there is no reason why the third and fourth terms

'This decomposition follows the usual lines in extracting the limiting distribution of
inconsistent estimators. See, for example, the derivations and discussions in Phillips and Wickens
(1978, problem 6.10).
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on the right side of (16) should vanish as T—co. These terms will then also

contribute to the limiting distribution of ﬁ (p—p) as an examination of a
simple example will show.” Thus, the formulae derived and stated in Hendry

(1979) for the covariance matrix of the limiting distribution of ﬁ (P—p) and,
hence, ﬁ (F— By, are generally invalid.

3. The limiting distribution of /T (f— )

It follows from (16) and the non-singularity of G=plim,_ , T'Z'Z that the
limiting distribution of ﬁ (p—p) is equivalent to that of the vector

ﬁ(p*—p)+K-1ﬁ{T‘1X'Z—plim(T1X’Z)}G‘loce

T
—K'AJT{T ' 22— G}G 1a,, (17)

where a,=E(T " 1Z'e)=(I—GA'K " 14)x. We now write Z=FS,, X=FS, and
e=y—Xp,=[y: X1(1, —B) =FSy;y=F¢, say, where S,, §,, and S, are
appropriately dimensioned selector matrices and ¢ =383y with y'=(1, — ).
Using this notation, we can write the vector (17) in the form

K~ 'AS,/T{T 'FF—ET 'FF)}¢
+K718,/T{T 'FF—ET 'F'F)}$,G o,
—K 148, /T{T ' FF—E(T 'FF)}$,G la,
=H./Tvec{T 'FF—-ET 'FF)}, (18)
where vec denotes vectorization by rows,
H=K 'AS;®¢'+ K '$,®uG 18, —K 148, ®wG™ 1S, (19)

and @ is the right-hand Kronecker product.

2We may, for instance, take the following system where the first equation 1s to be estimated
[and, therefore, corresponds to (2) above] and the last two variables are used as instruments
Vu=buaVautuy, YVau=Us Va=Usm Yar=Us

If we wrte m,=E(y,y,) and to simphfy matters set m;,=m;,=0, we find that p
=y (M3 M, +mymys} Y, and then

B(T™ 1Z’e)=|:m13 - mzsp:'

—My4p
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Since T™'F'F=T"'Y f.f, is the sample second moment matrix of the f, as
generated by the stationary system (1), it follows that the vector (18) has the
limiting normal distribution N(0,C) where C=HWYH' [see, for cxample,
Hannan (1970, theorem 14, p. 228) and Hannan (1976) who proves a stronger
result for X, non-singular]. Under the normality assumption for the errors
driving (1), we have

W=2n | f(0)®f(—w)do(+K), (20)

where

Hw)=02n)" 1( i Djeij‘*’)Ew( 2‘0 D’jeijw>

<o

is the spectral density matrix of f, and K, is the commutation matrix
[Magnus and Ncudecker (1979)] of dimension [*> X [* where [=2n+m. In the
case where the errors are not neccssarily normally distributed, but fourth
moments of the errors on (1) still exist, the expression (20) for ¥ involves the
additional term depending on the fourth cumulants of the errors which is
given in eq. (3) of Hannan (1976).

The vector H vec(T *F'F) can be regarded as a control variate for f.
Appropriately centered and standardized by ﬁ it has the same limiting
distribution as ﬁ(ﬁ—[)’,) and can be used for finite sample approximations
or as a device to improve the precision of simulation estimates if these were
required. The moments of such a control variate are best regarded as
pseudo-moments of § or, as has become more customary terminology in the
econometrics literature, moments of an approximating distribution. It is also
worth noting that the vector Hvec(T 1F'F) is only a special control variate
in a whole class of such variates constructed as stochastic approximations to
B and based on simple polynomial approximations to f in terms of the
elements of the sample moment matrix T~ *F'F. The distribution of such
control variates is then, to an appropriate order in T~ %2, just the Edgeworth
approximation. The framework developed in the papers by Sargan (1976)
and Phillips (1977a) can, in fact, be used to develop a class of control
variates for econometric estimators in quite general circumstances. It is also
possible to use the framework in these latter articles to construct control
variates in cases where the estimator under consideration is determined
implicitly by a system of equations whose functions do depend explicitly on a
vector of sample moments of the data. This approach then covers most
known econometric estimators with the exception of some that are based
on moving average error models.
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4. Small sample and asymptotic comparisons

