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CHAPTER 5§

Best uniform and modified
Padé approximants to probability densities
in econometrics

P. C. B. Phillips

In this chapter, a new method of approximating the probability density
functions (pdf’s) of econometric estimators and test statistics is devel-
oped. It is shown that best uniform approximants to a general class of
pdf’s exist in the form of rational functions. A procedure for extracting
the approximants is devised, based on modifying multiple-point Padé
approximants to the distribution. The new approximation technique is
very general and should be widely applicable in mathematical statistics
and econometrics. It has the advantage, unlike the Edgeworth and
saddlepoint approximations, of readily incorporating extraneous infor-
mation on the distribution, even qualitative information. The new pro-
cedure is applied to a simple simultaneous-equations estimator, and it
gives exceptionally accurate results even for tiny values of the concentra-
tion parameter.

1 Introduction

The idea of approximating small sample distributions, rather than
extracting their exact mathematical forms, has a long history in statis-
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tics, and a number of different techniques have been explored. Kendall
and Stuart (1969) gave an introductory survey of some of these tech-
niques in their Chapters 6, 12, and 13. Approximations are clearly of
importance in those cases in which mathematical difficulties have pre-
vented the development of an exact theory. An example is provided by
regression models with lagged endogenous variables as regressors,
models that are of particular relevance in econometrics. Approximations
to distributions are also useful in those cases in which the exact mathe-
matical expressions are too complicated for numerical computations.
Some examples of the latter have been discussed previously (Phillips,
1980a, 1980b).

Several authors have recently obtained approximations to the distri-
bution of econometric estimators and test statistics based on asymptotic
series. The approximations used in most of these studies have been based
on the first few terms of Edgeworth-type asymptotic expansions of the
distribution function (df) or probability density function (pdf) of the
statistic under consideration. An alternative approach that can, when it
is available, provide significant improvement on the Edgeworth approxi-
mation, particularly in tail areas, is based on the method of steepest
descents in contour integration. This method leads to the saddlepoint
approximation. Its use was systematically explored for the first time in
statistics by Daniels (1954, 1956), and it has recently been the subject of
renewed interest (Daniels, 1980; Durbin, 1980a, 1980b; Holly & Phillips,
1979; Phillips, 1978a, 1978b).

Both these methods of approximation are capable of representing the
exact distribution to an acceptable degree of accuracy in certain param-
eter environments. This has been confirmed by the numerical evalua-
tions of Anderson and Sawa (1973, 1979), Phillips (1977a, 1978a), and
Holly and Phillips (1979). Moreover, the approximate distributions that
have been obtained in the literature have already given valuable infor-
mation concerning the small-sample behavior of competing estimators
and the adequacy of asymptotic theory in simple simultaneous equations
and dynamic models. However, given the current state of our knowl-
edge, the use of either of these methods in practical econometric work to
advise on the choice of estimator and improve inferential accuracy is
bound to encounter difficulites, some of them major.

First of all, there are certain parameter environments in which the
performance of the approximations is poor, sometimes a good deal
worse than the asymptotic distribution (particularly in the case of the
Edgeworth approximation). Unfortunately, the parameter environments
for which this poor performance obtains are not at all unusual. As we
might expect, given that the approximations are based on asymptotic
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series, this problem tends to become more widespread when sample sizes
are small. Some indication of the wayward nature of these approxima-
tions in certain parameter environments is already available (Phillips,
1977a, 1978a). Further documentation will be given in a companion
article (Phillips, 1982).

Second, although general formulas for the Edgeworth approximation
are now available (Phillips, 1977a; Sargan, 1976) and widely applicable,
the saddlepoint technique is practicable only in specialized cases in
which the characteristic function is available or simple integral formulas
for the pdf can be used, such as in the case of ratios (Daniels, 1956), or
in which there exists a set of sufficient statistics for the parameters to be
estimated (Durbin, 1979b). No doubt progress will be made in tackling
some of these latter difficulties, but in the meantime they remain a bar-
rier to the general use of the procedure.

Another difficulty that can arise in the use of the saddlepoint tech-
nique is that for certain values of the argument of the pdf, singularities
can occur within the strip of the imaginary axis containing the saddle-
point through which the path of integration is normally deformed. In
such cases, this path of deformation is no longer permissible, and special
technjques must be used to smooth the approximation past the singular-
ity; the resulting approximants are called uniform asymptotic expan-
sions. Uniform approximants typically are much more complicated in
form than the saddlepoint approximation; an example has been given in
Phillips (1978b). They are not always easy to extract, and further work
will be required to splice them with the saddlepoint approximation,
where it does exist, to cover the whole of the distribution.

Finally, it seems difficult to embody additional information on the
distribution in question into these approximations. To take a simple
example, in spite of the fact that the actual pdf is nonnegative and the df
is monotonic, it is sometimes awkward to modify the Edgeworth
approximations so that they share these properties. To take a more com-
plicated example, often we know or can find the leading term in the
series representation of the exact pdf (in many cases, without knowing
the full expression for the pdf). Frequently this leading term has a simple
algebraic form and is instrumental in determining the behavior of the
exact distribution in certain domains, particularly the tails. Yet, even
when this information is available, there seems to be no obvious way of
building it into either the Edgeworth or the saddlepoint approximation.
The resulting approximations, therefore, end up neglecting what is
potentially very useful analytic information on the form of the
distribution.

The purpose of this chapter is to introduce a new technique of ap-
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proximating sampling distributions. The technique is quite general and
should be widely applicable in mathematical statistics and econometrics.
Unlike the Edgeworth and saddlepoint approximations, it has the advan-
tage of readily incorporating extraneous information on the distribu-
tion, even qualitative information. Moreover, because the technique is
not based on an asymptotic series expansion in terms of the sample size
or concentration parameter, accurate approximations can be obtained
even in very small samples. The technique should, therefore, be most
useful in cases in which the Edgeworth and saddlepoint approximations
run into difficulty. It turns out that the new approximation is close to
the best uniform approximant in the class of certain rational functions.
These approximants will be discussed and the class of rational functions
to be used will be defined in Section 2. A general theory of best uniform
approximation in the context of density approximation will be given in
Sections 3 and 4. These sections will provide the theoretical basis for the
new technique. Sections 5, 6, and 7 will describe the procedure and give
the general formulas needed in applications. In Section 8 the method will
be applied to a simple simultaneous-equations estimator, facilitating
comparison between the new technique and existing techniques of
approximation.

2 A general class of density functions
and rational approximants

To fix ideas, we write the estimator or test statistic in which we are
interested as 6. In what follows, we treat 87 as a scalar, so that when
dealing with estimators we are, in effect, concentrating on the marginal
distribution of individual components of a complete vector of estimates.
The characteristic function (cf) of 87 is written as cf(s) =E(exp(isfr))
and is assumed to be absolutely integrable. This implies that 8 has a
bounded continuous pdf given on inversion by

1) pdf(x) = % S e~ ef(s) ds

— oo

Moreover, by the Riemann-Lebesgue lemma, it follows from equation
(1) that pdf(x) >0 as x— . Thus the effect of the integrability
requirement on c¢f(s) is to confine our attention to the class of densities
covered by the following assumption.

