Cowles Foundation Paper 560

Miscellanea 261

Biometrika (1982), 69, 1, pp. 2614
Printed in Great Britain

The true characteristic function of the F distribution

By P. C. B. PHILLIPS

Cowles Foundation for Research in Economics, Yale University,
New Haven, Connecticut, U.S. 4.

SUMMARY

Formulae that are given in the literature for the characteristic function of the F
distribution are incorrect and imply that the distribution has finite moments of all
orders. Correct formulae are derived and the asymptotic behaviour of the characteristic
function in the neighbourhood of the origin is characterized.
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1. INTRODUCTION

Major reference works on distribution theory such as Johnson & Kotz (1970, p. 78)
state that the characteristic function of an F variate is given by the confluent
hypergeometric function in the central case and an infinite series of confluent hypergeo-
metric functions in the noncentral case. Thus, if /' has a central £ distribution with n,
and n, degrees of freedom the characteristic function of F is stated to be

P(s) = E{exp (iFs)} = (F(Gn,. —3ny; —ni ' nyis), (1)

where [ F,(., .; .) is the confluent hypergeometmc function. In the noneentral case, the
characteristic function is said to be given by the series

. i
e ¥ Z 1F1 2n1+} _2”2 —nflnzis), (2)

where / is the noncentrality parameter; see Patnaik (1949, p. 221) and Johnson & Kotz
(1970, p. 190).

The fact that expressions (1) and (2) are incorrect seems to have passed unnoticed in
the literature. To see that these expressions are wrong we need only observe that, whereas
the F distribution has finite moments of order less than 4n,, equations (1) and (2) imply
that all moments of the distribution are finite since ; F,(a, b; z) {s an entire function of z.
The problem is that (1) and (2) are close to, but do not represent exactly, only one part of
the relevant characteristic functions. As we see in the next section, the remaining parts
do not possess continuous derivatives of all orders at the origin. These nonanalytic
components are omitted completely from (1) and (2).

2. FORM OF THE CHARACTERISTIC FUNCTION

We start with a central F variate with n; and n, degrees of freedom and density
funection
n?m n%"z i1

BGny,3n,) (ny+nyx)insm2

plx) = (x> 0). (3)
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The characteristic function of F is then given by the integral

1 - - i
‘ﬁ(s’:WJ exp (isny  ny )y (14y)TH D dy, @)
2751, 2752 0

For the complex variable z and complex parameters ¢ and ¢ such that Re(z) > 0 and
Re (a) > 0, we have that

J e A4 gt = T(a) ¥a, c; 2), (5)
0

which defines the confluent hypergeometric function of the second kind; see Erdeéyli
(1953, p. 255) and Lebedev (1972, pp. 267-8). Now the domain of definition of the
function W(a, ¢; 2) can be extended beyond Re (z) > 0. In the present case, we note that
the integral representation continues to hold for 2z on the imaginary axis if
Re{(c—a—1)+(a—1)} < —1. That is, if Re(c) < 1—¢ for some & > 0, since this con-
dition ensures that the integral converges absolutely.

It now follows from (4) and (5) that

I'(Gny) _ :
¢(s) =~BT%7Z2;,—%7L25\P(%’”1’ 1—3n,y; —ng ' nyis)
TGny +3n,) I
= zr(linz) 2 Widn,, 1—3ny —ng ' nyis). (6)
272

Series representations of (6) can be obtained from the following formulae given by
Erdéyli (1953, pp. 257, 261):

I'(1—¢)
T'la—c+1)

I'e—1)
I'(a)

W(a,c; 2) = Fia,c; z)+ 2T R (a—c+1,2—¢; 2) (7)

for nonintegral ¢; and, for¢c=1—n withn=20,1,2,...,

Y@, l—nz)=2"¥latnn+l; 2)
B (_])n-lzn

= (a+tn),
n!T(a) Z

St 1), r!

(=" (a), L
Tlatn),s (1—n,r "~ (8)

[Jﬂ(aﬂ—n, n+1; z)logz+

X {l//(a+n+r)—l//(l+'r)-l//(1+71+r)}z':|+

where Y (x) = I''(x)/T'(z) is the logarithmic derivative of the gamma function and the final
term in (8) is omitted if n = 0.
Setting @ = 4n,, and ¢ = 1 —4n, in (7), we deduce, for the case of n, odd, from (7) that
¢(s) has continuous derivatives at the origin up to order M, where M is the largest integer
1., Qs
< 3R5. Since
d" @

By a0 ) =

()n

1Frla+n,ctnz),

we find from (6) and (7) that
1 J
i~ p9(0) = Gm); (_ﬁ)
¢ (1 —%nz)j "y

_ (@)J nny+2). (n+2)—2)
ny) (my=2)(ny—4) ... (ny—2j)

(j=1,..., M),
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which corresponds to the known jth moment about the origin of the F distribution.
Setting a = 37, and ¢ = 1 —§n, = 1 —n in (8) we deduce also that, for the case of n, even,
¢(s) has continuous derivatives at the origin up to order ¥ = n—1. These derivatives
can be obtained from the coefficients in the final sum of (8).

For nonintegral ¢ = 1 —4n,, we note from (7) that the first term in the representation
of function ¥(a, ¢; z) in terms of the confluent hypergeometric function, is close to but
not equivalent to the expression ( ) for the characteristic function gwen in the literature.
Specifically, for @ = 4n,, ¢ = 1 —in, for n, odd and z = —(n,/n,)is, we have

Tn, +3n,) T(l—c)
Tdn,) Ta—ctl)

. 1 L, . - ;
Fila, ¢ 2) = (Fi(Gny, 1=gng; —ny ' nyis).

Note also that, for n, even, the conventional expression (1) for the characteristic
function is undefined since the confluent hypergeometric function | F,(a, ¢; 2) has simple
poles at the pointse =0, —1, —2,....

These results can readily be extended to the case of a noncentral F variate and we only
state the final formula here. If F has a noncentral # distribution with degrees of freedom
ny and n, and noncentrality parameter A, then the characteristic function of F is

V)
z

& A TEn +3n,+)) . 1
) =11 Z T Wi kg ~dny — i ngis), (9)
I'(zn,) =0 J:
where, as before, the series representation (7) and (8) for the W(., .; .) function can be

used in the respective cases of n, odd and %, even.

3. BEHAVIOUR OF THE CHARACTERISTIC FUNCTION AS § — 0
When n, is odd, we have the following expansion directly from (6) and (7):

F1( znz ISI—nz Z Z (301 +372)m (3in, 77~')l(—7?2/7?41)"1{Sgn (S)}l(is)m_
BEgn,gn,) 1=0m=0 (1+3n3),, 0 tm! ’
In particular, this series applies as s — 0. A related formula, which is further
complicated by terms involving log| |, applies in the case where n, 1s even. In fact, the F
distribution belongs to the class of characteristic functions whose behaviour as s — 0 is
given by the asymptotic series

[Z Pl8) '"+|5|"Z Z qukllsl Hisgn (s)} (log|s|) :I (10)

Jj=0k=01=0

where p, and g, are coefficients, u > M, v > 0 and L( j) is usually either 0 or 1 for all j, as
it is for the F distribution. The first sum in (10) is analytic and ensures that integral
moments of the distribution exist to order M —1 if this is an even integer and W —2 if
M —1 is odd. The second sum in (10) is instrumental in determining the form of the tails
of the distribution corresponding to ¢(s). When the density function p(x) exists, (10) can
be used to extract an asymptotic expansion of p(x) as x| — % co0. This work is detailed
by Phillips (1981).
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