Using simulation evidence, Hendry also addresses the question of the
relevance of asymptotic theory for inconsistent estimators in finite samples.
The value of these simulations findings is now uncertain to us. For, although
a careful scrutiny of the parameter cnvironments and TV cstimators chosen
for the experiments will no doubt reveal for which experiments Hendry’s
asymptotic variance formula is correct,>* these experiments will nonetheless
be special cases of a gencral asymptotic theory in which the asymptotic
covariance matrix involves many more terms than those used in the present
computations. The risks associated with extrapolations from specialised
simulation evidence are, therefore, more acute than usual. Moreover, since
the asymptotic formulae in Hendry (1979) are, in general, wrong we would
expect to find some cvidence of this in terms of a systematic discrepancy
between the simulation results for large sample size experiments and the
stated asymptotics. From Hendry’s discussion, we judge this not to be the
casc, although we do not know from the reported details of the simulations
how many large T experiments were actually conducted.

Some complementary evidence is available from cxact small sample
distribution theory in certain simple cases. We take, for instance, the
following model:*

Vie=bizya +uy, (21a)
Yu=by+uy, t=1..,T (21b)

in which the y, are endogenous variables and the u; are independent
identically distributed normal variates for all . Ordinary least squares (OLS)
applied to (21a) is generally inconsistent and comes within the framework of
estimators being investigated by Hendry. We assume that the usual
standardising transformation which reduces the covariance matrix of the Vit
to the identity matrix has been carried out. Then, the exact density function
and first two moments of this estimator can be readily deduced from the
results of Richardson and Wu (1970, 1971).° If we let b,, be the OLS

*For example, using the arguments given in section 3 in the paragraph following (15), we may
deduce that ordinary least squares is such 4 special case.

“Hendry (1979) does not report the parameter values used in the experiments, only that they
are based on the 40 experiment set T of Hendry and Harrison {(1974), where a random selection
was chosen within a finite population of possible parameter values.

>We recognize that this model involves variables with a non-zero mean. As we discussed
earlier in section 2, the zero mean assumption can have important consequences in terms of
simplifying the asymptotic covariance matrix of the IV estinator. It seems appropriate to avoid
working within a framework that leads to specialized results when the objective is to extract
usable general formulae.

®Takeuchi (1970) also gives analytic expressions for these moments. However, there appear to
be errors in his expressions arising out of his formulae (2-7) and (2-8) so we have not used them
here. In particular (2-7) and (2-8) confuse the even and odd order moments.
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estimator of b, in (21a) we obtain in our notation

w 5
exp ——2‘(1 +b1,)

1
P (L

)

pdf(glz) =

% i £(1+b12512)2 /
i=0 (T>j' 2 1+,
2 i
T—1 T u*h}
><lFl( 2 »J 55 212 ’ (22)
with
,“2‘—‘ Tb%z: (a)j__—r(adl'j)/]‘(a)'
Then
gz oy o (T T+2 Th
E(,;l ):blzb%ze lb%"zlfl(z:_z‘—;' 221>201(st127b21)s say,

~ 1 2, 2 T T Th,
. —— 21/ - F - —
var(by,) 2e ! {T—Z 1 1(2 1,2, )

2h%,b2, T T . Tk,
St Pl =141
+ T—2 V" 1N\2 1’2“’ 2

2Thibgy . (TT . Th3
#wl(z’z*z; 2”)}—{(11@;,12,;721)}2

=ay(T by, b,y), say. (23)

The probability limit of 5,, and its asymptotic variance can now be found by
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applying the asymptotic expansion of the confluent hypergeometric function
Fi(,;)as T—oo. We find

by,b2
lim a;(T.by,,by,)= 22

—= = =qas(b, bsy), say,
o 1+b§1 s(b12,b21) y

1 b2 b2 (1+b4)
i Ta(T b by 12921 21
P T by b2 = e

=ay(hy,,b5), say. (24)

The asymptotic normal approximation to the pdf of b, is then given by

1/2 E ,— 2
aspdf(b,,)= (ﬁ) exp {—gw} (25)

dy

1.20

asymptotic
" approximation

VO
M=
i o

exact density

k/ of by

-2.00 -1.00 0.00 1.00 B,,-b

Fig. 1. T=10, b, =1.0, by, =1.0.