Assumption 1: 61 has a continuous pdf that tends to zero at the limits of
its domain of definition ().
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Note that the boundedness of the pdf now follows from its continuity
and behavior at +oo. Assumption 1 covers a wide variety of densities
arising in econometric work. It can, in fact, be extended to allow for cer-
tain types of discontinuity and singularity, but this complicates the
development of the approximants that follows. Therefore, in this chap-
ter we shall keep to the class of densities defined by Assumption 1. This
is sufficiently general to include all the usunal simultaneous-equations
estimators and test statistics, as well as their extensions to models with
lagged endogenous variables as regressors and autoregressive moving-
average errors.

Having defined the class of density functions, the general problem of
approximation takes the following form: For a particular density func-
tion pdf(x), find an approximating function that depends on a finite
number of parameters whose values are selected in such a way that the
approximating function is as close, in some sense, as possible to the orig-
inal density over its entire domain of definition. Once stated in this way,
it is clear that there are two major components to the problem. The first
is the form the approximating function should take. The second is the
criterion of closeness of approximation to be used in selecting the best
approximant, By a best approximant we mean the member (or members)
of the given family of approximating functions whose closeness to the
function pdf(x) cannot be improved by use of any other member of the
same family. Thus, the second problem clearly raises the further ques-
tion whether or not there exists a best approximation to pdf(x) in the
given family of approximants. This question of existence will be the sub-
Ject of the next section. We now define the class of approximating func-
tions and the measure of approximation to be used in the rest of this
chapter.

Definition: If s(x) is a real continuous function satisfying s(x) >0 and
5{x) >0 as x— *oo, then we define the class of rational approximating
functions by

Py(x)
Qr(x)
ag+ ax+ - + a,x"

= —w<x<
S ¥ bt b T SXE®)

(2 R, n(x;5,7) = s(x)

where (i) the numerator and denominator are reduced to their lowest
degree by the cancellation of identical factors, (ii) # is an even integer,
and (iii) v'=(apay,...,a,,bq,by,...,b,) €T, the parameter space,
which is defined as the following subspace of (2n+ 2)-dimensional
Euclidean space
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n
= {Vi Yot=1, Q,(x)>0 foral xe (—oo,oo)}
i=0

The condition £/_, b?=1 on the parameter space I is a normalization
that eliminates the redundancy in the coefficients of the rational func-
tion (2). Other normalizations, such as by=1 or b, =1, are possible and
may be more useful in applications. In fact, we shall later use the nor-
malization by=1 in the application of Section 8§, but the present defini-
tion of T is retained for the theoretical development.

The condition Q,(x) >0 ensures that the rational fractions of equa-
tion (2) have no poles on the real line and are therefore compatible with
the class of density functions to be approximated. Because this is
possible only when » is an even integer, we have introduced this require-
ment explicitly under condition (ii). On the other hand, when the density
function we wish to approximate is nonzero on part, rather than all, of
the real axis, it is clear that this requirement may be relaxed. Moreover,
if singularities in the density function do occur on the real axis, we may
remove the condition Q,(x)>0. If the position of the singularity is
known, this can be incorporated directly into equation (2); otherwise, it
must be approximated, and for certain values of » it may not be cap-
tured by the approximation, although whether or not this occurs will
depend on the technique used to construct the approximation.

We might consider working with the somewhat wider class of rational
functions for which the numerator and denominator polynomials are
not necessarily of the same degree. In certain applications it may seem
appropriate to make such a generalization of the class of approximants,
and the theory we shall develop can be modified to take this generaliza-
tion into account. However, there are various reasons why we do not
choose to work with the more general class in developing our theory.
The first is that the coefficient function s(x) frequently will be con-
structed so that it captures the behavior of the exact pdf(x) as x
approaches the limits of its domain. A rational fraction of equal degree
is then immediately compatible with this behavior. The second is that
when the numerator and denominator are of the same degree, modifica-
tions to the coefficients that are designed to avoid unwanted zeros and
poles in the final approximant are easier to make. That this is of particu-
lar importance will be seen in Section 4, where the practical procedure
we develop for obtaining a good approximant of the type in equation (2)
is based on modifying multiple-point Padé approximants, which in
crude form frequently possess zeros and poles that need to be removed
in order to improve the approximation over the whole real line. Finally,
numerical experience with rational function approximations in applied
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mathematics (Hart, 1968; Meinardus, 1967) suggests that rational frac-
tions with numerator and denominator of equal or nearly equal degrees
tend, on the whole, to give better approximations than those for which
the degrees differ markedly. Taking an extreme case for comparison,
polynomial approximations usually become unsatisfactory when it is
necessary to approximate a function over a wide interval. Moreover,
they lack the capacity to turn corners sharply and then go straight for
long periods, particularly in a direction almost paralle} to the horizontal
axis. It is useful for a density function approximant to be capable of
capturing these properties. An important feature of rational fraction
approximations is that even low-degree fractions of the type in equation
(2) are flexible enough to assume this behavior. This is endorsed by the
large number of numerical results with rational approximants reported
by Hastings (1955) and Hart (1968). It will also be confirmed in our own
application of the technique reported in Section 5.

In order to develop a theory for the goodness of approximation based
on members of the class (2), we introduce a norm to measure the error in
the approximation. We shall use the uniform norm (also known as the
Tchebycheff or L, norm) defined as

3) [/ = sup  [f(0)]

XE (—o0,00)
If we now let f(x)=pdf(x)—R, ,(x;s,v) denote the approximation
error, our problem is, for a given value of # and a given function s(x),
to find a value of - that minimizes the maximum error. At this value of
v, R, n(x;5,7) is then called a best uniform (or Tchebycheff) approxi-
mation to pdf(x).

Other choices of norm are certainly possible and will generally lead to
different best approximations, where they exist. However, for accurately
approximating pdf(x) over a wide interval, the choice of the uniform
norm seems very appropriate.

3 Best uniform approximation by rational functions

The theory of best uniform approximation of real continuous functions
by rational fractions has a long history. One of the earliest discussions
was undertaken by Tchebycheff (1859). Frobenius (1881) and Padé
{1892) both systematically investigated the properties of a specialized
class of rational approximants now known as Padé approximants (Sec-
tion 4). In the complex domain, Runge (1885) (Rudin, 1974, Chapter 13)
established the possibility of uniform approximation of analytic func-
tions by rational fractions with preassigned poles. A general theory of
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approximation in the complex domain by rational functions was devel-
oped in a treatise by Walsh (1965). Extensive modern treatments of the
subject covering all the classical results on the approximation of real-
valued functions are given in the volumes by Rice (1964) and Meinardus
(1967). Because the theory in this literature, with the exception of the
work of Walsh (1965), has been concerned with the approximation of
functions that are defined over compact sets, this section will be devoted
to the development of a theory that is applicable over the whole real line
and is therefore directly relevant to the problem of density function
approximation. Qur treatment of the problem will be based on the
framework laid out in Section 2 and will follow the lines of Rice (1964),
particularly his Section 3.8.

To establish the existence of a best uniform approximant to a given
pdf(x) in the class of rational fractions defined by equation (2), we need
to show that there exists a set of parameters v* for which

4) [ Ry nl(x;8,v*) — pdf(x) || = iH]fF | R n(x;s,v) — pdf(x) ||
Y€

=p, say

Now, 0<p<o, and we can find a sequence of rational fractions
(R, »(x;5,vY)] for which

() pj= R n(x57Y) — pdf(x) |

and

(6) limp; =p

J—>
It remains to prove that the parameter sequence [’} has a convergent
subsequence that converges to a set of finite parameters. If we call the
latter v*, then it will follow from equation (6) that ~* satisfies equation
(4). As discussed by Rice (1964, pp. 26-7), the crucial part of the proof
of existence is to demonstrate that the parameters lie in a compact set.!