In figs. 1 and 2 we have graphed the asymptotic density (25) -against the
exact density (22). These graphs show, as we might expect, that the adequacy
of the asymptotic approximation is parameter dependent. In particular, the
approximation (25) deteriorates as the value of b, increases. In fig. 2, where
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asymptotic
approximation

exact, density

N

195

-4.50

-3.50 -2.50 -1.50

Fig. 2. T=10, b;, =50, b, =1.0.

T A~
-0.50 b]:2

by

T=10, b;,=5.0 and b,; =10, we find for the variances that a,(T,b,,,b,,)
=0.5012 and T~ 'ay(h,,,b,,)=0.3625; so, in this casc, the exact variance is
389, larger than the asymptotic. In fig. 1, where b,,=1.0 and the other
parameters are unchanged, the corresponding percentage difference between
the variances 1s 23%.

4.00 6.00

2.00

exact
variance

(ag)

variance
(Ta

exact

variance
.

P

variance

asymptotic

T symptotic

~

4

30

p

800 12.00 16.00 20.00

b12

Fig. 3. Asymptotic and exact small sample variances.

Both a,(T,by,,b,;) and au(b,,,b,,) are quadratic in b,,, so that the
divergence between the exact and asymptotic variances continues to incrcase
with by,. Fig. 3 shows the extent of this divergence between the two
variances for by, over the domain 0 <b,, <20.00 and for T=10, 30.
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These results indicate that care should be exercized in evaluating the
adequacy of asymptotic theory. Strong assertions about the accuracy and
usefulness of asymptotic results in finite samples are best avoided unless they
are conditioned by a clear statement concerning the parameter environment
to which the results refer. As the dimension of the parametcr space increases,
we recognize that this becomes more difficult; but this should sharpen, not
lessen, the need to express caution about the limitations of the results.

5. Response surface regressions relating finite sample outcomes to asymptotic
results

Particular care seems to be necessary in the use of the response surface
regressions reported in Hendry (1979) and the earlier articlc by Hendry and
Harrison (1974). While these regressions do summarize a large body of
simulation evidence, it is clear from the discussion in thesc articles that the
regressions are being used for inferential purposes and to widen the scope of
the simulation studies as the quotations below attest. For example, Hendry
(1979) uses response surface regressions of the form

InS;=yInVi+y, T '+v,  j=1,..,36, (26)

[see (30)y] where S; denotes the finite sample simulation estimate of a certain
quantity (such as the mean value of an estimated error variance or the finite
sample variance of an IV estimator) in experiment j and V; is its asymptotic
equivalent. It 1s then suggested that:

y;=1 and y,=0 provide interesting testable hypotheses about the
predictive accuracy of asymptotic theory in finite samples. [Hendry
(1979, p. 305)]

and, in discussing the first set of response surface regressions it is observed
that

These estimates strongly support the claim that asymptotic theory
constitutes an excellent explanation of finite sample outcomes for ¢?2; 7,
is not significantly different from unity (or §, from zero), R? is very high
and the fitted equations predict reasonably to randomly chosen points
outside the sample space. [Hendry (1979, p. 306)]

Moreover, in the earlier article by Hendry and Harrison (1974) in which the
technique i1s more fully discussed we find the following observation made to
motivate the use of the technique:

The two most powerful methods of analysis of cxperimental data are
regression and variance analysis. The former seemed attractive as we
sought quantitative cvaluation of the determinants of any obscrved
biases formulated in expressions which could predict outcomes beyond the
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range of our experiments. [Hendry and Harrison (1974, p. 162), our
italics]

They conclude that:

... by relating the small sample outcome to the asymptotic result (which
is known exactly) one can dcrive expressions which generalise beyond
the sample of experiments conducted. [Hendry and Harrison (1974, p.
171)]