First, we show that we may restrict our attention to bounded subsets of
I.

Definition: Condition E of Rice (1964, p. 27). The approximating func-
tion R, ,(x;s,v) is said to satisfy condition E for the norm | | if,
given M < oo, there is an N<co such that

IRy (X8, V)| S M

implies that
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max|y,| < N
i
where y=(v;).
In view of equations (5) and (6), there is an integer j, for which
@) IR, n(x;5,7) — pdf(x)|| < o +1

for all j> j,. Moreover, from Assumption 1 it follows that there exists
K> 0 for which ||pdf(x)| <KX, and, hence, using equation (7), we have
the inequality

(8) (R n (35, YY) | S K+ 0+ 1
We now verify that condition E holds for the approximating function

Ry (x:8,7).

Lemma 1: The rational fraction R, ,(x;s,v) defined by (2) satisfies
condition E for the uniform norm (3).

Proof: We consider the set

) (v IRy n(xss,y) | € M, M> 0}

Because ||R,, ,(x;s,7v)| <M implies that, for a given number L>0,

max |R, ,(x;s,v)| <M
x€[~L,L}

it follows that (9) lies in the set

(10) * f{v: max [R,,(x;s5,v)| < M)}
xe[~L,L}

Now, for x€[—L,L], and taking L>1, we have

min, ez, 1) |s(x)]
maxye(—z, 1) |Qn(X)]

IR, n(x;55,7)] 2 1P, (x)]

an 2 1/2
s, (L —=1)
Z (L2n+D) )i [P (x)]
where
s;= min |[s(x)| >0
x€[=L,L]

Thus, when + lies in the set (10), we have

M(LZ(n+1) _ 1)1/2
Z max |P,(x)|= max
1

n

i
) 172 L ax
sp(Lr— 1Y x€[-L,L x€[-L,L]

i=0
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and the polynomial L7_,a;x’ is bounded uniformly on the interval
[—L,L]. It follows that the coefficient parameters a; are also bounded.
Moreover, £, b?=1, by definition, so that the parameter set (10) is
bounded. By implication, the same is true for the set (9), and thus
R, ,(x;s,v) satisfies condition E for the uniform norm.

This lemma shows that we can confine our attention to bounded sub-
sets of I' in searching for a best approximant. Hence, for all j2jg, the
sequence {7} introduced earlier lies in a bounded subset of I'. We
may, therefore, select a subsequence that converges to the vector v*,
say. If we reindex the subsequence, we can write for the individual com-
ponents of v the following: lim; ,.a"’ =a and lim; b =b for
i=0,1,...,n

Now it is important to note that because I' is not closed, v* may or
may not lie in I. If y* €T, then R, ,(x;s,v*) is a rational function of
the form defined in (2) and, in view of (4), is therefore a best uniform
approximant of pdf(x). But, if v* €T, then R, n(x;5,7*) is the limit of
a sequence of functions and is not necessarily a rational function itself.
In fact, it may not even be continuous (we shall give an example later in
this section). However, the limit function R, ,(x;s,~v*) will differ from
a rational function, R; ,(x;s,v*), say, only at a finite number of
points. And, in fact, R; ,(x;s,v*) is a best uniform approximant to
pdf(x) in the class defined by (2).

The problem discussed in the preceding paragraph arises because
although the denominator polynomial Q,(x)=Q,(x;v)>0 for y€T,
this no longer necessarily holds when v does not lie in I". Because v* is a
subsequential limit of elements of T, it follows that, in the limit,
O (x)=0,(x;v*) can have, at most, n zeros. If we let P;(x)=
P_(x:v*) be the limit of the numerator polynomial as v —+v*, it
follows that there are, at most, n points where R, ,(x; s, v*) =
s(x)Pr(x)/Q;(x) is undefined. At all other points we must have
Ry n(x;5,v) = R} ,(x;s,v*). Moreover, because R, ,(x;s,v*) =
pdf(x) + (R, ,(x;5, 7)) — pdf(x)} + (Ry , (X58,7%) = R, (x5, ],
it follows from (7) that for j =/,

IR, (x5, 7)< K+p+1+ R, (x55,9%) = Ry (355,79
and allowing j— e, we deduce that
(12) R, (x5, S K+p+1
Hence, for all x other than zeros of Qf (x), we have the inequality

(13) s [Py(x0)]| < (K+p+1)Q7(x)
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By continuity, (13) holds also when Q; (x) =0. Thus, any real zero of
Q) (x) is also a zero of Py (x), because s(x)>0 for all finite x. We
therefore eliminate by cancellation each linear factor of Q(x) cor-
responding to a real root of Q,;F(x)=0. We call the resulting rational
fraction R, ,(x;s,v*) and note that for all values of x other than zeros

of Q) (x)
Ryn(x;8,9%) = Ry n(x;5,7%)
whereas at the zeros {x,:k=1,..., m<n} of Q; (x)

Ry n(Xe58,y™) = Iim R, ,(x;8,v*)

X=X

Finally, we note that

I

[ Ry, n(x;8,v%) — pdf(x)|| sup  |R, ,(x;8,v*) — pdf(x)]

X€ (-0, )

=max{ SUp  |Ry (335, 7%) = pdf(x)],
xE(—co,oc)
XXy

IRn,n (Xk;s,'}/*) - pdf(xk)] ’

i=1,...,m

\Y

sup  |R, ,(x;5,v%) — pdf(x)]

X€(—o0,0)
= | R}, . (x;8,7*) = pdf(x) ||

The rational function R, , (x;5,v*) is therefore a best uniform approxi-
mation of pdf(x), and we have proved the following theorem.

Theorem 1. Existence of a best uniform approximant. If pdf(x) satisfies
Assumption 1 on (—eo, ), then there is a best uniform approximant to
pdf(x) in the class of rational functions defined by (2).

To illustrate the problem that arises in the proof of this theorem
because T' is not closed, we consider the following density function of
the Pareto distribution

4

k
pdf(x) = Sy (4>0, x> k>0)

We consider the case in which =2 and a class of rational approximants
of the form (2) is being used with s(x) =1/x (x=2 k) and n=4. Now con-
sider the sequence of approximants defined by
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. 2k?
Ryq4(x;5,yY)) = ( )

X
(1/(1+ k% = 172jH2%2 — (kY714 kY — 1/2/H)'?
(/7 (1+k% —172j)12x% = (k37 (1+ k%) — 1/2j) 2% + 1/

Thus,

4 1/2 1/2
= - ) o (e ) 0.055,0,
1+k% 257 1+k* 252 J

k4 1 1/2 1 1 1/2
—_— — 0 -
<1+k4 2j2> ’ ’<1+k“ 2j2> }

and, as j— o,

i 172 1 172
()M wr _ | - .
S A e [ <1+k4> ,0,<1+k4> ,0,0;

k4 1/2 1 \ 172
0,0,'— 5, .4 !03 T .4
<1+k4> <1+k“> ]

The limiting function is then

2k2%/x3 for x>k

R . * =
4,4(%;8,7") 0 for x=k

which is not a rational function, nor is it continuous on the interval
[k, ). However,

2k?
)C3

Ri4(x;8,v") = (x 2 k)
is rational and continuous and is clearly the best uniform approximant
to pdf(x) on [k, ).

4 A convergence theorem

As the degree of the best approximating rational fraction increases, the
error E(n,s)=|pdf(x) —R, ,(x;s,7*)| must be at least as small. In
fact, as Theorem 3 will show, E(n,s) =0 as n— oo, so that the best
approximant R, ,(x;s,v*) converges to pdf(x) as n— . It follows
that for any choice of density function satisfying Assumption 1, there is
an arbitrarily close rational approximant. In this sense, the rational frac-
tions of the class defined by equation (2) are dense in the set of density
functions that satisfy Assumption 1.
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Meinardus (1967) proved a related theorem on the convergence of
rational fractions to a continuous function over a bounded interval.?

Theorem 2: The real-valued function f(x) is continuous and nonnega-
tive over .the interval [—1,1] and is approximated by

P, (x)
Q. (x)

where P,,(x) and Q,(x) are polynomials with real coefficients and
On(x)>0forxe[—1,1].

Em,n(f) = inf ”f~ Rm,n ”

Rm, "€ Vm. n

(14) R, (x) =

where V,, , is the set of all rational functions, as in (14). Then

im E, ,(f)=0

71+ n—»0

independent of the manner in which we pass to the limit.
Proof: Meinardus (1967, pp. 158-60).

Theorem 3: If pdf(x) satisfies Assumption 1 on (—<0, ) and
E(n,s) = ||pdf(x) — R, ,(x;5,7v*)|

where R, ,(x;s,v*) is the best uniform approximant to pdf(x) in the
class of rational fractions defined by (2), then

lim E(n,s) =0

n—x

Proof: Let >0 be arbitrarily small. Then, by Assumption 1 and the def-
inition of R, ,(x;s,%), there exists an L>0 and large enough n for
which

sup [pdf(x) — R, ,(x;5,v")| <e

|x| >L

Now,

llpdf(x)—R;,,n(x;s,v*)u=max{ max  |pdf(x) = Ry (x3597)],
x€(-L, L]

sup lpdf(x)—R,;,n(x;s,v*)!}
x| >L
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= max{ max |pdf(x)— R,’,,,,(x;s,fy*)l,e}
x€(~L,L]

It only remains to show that there is an n; for which n>n, implies that

(15) max |pdf(x) — R, ,(x;5,v")| <e
x€[-L,L]
For then, because e is arbitrarily small, we can approximate pdf(x) by
R} .(x;s,7v*) over the whole real line as closely as we please for suffi-
ciently large n. Hence, E(n,s) >0 as n— .
In fact, equation (15) follows from Theorem 2. We need only trans-
form x=Ly with —1< y<1, and setting

P,(Ly) P, ()

R’ . N =—g(Lyy L2 —F =
nn(X8,77) = $(Ly) 5r o = 50) 5

pdf(x) = pdf(Ly) = pdf(»)

we have —=
_ | pdf(»)y Py
df —R,n = g s
T BT 00

Because pdf(¥)/5(») is continuous and nonnegative over [—1,1], it
follows by Theorem 2 that equation (15) holds for n sufficiently large.

5 Local expansions for densities

The theory of the last two sections shows that for a given pdf in the class
defined by Assumption 1 there exists a best rational fraction approxi-
mant of the type (2) and that, as we increase the degree of the approxi-
mant, this converges to pdf(x) over the entire real axis. In any practical
situation, of course, we will need to prescribe the degree of the approxi-
mant to be used and attempt to find the best approximant in the given
class. This normally requires numerical methods, and the algorithms dis-
cussed in the literature (Meinardus, 1967, pp. 170-1; Rice, 1964, Chap-
ter 6) rely on knowledge of the true function values at a grid of points as
well as, in certain cases, the function derivatives. This seems too much
to expect in an econometric context, where, even in those cases in which
the exact density function is known in analytic form, numerical compu-
tations often are impossible because of convergence problems with the
multiple series representation of the density or the inadequate tabula-
tions of the special polynomials that appear in the analytic expressions.

We are therefore left with the problem of how, in a given situation, to
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get close to the best approximant in the class (2) without having to rely
on arbitrary evaluations of the exact distribution. The solution we
present to this problem in this and succeeding sections of this chapter is
based on the idea of using the local behavior of the true density in the
body of the distribution and in the tails to construct a global approxima-
tion of the form (2). In principle, the procedure we develop for moving
from local to global density approximations can be based on knowledge
of local behavior at an arbitrary set of points. But, in practice, it will be
sufficient to use information concerning the local behavior of the den-
sity in the tails and around the center of the distribution. The applica-
tion we consider in Section 8 will show that this information is sufficient
to secure excellent global approximations to rather complicated density
functions, even with rational fractions of lower degree.

The local behavior of density functions can take the form of expan-
sions about the value of the function at a certain point or perhaps esti-
mates of the function values obtained from Monte Carlo simulations.
We shall deal with the case in which some analytic information from
local expansions is available; at the same time, it should be clear how the
procedure we develop can also be used to accommodate Monte Carlo
evidence.

Our present analytic knowledge of the exact distribution of a variety
of econometric estimators and test statistics shows that there exists an
asymptotic expansion of the density function in ascending powers of x !
as the argument x approaches the limits of its domain (e or +co). In
general, we can write the expansion about infinity in the form

(16)  pdf(x) ~ t(|x]) (g + /X + ar/x* + as /x> + ay /x*. .. )

as x— +oo. The coefficient function #( |x|) = 0 as | x| &> and, in the
case of most of the common simultaneous-equations estimators, is of
the form #(|x|) = |x| 7%, where £ 22. Thus, in the case of the two-stage
least-squares estimator, k=/-+2, where / is the degree of overidentifica-
tion in the equation being estimated. An expansion of the type (16) was
developed by Sargan and Mikhail (1971) for the instrumental variable
estimator and was used by Sargan (1981) in the analysis of Monte Carlo
estimates of moments that do not exist.

At points {d;:i=1,...,I}, where pdf(x) is continuously differenti-
able to an appropriate order, we have the Taylor expansions

(17 pdf(x) = B + By (x — d)) + Bn(x— d)? + Bs(x— d)*
+ Bulx—d)*+ - (i=1,...,1)

In a number of cases we also have the analytic form of the leading term
in the series representation of the density. If we denote this leading term
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by w{x), then it will be useful to consider extensions of the expansion
(17) that take the form

(18) pdf(x) = w(x) {Big + Bi (x — d;) + B (x — d))?
+ Balx—d)’ + Bu(x—d)*+ )

There are two obvious choices of the points d;: (i) the origin, particularly
for certain test statistics like the ¢ ratio; (ii) the true value of the relevant
parameter, when pdf(x) refers to the marginal distribution of a certain
estimator,

Although expansions such as (16) and (17) usually produce good
approximations only in the immediate neighborhood of the point of
expansion, they can be used to construct approximations that perform
well outside the immediate locality of the approximation while retaining
the good behavior of the original expansions within the locality. With
reference to (17), the fourth-degree polynomial in x may yield a good
approximation to pdf(x) in a neighborhood of the point d;, but in most
cases its performance will rapidly deteriorate outside of this neighbor-
hood, and it will be quite inadequate as an approximation on the tails.
On the other hand, the coefficients 8, in the expansion (17) usually con-
tain information that can produce greatly improved approximations out-
side the range in which expansion (17) itself is immediately useful. That
this is so is demonstrated by the extensive practical experience with Padé
approximants in the applied mathematics literature. These approximants
are rational fractions for which the corresponding Taylor series matches
the Taylor-series expansion of a given function to as many powers as
possible. In the present context, we can refer to the following example
used by Baker (1975):

..