Response surface regressions of the type (26) are useful in summarizing
simulation outcomes for the relevant statistics and can sensibly be used to
examine the extent of the correspondence between finite sample outcomes
and known asymptotic results within the experiments conducted. But, in our
view, extreme care should be exercized in the use of such regressions to
‘predict outcomes beyond the range of the simulation expcriments’. This is
because it is inevitable that regressions such as (26) will be misspecified.” The
finite sample statistics being estimated by the mean simulation outcomes S;
will normally be highly complex functions of the underlying parameters, as
are a;(T,b 5, b5;) and a,(T,by5,b,,) in our simple example above. The
asymptotic equivalents V; also normally depend on a similar set of
parameters, as do as(by;,b,;) and au(by,,byy) above. Just as it is quite
incorrect to argue that a, and ay or a, and T~ 'a, satisfy (26) exactly with v;
=0 (this would, in fact, impose a restriction on the free parameters T, b,
and b,,), so we will find that, in practice, equations of the form (26) actually
define the errors v;. These errors then become heavily parameter dependent.
The resulting equation once estimated is likely to display substantial residual
autocorrelation and heteroscedasticity. This will be associated with the way
in which the true errors v; change in response to the change in the parameter
environment indexed by j. Since the form of this dependence is, of coursc,
unknown to the investigator running the simulation experiment, inferences
and predictions based on (26) become extremely hazardous. In other words,
(26) is a spurious regression in the terminology of Granger and Newbold
(1974).

To illustrate the typical misspecification of (26) we usc the analytically
determined finite sample and asymptotic variance of the estimator b,, in the
model (21). We set S;=a(T,by,,b,,) and V;=T" 'ay(b;,.b,,). Using values of
S; and V; computed for 51 valucs of by, on an equispaced grid over the
interval 0<b,,<5.0 and fixed T=10, b,, =1.0, a regression of the form (26)
produced the following results:®

InS;= 1.0458 In ¥+ 0.3535, R2=09997, DW=00252,  (27)
(0.0028) (0.0044)

7We agree with the first sentence in the Introduction of Hendry (1979).
8The data for this regression can be readily computed from the analytic formulae given in
section 4 of this article.



198 E. Maasoumi and P.C.B. Phillips, Inconsistent 1V estimators

where coefficient standard errors arc shown in parentheses. The residuals in
(27) are, in fact, highly autocorrelated as implicd by the low value of the
Durbin-Watson statistic (DW) and confirmed by a residual plot. Yet the
sample fit as measured by R? is consummately high.

Should we or should we not use the regression (27) to test the predictive
accuracy of asymptotic theory and extrapolate beyond the range of our
computations or experiments, as in Hendry (1979) and Hendry and Harrison
(1974)7 In our view, the answer to each of these qucstions is: no, not unless
the adcquacy of the regression has been carefully diagnosed beforehand and
not unless there are clecar qualifying statements concerning the parameter
environment in which the regression has been shown to be relevant. With
respect to (27), there is strong evidence to suggest that this equation is badly
misspecified. Thus, while the linear relation (27) may well suffice to describe
the pattern of behavior in InS; and In ¥, within the domain of variation of
the parameters considered (in this case b,,) there is danger of a serious
mistake being made if the relation (27) is uscd outside this domain.
Moreover, in the presence of this misspecification, the standard errors of the
coefficients given in (27) are no longer relevant and the usual significance
tests on the coefficients are invalid. Nor are these problems removed by
randomizing the sample points taken in the parameter space. For, the linear
expression (27) will, nevertheless, adequately represent the behavior of In§;
and In V} only within the domain allowed by the sample. The misspecification
in (27) will still be present since the true errors that occur in (26) are
functionally dependent -on the parameters; and this misspecification will be
detected in the usual way by rcarranging the sequence of residuals according
to increasing values of the parameters before testing the random character of
the errors. Nor, also, are these problems affected by the use of simulation
data for §; in (26). For, in this case, the errors may be regarded as being
composed of the sum of two elements, the first of which is functionally
dependent on the parameters, the second of which is a random variable
arising from the simulation errors.

These arguments suggest that more tests of specification and more
diagnostic checks need to be conducted than are presently reported or
encouraged in Hendry (1979) and Hendry and Harrison (1974), at least
before response surface regressions such as (26) are set up for inferential use.
As in the above example, DW statistics can provide important diagnhostic
information if correctly applicd. In more complicated cases than the above,
these can be computed from regressions on suitable subsets of the data
naturally ordered according to the changes in a single parameter. For this to
bc possible, the finite population parameter environment that undcrlies the
simulation study should be carefully designed to cnsure adequate sampling of
points in cach of the major directions of known parameter variability. Low
DW wvalues then provide early warning signals against strong inferential
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statements. Use of the DWW statistic in this way is rcally only a minimum
requircment and other standard diagnostic procedures, if appropriately
applied, will be helpful and desirable in the evaluation of the regression. As
indicated above, the overall design of the cxperiment will play an important
role in the successful application of such test diagnostics.