1+2x>"2 15, 13 , 14
=145x— x4 —
l+x

(19) ﬂ”=< 278 "6 ¥ T s ¢

The Taylor series for f(x) in (19) has radius of convergence equal to
1/2. Yet as x becomes large, f(x) is a well-behaved function that tends
to V2 as x— o. Using only the first three coefficients 1, 1/2, —5/8 in
(18), we construct the Padé approximant

1+ (7/4)x 1 5., 25
200 ————— =1+ _-x—-x*+—=x}+...
(20) 1+ (5/4)x 2 8 32
This has the same Taylor-series expansion about the origin as f(x) to
O(x?), and it tends to 7/5=1.4 as x — o. Thus, using only three coeffi-
cients in a local expansion about the origin, the Padé approximation (19)
provides an approximation at infinity to f(x) that differs at the second
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decimal place. Even within the radius of convergence of the Taylor
expansion, expansion (20) outperforms the Taylor expansion. For
instance, at x=1/4, f(x)=1.0954451, and the first three terms of the
Taylor expansion give 1.0859375, whereas expansion (20) vyields
1.0952381, providing accuracy to at least another decimal place.

This example suggests that Padé approximants can have the useful
property of accelerating the convergence of a given power series within
its circle of convergence, while at the same time considerably extending
the domain over which truncated series expansions can give useful
results. These features make Padé approximants attractive for con-
structing first-step rational fraction approximations from the informa-
tion embodied in purely local density expansions such as (16), (17), or
(18). Section 6 will be devoted to the algebraic details of this construc-
tion and will give the appropriate formulas.

Because the coefficients in the local expansions are needed in the con-
struction of rational fraction approximants, we shall now give an
analytic procedure for extracting local density expansions such as (16)
and (17). It will be useful first to make explicit the general form of the
characteristic function.

Assumption 2: (i) The characteristic function cf(s) has the general form
(21) cf(s) = cfy (8} + cfa(s) + cf;(s)
where

M-l
cfy (s) =e™ Eopm(iS)'"

. "k L(k) .
cfy () =€ms|5]”k§0 1;0 qur|s|“(nfs])’,
w2M, L(k)=0 or 1 forall k£

cf{?(s) is absolutely integrable over every finite interval for j=
0,1,..., N, where N is the smallest integer greater than or equal to
p+K+1and cf™(s) is well-behaved at infinity (Lighthill, 1958, p. 49).

(ii) The behavior of cf(s) as s— 0 is given by the asymptotic series
expansion

) M- © L(k)
cf(s) ~ e"”{ Y p,Us)"+ s Y ¥ qkelsl"(lnlsn’}
m=0 k=0 {=0

This assumption is sufficiently general to include a very wide class of
distributions and should apply to most econometric estimators and test
statistics in both classical and nonclassical (including dynamic-model)
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situations. The first component of the characteristic function cf, (s) is
analytic and ensures that integral moments will exist to order M—1 if
this is an even integer and M -2 if M—1 is odd (Lukacs, 1970). In cases
in which the distribution does not possess all its moments, the second
component, cf, (s), of (21) is important in the local behavior of ¢f(s) in
the neighborhood of the origin and is, as we shall show later, instru-
mental in determining the form of the tails of pdf(x).

We start with the following two basic results that relate the tail
behavior of density functions to the regularity properties of the charac-
teristic function. They follow without difficulty from the standard dis-
cussions on this subject in the literature (Feller, 1971; Lukacs, 1970), but
they also demonstrate that we need to go somewhat further to extract a
tail expansion of the form (16).

Lemma 2: If the distribution with density pdf(x) and characteristic
function cf(s) has finite (M —1)th absolute moment, then cf(s) is M—1
times continuously differentiable and the derivatives cf”(s) =0 as
s— +oo for each n=0,1,...,M~-1,

Proof: The first statement follows by dominated convergence from the
existence of the (M —1)th absolute moment. The behavior of the deriva-
tives at oo follows from the representation

£ (s) = | e (i) pdf(x) ax

—co

and, because (ix)"pdf(x) is absolutely integrable on (—o0, ), the
Riemann-Lebesgue lemma ensures that cf') (s) — 0 as s— %o for each
n=0,1,...,M-1.

Lemma 3: If cf(s) is M—1 times continuously differentiable, if
cfM(s) > 0as s— =+, and if cf"(s) is absolutely integrable for each
n=0,1,...,M—1, then

.
pdf(x) = — S e "Fcf(s) ds
oM+l %
= 7(“)2% 5 e = efM=1(5) ds = 0(x M+

— 00

as x—» o,
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Proof: Erdélyi (1956, p. 47). Lemma 3 shows that pdf(x) =0 as
x—>+o at least as fast as x ~M*!; but this is, in general, not a very
sharp result, for if the (M—1)th absolute moment of the distribution
exists and pdf(x) satisfies Assumption 1, then we would expect that
pdf(x)=0(x M=% for some 6>0. For example, in the case of the
Cauchy distribution, cf(s)=e~ "', and Lemma 3 demonstrates that
pdf(x) =0(1), whereas, in fact, pdf(x) = O(x ~?). Thus, Lemmas 2 and
3 are not very helptul in providing local expansions about infinity of the
form (16).

However, a sharper result that does lead directly to the asymptotic
expansion (16) can be obtained from the more explicit representation of
the characteristic function (21) and the theory of Fourler transforms of
generalized functions and their asymptotic expansions (Jones, 1966;
Lighthill, 1958).

Theorem 4: If the distribution with density pdf(x) and characteristic
function cf(s) satisfies Assumptions 1 and 2, then pdf(x) has the fol-
lowing asymptotic expansion as |x} — co;

1 X .
pdf(x) = 5 U | L culsen())*+ T cym(sen(x)*
Wlxi r=0| k+i=r k+i+m=r
mzl

+ ) ZI] dy ln]x[(sgn(x))k]x" +0(]x|™™)
+i=r

where the coefficients ¢y, ¢xmn, and dy; in this expansion are defined by
equations (26) and (27), which follow, and N is the least integer
Zu+k+1

Proof: This is based on the theory of asymptotic expansions of Fourier
transforms as developed by Lighthill (1958) and Jones (1966).

We shall use the notation ft;(x) to denote the inverse Fourier
transform of cf;(s). Now, because the functions cf;(s) for i=1,2
do not lie in L (—90, ), the ft;(x) cannot be defined in the usual way
but do exist as generalized functions. In particular, the cf;(s) can be
defined as generalized functions, because there exists a G>0 for which
(14+5%)~Ycf,(s5) EL(—00, ) (Lighthill, 1958, p. 21). The ft;(x) are
then defined as the generalized functions obtained as the inversc Fourier
transforms of the generalized functions cf; (s) (Lighthill, 1958, p. 18).

Starting with ¢f; (s), we write

cfi (5) = lim el E pme S is)ym
t—0+ m=0
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and then, by definition,

] M=l “ o |
fty(x) = lim {—— E D j e—tsxemse—\su(is)m dS}
=0+ 2T m= =
1 Mol am B . ,
= 2 E pm(_l)m lim {? S e_l(—\'—’?)se_/sﬂds}
m=0 t—0+

1 Ms! dn .
(22) a E pm(—l)’" lim {B;(—m'{ el-ite=m—1s 4o

27 m=0 10+

o e —3 8

x0

+ Se[i(x—n)—t]s dS:H

0

M—1

i
— X pup (=)™ (x = m)
2T m=0

i

where 8(») is the Dirac delta function and & (y) is its mth derivative.
We deduce the asymptotic behavior of ft;(x) as x—» o immediately
from (22) as

23 fty(x) =0(x75

for any value of k> 0.
The second component is

K
cf2(s) = e™ X {qyols/*™* + gu |s[** ¥ In|s|)
K=o

. X d
e™ Y |:<Qk0 + gi a_>|5faj|
k=0 & a=p+k

K a
im e 3 | (500 + a5 )lsle |
(—0+ k=0 dox a=p+k

On inversion, we obtain

1 X AN e 1
ft,(x) = lim {— v (qko+qk1 —) S e"”e’"’e"”{s["ds] }
(—0+ (27 k=0 Oa a=putk

-0

. 1 X 0
= lim P Y| (Grotan e
=0+ (<7 k=0 o4
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o0 o0

x(g —(zy+t)s % ds + j —-(—iy+l)ssaars>:| }
a=p+k

0 0

1 K 0
— E |:<Qk0+Qk1 ‘)
27 & Jo

a=u+k

y=x—1q

ll

t—0+
y=x-n
1 K
i) E [<QkO+le )F(Ol'*'l)l)’l o
X {e—(ivr/z)sgn(y)(a+l) + e(ivr/Z)sgn(y)(a+])}:|
a=p+k
y=x—y

LK @
27 = dro T4 P

x 2T (ec+1) cos{ m(a+1)) |)’|—a_]:|

K

! Y |:F(oz+l) cos{1m(a+1))
T k=0

X {grot (Y (a+1) =dmtan{in(a+1)) —In|y)) gy}

x Iyl“‘””]

a=u+k
y=x-7

where ¥'(z) =I'"(z)/T'(z), the logarithmic derivative of the Gamma
function. Thus, the asymptotic behavior of ft;(x) as x — o is given by
the series

K =
(24) fty(x) = ;OI_EO[F(OP{FI)COS[%T(OI'FI)}

!
T k
X {Qk()'*' (w’(a+l)—%7rtan[ imla+1)}

— Injx| +m°Z:J] % (/%)m)qk]}
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!
x (Ol+l)] ﬂ lx|_(u+])
/! X a=p+k

where (a+1);=T"(a+1+0/T{ax+1).

The third component of the characteristic function is cf3(s). Now,
ft1(x) is the inverse Fourier transform of cf;(s), so that (—ix)™ ft5(x)
has the inverse Fourier transform cf{™ (s). By Theorem 18 of Lighthill
(1958, p. 49), it now follows that (—ix)" ft3(x) =0(1) as x—> . This
last result, together with equations (23) and (24), implies that as
|x| >,

pdf(x) = ft;(x) + fty(x) + ft3(x)

@) = gt an{ T 2 (1) -~
_WIXI“+]k=0x\ {Qko qm{m:lm<x> nx}]

o !
x B U (1) 4 o

/=0 I
1K fo(utk+1)y/
26) =——r L | L HOETEEUM (sen(a))t
| x|*T 0 | ksi=r /!
’ ( +k+1) 1+m
+ IRy : /M (sgn(x))k
k+l¥m=r l'm

mz1
y gh (p+k+1)m'
k+I=r /!
X x7 "+ O(]x|™")

1n|x|(sgn(x))k:|

where
gio=T(p+k) cos{jm(p+k+1))
X (grot+ (¥ (u+k+1) = jmtan(Ga(p+k+1)}) gy )
gia = T(p+k) cos(zm(p+k+1]an
and N is the least integer > u+k+1. We rewrite (26) in the form
1

T‘X"ri—] ,

K
(27) ) [ Y cusen(x))*+ ¥ cum(sgn(x))*
=0 | k+1=r k+

+m=r
mz1

- k+Z[]: dy Inixl(sgn(x))’i|x"+ O(|x|”N)

and this establishes the result.
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To illustrate the use of Theorem 4, we take the simple example of the
Cauchy distribution with c¢f(s)=e ~%. In this case

cfi(s) =1
B K (—l)k+] .
CfZ(S) - ,Sl kgo (k+1)| Isl
cfy(s) = —'ﬂz—e—“‘ (0<8<1)
3 (k+2)!

and we deduce from (26), by setting u=1, n=0, and g;; =0, that

1 & (=) (r=2) cos{im(r+2)}
pdft) =7 L, (r+1D)!
X (sgn{x)) x~"+ O(|x|~%~?%)
1 X

= L (=D eos(in(r+2)} x| 7"

X" r=0

Now, cos{im(r+2)} equals (—1)2*D when ris an even integer and
equals zero when r is odd. Hence, setting r=2n and K=2, we have

1 N
pdf(x) = —5 L (=D"(x?) ™"+ O((x?)~ N+
TX" n=0
This expansion can be verified directly from the density function
pdf(x) =[7(1+x%)] ! itself.

Theoren 5: 1f s™ cf(s) is absolutely integrable over (—co, ), then the
local expansion of pdf(x) about the point x=d, is given by

N=1
(28)  pdf(x) = X B,(x—d) + O(x— dp)™
Jj=0

where

[2=]

1 _

By= 5= | (~isy exp(~isd)cf(s)ds (j=0,1,...,N~1)
27j!

Proof: Because s™ cf(s) €L(—, ), we expand the exponential e ~**

in the inversion formula

1 .
pdf(x) = — S e~ cf(s) ds
2T

—c0
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about the point x=d; and integrate term by term, giving

1 N=1 T ‘ .
— ¥ S (—is)! exp(—isd;) cf(s) ds(x— d;)’
2wjl =0

oo

+ -27r—lNT S (—is)N exp(—isd;) cf(s) ds(x—d;)™
where Eii lies on the line segment connecting x and d;.

Local expansions of the type discussed in this section for the tails and
the body of the distribution can also be extracted under similar condi-
tions for the distribution function. These expansions will be useful in the
development of a corresponding theory of global approximation for the
distribution function rather than the density, and they will be discussed
in a later paper. Expansions of this type have already been given for
many of the common distributions in the statistical literature (Zelen &
Severo, 1965).