For these reasons, we recommend caution if response surface regressions
which relate finite sample outcomes to asymptotic results are to be used in
making strong inferential assertions about the predictive accuracy (or
adequacy) of asymptotic theory. We emphasize the need for clear qualifying
statements concerning the parameter environments in which their relevance
has been established. And we suggest that the overall design of the
experiment should take into account the data needs that will arise later in
the careful diagnostic checking and testing of such response surface
regressions that should rightly precede their use for inferential purposes.

6. Summary and conclusion

The general formula derived in Hendry (1979) for the asymptotic
covariance matrix of the IV estimator in models where this estimator is
inconsistent is incorrect. Moreover, the procedure used there to extract the
limiting distribution of the estimator and to develop a control variatc is
flawed and leads to a generally inappropriate control variate. We have not
determined the full extent to which Hendry’s simulation findings (which use
both the asymptotic results and the control variate) are influenced by these
errors. We have shown that in some specialized cases Hendry’s formulae are
correct and to the extent that these cases occur in his simulations (as, for
example, they do for the OLS estimator) they are albeit more than usuvally
open to the qualification that they are limited to a specific environment.

Our analysis of a simple inconsistent estimator for which the exact finite
sample density and moments are known indicates that the asymptotic
distribution does provide a good approximation to the distribution of this
estimator in certain parameter environments but is less satisfactory in others.
These results accord with those of other investigations of the adequacy of
asymptotic theory in small samples for consistent estimators and test
statistics [see, in particular, Phillips (1977b), Maasoumi (1977, ch. 5) and
Evans and Savin (1980)].

It seems necessary to emphasize that care should be exercised in
statements about the adequacy of asymptotic theory. In our view, strong
assertions about the accuracy and usefulness of asymptotic results in finite
sample situations are best avoided altogcther. If they are made, they should
be accompanied by a clear declaration of the parameter environment for
which these assertions have been substantiated. Special care is necessary in
thc use of response surface regressions which relate finite sample simulation
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outcomes to asymptotic results in Monte Carlo experimentation. In such
cases, the cxperimental design should allow for the appropriate data that is
necessary in the diagnostic checking and testing of such regressions that
should properly precede their use for infercntial purposes. The simulation
findings and associated assertions in Hendry (1979) do not meet these
requirements and should, therefore, be regarded with caution.

The recent paper Hendry (1981) has provided some qualifications in the
light of our objcctions. These arc welcome even though they do not go as far
as we believe our arguments necessitate. Lack of a sufficient emphasis on the
rcquired qualifications and on the required labour input (by way of careful
and correct analytic derivations) in improved capital intensive rescarch will
be most unfortunate. Indeed, it will be contrary to the apparent goal of
Hendry and others which is to bring order and more theoretical information
to bear upon experimental research. This is a goal that we wholeheartedly
support.
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Postscript added in proof

In view of the clarification provided by Professor David Hendry in his
Reply (hereafter DH) to our article, the following points may further reduce
the erroneous usages of the formulae in Hendry (1979) and Hendry and
Harrison (1974) (hereafter HH):

(i) Contrary to the assertions in HH (sccond paragraph, p. 159), and the
impression creatcd by DH (second paragraph), the ultimate formulae for the
CV in HH (given by (32)y4 in the text of HH) is not valid for the case of
2SLS and other IV estimators. This can be seen simply by observing that
(32)yy requires that its constituent matrices & and @ be square and non-
singular, which they patently are nor in the general 1V case;

(i) The crror that Professor Hendry modestly describes as ‘bad algebra’ in
DH (second paragraph), arises naturally from the mistaken use of (32),, in
the general case. Specifically, since p is a consistent estimator of p and ®¢
measures inconsistency, the mistaken use of (32)y, involves setting ®¢ =0,
and this leads mechanically to the inappropriate CV ®¢. In the present case,
this is just p*—p, the CV we have shown to be invalid by other means in
section 2 of our article;

(i) With respect to the argument that, ‘amusingly, p* is a valid, if
inefficient, CV for # (DH, third paragraph) the reader should note the clear
counterarguments to the use of CV’s in HH (p. 158, sccond paragraph). In
fact, HH (footnote 4, p. 158) report experimental evidence which, amusingly,
confirms that such CV’s provide ‘no real increase in accuracy’