6 Multiple-point Padé approximants

As discussed in the previous section, Padé approximants can be used to
improve the convergence properties of local Taylor expansions, and they
have the additional useful property that they frequently extend the
domain over which these local expansions provide good approximations.
This section will show how Padé approximants can be derived from the
local density expansions (16) and (17). These approximants will provide
a preliminary set of rational fractions. They can then be used directly as
approximations to pdf(x) or modified so that they belong to the class of
rational fractions (2) and have satisfactory global behavior. The ques-
tion of modifying the preliminary rational fractions will be taken up in
Section 7.
We start by writing the density function in the form

(29)  pdf(x) = s(x) pdfg(x) (-0 <x< o)

where s{(x) is a real continuous function satisfying s(x) >0 over the
entire real axis and s(x) — 0 as x — oo, This representation of pdf(x)
reconciles with the class of rational fractions defined in (2) and allows us
to accommodate information about the coefficient functions ¢(|x|) and
w(x) that appear in the local density expansions (16) and (18). In many
cases, s(x) will represent the leading term in the multiple series represen-
tation of the density pdf(x), and in such cases s(x) usually will be
identical with #(|x|) and w(x). When this leading term in the density is
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unknown, a suitable alternative will be to set s(x)=¢(|x|) directly or
some modified form of #(|x]) that has the same asymptotic behavior but
that is well behaved elsewhere on the real axis. If necessary, the expan-
sion (18) can then be adjusted to take account of this modification so
that (17) will be correct to the same number of terms.

If we write the local expansions of pdf,(x) in the form

B0)  pdfy(x) ~ap+ ayx P+ crx T+ agx T3

+ x4+ o0 (x > £0)
(31) pdfs(x) ~ Bip + Ba (x—d) + Ba(x—d)? + B3 (x—d;)?
+ Bulx—d)*+ -+ (i=1,...,I), x—>d

our problem is to construct a rational fraction of the form
P (x) ay+ax+ -+ ax"
Q,(x)  by+bx+ -+ bx"
(n = an even integer)

(32) (n/n] =

which has the same local behavior as (30) and (31) and to as high an
order as possible. Such a rational fraction is called a multiple-point Padé
approximant, and these have been discussed by Baker (1975, Chapter 8).’

The equations that define (32) can best be introduced by considering
the approximant based on the Taylor series about a single point. We
take the case of (31), with ¢;=0, and normalize (32) by setting by=1.
This normalization ensures that Q,(0)=1>0, so that the [n/n]
approximant will not have a pole at the origin, this now being the point
of expansion of the Taylor series (31). The coefficients of [n/n] are now
determined by the equation

(33)  pdfy(x)Q,(x) = P,(x) = O(x**)

Explicitly, we have the relations

Bio = ap
Ba  +Bunb =a
Bio  +Babr  +Bigby =0
Bis  +Baby  +Buby  + Bigbs = a3
(34) .. . . ) ) . Coeee
Bin  +Bin-1by + Bip—2by +Bi_3bs + -+ + Binb, = a,

Bins1 + Binby  + Bino1by + Bi—2by + -+ +Byb, =0

Bian + Bizn—y  + Bizn-2b2+ Biop—3bs+ -+ +B,b,=0
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which comprise 2n+1 equations in the 2n+1 required coefficients of
[n/n), namely, {ag,a@,--.,a,;bis-- -, b,}. Baker (1975)* has proved
that although a solution to (34) does not necessarily exist for all positive
integers n, there is an infinite subsequence {n;} for which the Padé
approximant [n;/n;] exists for any formal power series with ;0.
Further, when the approximant [n/n] exists, it is unique.’

We see by inspection of (34) that in order to compute the coefficients
of [n/n] we need the coefficients in the local expansion (31) to order 2n.
Even for low values of » this is likely to become prohibitive quite quickly
when dealing with the distribution of an econometric statistic because of
the increasing difficulty in extracting higher-order coefficients and the
complications of the resulting formulas. Moreover, in view of the
smoothness of most density functions, in practice there will be little
advantage to be gained from increasing the order of contact at a par-
ticular point past n=3 or 4. In many cases, n=2 will be sufficient to
provide a highly satisfactory local density approximant.®

Multiple-point expansions provide an excellent means of reducing the
order of contact at individual points to within manageable limits while
extending the domain over which the final approximant will perform
well. Thus, a two-point Padé approximant [ #/n] might be based on the
first n+1 equations of (34), which require local expansion coefficients
up to 8;, and a corresponding set of n equations with expansion coeffi-
cients up to order n—1 for a point other than the origin. These equations
will then yield an approximant with contact of order » at the origin and
n—1 at the second point.

1f one of the points of local expansion is infinity, then the equations
take on a slightly different form. In this case, rather than (33), we require

(35)  pdf(x)Q,(x) = P,(x) = O(x~ 271y

as x — oo, We then have the following explicit relations from (30), (32),
and (35)

o b, =aq,

ab, +ogb, =y

ab, +oab,- +oagby s =dp-_2
(36)

a,b, +o,_ b +o, b, 2 + - Foy=ag

Cpy1bp+ aybyy ta, by + o Foy=0

O‘2nbn +a2n—lbn—l+a2n—2bn—2+ e =0
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As with (34), this is a system of 2n+1 equations in the same number of
unknown coefficients.

In the general case of expansions about arbitrary points d;, as in (31),
the equations that determine the coefficients take the form

@37 [ .Eoﬁu(x—d»’}Qn(d,« + (x=dp)) = P,(d; + (x—d,))
j:
=O((X_dl)2n+]) (i=l,...,[)

If we write y=x—d; and expand Q,(d;+y) and P,(d;+y) as

Onldi+ ) = k;[) byldi+ )" = kgob,ﬁ")yk =0, (»)

n n » _
P+ 3) = B aldy+ 30 = B affy*= PO ()
k=0 k=0

we have

(38) bpV=KWp  a=KUq

where
KW=\|1d & & - a |,
0 1 2d; 3d% --- (Hadr!
0 0 1 3d - (Hdr?
(39) . . . . .
00 0 0 - 1

bt =| p§| b=1by|, ah=|al"|, a=|a,
biD b, a®h a,
by by at? a,
and (37) becomes
(40) ( AEOB,‘,-yf)Q,‘,"’(y) — P (y) = O(y¥*h)
j:

which is of the same form as (33) but in the transformed coefficients.
To work in terms of the original coefficients, we can use the transfor-
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mation matrix X ¢ in the case of the vector a‘”, as in (38), but in view
of the normalization on the vector b, we partition X () and b as follows

KO=7 11£0°7, k©W'=[d,dld}, ..., dI
Ky

b’ = [bo, ;] = [1,b.]
We then have, from (38),

b =kD'p,, b =KJb,

We now define

G =10 0 0 0], &®=[6
—Bio 0 0 0 Ba
= Ba — B 0 0
- B —Ba =B 0
L"Bin—l ‘Bm—z _Bin—3 e _51'0 _Bin_

The first n+1 equations of (34) can be written as
a+GWp, =g

or, in the general case of a local expansion about the point d; (not neces-
sarily the origin),

@1y aD + G = gl 4 g pd

Transforming back to the original coefficients in the rational fraction,
we get

KW qg 4+ G(i)Kéé)b* = g(i) + g(")k(")’b*
or
(42) KOq 4+ [G(")Kg) — gy, = g

The system of equations (42) holds for each point of local expansion,
that is, for i=1,..., I in our original notation (see equation (31)).
Note that as we have constructed (42) the system involves nx 1 equa-
tions. In practice, it may be convenient to use fewer equations at each
point, thus reducing the order of contact of the Padé approximant at
each point and requiring less analytic information about the expansion
coefficients. The procedure allows us to make up for this reduction in
the number of equations at each point by increasing the number of
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points we use in developing the approximant. This process has the
additional advantage of improving the global nature of the final
approximation.

In the general case we let KV be (m;+1)x (n+1), G be
(mi+1) x m;, K& be m;x n, g be (m;+1) x1, and k' be n+1.
The complete system of equations that determine the coefficients in the
[n/n] Padé approximant are then based on (36) and (42) and take the
following general form:

N+l n

4 | T ';1' r T4
£ KW | G kLY — gl gy o g | &
W o ____] & L)
| :
! ay
L3 ™ TTTT
s xkn ! NON SRR IAGT by n iz
2| K | GUKY -8k b g =
:_ﬁ____' ___________________ 2 - -
|
|_°1r+l %4z Xy tp 0 ?
| —a, — o _
(43) O e | r '+ | Aty - |
| . bn
|
I—Otz —ty e g LoJ 0
[ I ____________________ T ‘i
& |- - -ty —0p |
In+n : ~Lg —tey -y _ ) 0
‘ | 0 —Q —Xy -2
| .
w o ) g Lo
¥ I i Jv

where m,=n+r+1. In (43) we need to select 7 and the m; and m,, in
such a way that L/_| 7,4+ M« 2 2n+ 1. In the final block of equations in
(43) we shall often select r=0, so that 7, < n+1. As with the case of the
local expansions (31) about the points ¢;, this will reduce the number of
final expansion coefficients that are required to solve for the [n/nj
Padé coefficients. In some cases (the application in Section 8 turns out
to be such a case) we may have more than enough coefficients, so that
Ym;+me>2n+1, and we may neglect some equations of (43) to
obtain a solution. When this happens, it would seem preferable to
neglect those equations that refer to higher-order points of contact of
the Padé approximant with the local expansions rather than those that
refer to lower-order points of contact.

7 Modifying the Padé approximants

By solving (43) for the Padé coefficients, we obtain a preliminary
rational fraction [n/nr] as in (32). This can be used to construct an
approximation to pdf(x) of the form s(x)[n/n] =s(xX)P,(x)/Q,(x). In
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some cases this will turn out to be a perfectly satisfactory approximant.
In others, it will need to be modified to produce a good approximation
to pdf(x) over a wide interval. This is because there is nothing in the
procedure outlined in Section 6 that prevents the occurrence of zeros in
the polynomial Q,(x) on the real axis. These zeros induce poles in the
approximant and will need to be eliminated if the approximation is to
perform well, unless the zeros appear in remote and irrelevant regions of
the distribution. My experience to date suggests that the latter is not
usually the case. The normal occurrence is for the procedure in Section 6
to produce a preliminary approximant with either no poles at all or
a pair of poles, at least one of which lies within the main body of the
distribution.

In addition to unwanted poles, the [n/n] Padé approximant may
become zero at a finite number of points on the real axis. Because we
shall, in general, have pdf(x) >0 for all finite x, we shall normally wish
to eliminate the zeros of the approximant unless they occur well outside
the region of interest in the distribution.

When poles occur, they are typically found in the bridging region
between the points of local density expansion used in (43) to construct
the Padé approximant. This suggests that an obvious way of helping to
remove unwanted poles is to introduce an additional point of local
expansion in (43), perhaps at the price of reducing the order of contact
at another point. However, there is no guarantce that this method will
eliminate poles, and it has the disadvantage of requiring additional
information about the distribution to be operational. The procedure we
shall suggest later does not suffer from these disadvantages. 1t will
eliminate the poles, and it is sufficiently flexible to allow for additional
information about the distribution to be incorporated at the time of
modification, if such information is available.

Before we outline the procedure, it may be worth mentioning that the
occurrence of unwanted poles in Padé approximants is a long-standing
problem. The presence of poles in the approximant is one of the reasons
that it is difficult to prove general theorems about the convergence of
Padé approximants to a given function as the degree of the approximant
increases. Many of the general results that are available (Baker, 1975,
Part II) concern the convergence of subsequences as n— . For an
example of nonconvergence, we can cite the work of Chui (1976), who
proved that in the general family of entire functions there exists a func-
tion for which the sequence of [n/n] Padé approximants is divergent
everywhere in the whole complex plane except at the origin.

The procedure we suggest for modifying Padé approximants so that
they will be well behaved over the whole real axis is based on the follow-
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ing simple idea. If zeros of the numerator and denominator polynomials
P, (x) and @, (x) occur on the real axis, they will occur in pairs, because
n is even. We then replace the real roots of the associated quadratic
equations by complex conjugate pairs in such a way that we preserve, as
far as possible, the known behavior of the function at the points of local
expansion. Various degrees of sophistication are possible in the practical
application of this method. In fact, as we shall demonstrate in the
application of Section 8, even crude adjustments that preserve only con-
tact of order 1 at the points of local expansion seem to work remarkably
well. After we have adjusted the coefficients in the Padé approximant so
that P,(x) >0 and Q,(x) >0 throughout the real axis, we simply numer-
ically integrate and rescale so that the area under the curve is unity.
Some of the principles involved in the method outlined in the pre-
ceding paragraph can be illustrated in the case of an approximant with
n=4. Let the [n/n] Padé approximant extracted by the procedure of
Section 6 with points of local expansion at x=0 and x ~!=0 be given by

oo aixl: _ A x—y ) (x— 7)) (X=y) (x—7)
T o bix! by(x—8,)(x—8,)(x=8)(x—15)

44)  [4/4](x) =

where vy; and v, denote real zeros of the numerator and §, and 6, denote
real zeros of the denominator; (v, %) and (6,8) are complex conjugate
pairs. We start by rewriting (44) in the form

Cafx? = ()X vl — (x =)
“3) [4/4]1(x) = bafx?— (8 + 8)x + 8,8} (x — 8)(x — &)

We now propose to modify the coefficients of the quadratics in braces
so that ‘[4/4] (x)>0 for all real x, while retaining the same behavior as
in (45) in the neighborhood of x=0 and x ~!=0. We therefore define the
family of functions

alex? +dx+el(x—y)(x—7%)

(46) [4/4](x;©) = bal fx? + gx + h}(x — 8)(x — §)

where ©'=(c, d, e, f, g, h) is a vector of real parameters to be chosen.
To ensure equivalent local behavior in (45) and (46), we restrict our
choice of © so that

() c/f=1
(i1) e/h=1v72/6,6;

Now, (i) will ensure that [4/4](x;0) —>a,/b, as x— oo, and (ii) will
ensure that [4/4] (x; ©) — as7y172]v|%/b46,8,]6]% as x—0.
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In most cases we find that the zeros (v, ;) and (8;, 8,) occur with
the same sign patterns. This is because the zeros and singularities lie in
the intervals between the points (here 0 and ) of local expansion. If
we take the case in which both v, v,>0 and §,6,>0, our task is then to
raise f and 4 from their original values in (45) so that the discriminant
g2—4fh<0. This will require proportional changes in ¢ and e so that (i)
and (ii) remain valid. Often these automatic changes in ¢ and e will be
sufficient to ensure that there are no zeros in (46). If they are not, some
small adjustment in the value of 4 will normally suffice. There is an
added advantage to adjusting the value of ¢, in that simple hand calcula-
tions will show what adjustments in this parameter will improve the
order of contact of (46) at the points of local expansion while preserving
the desired global behavior of [4/4](x;0)>0 for all x. Various other
scenarios for parameter changes are possible, but those we have illus-
trated should indicate some of the relevant considerations and the ease
with which they can be performed.

The family of rational fractions (46) based on Padé approximants
have introduced extra flexibility in the approximating procedure. The
idea is essentially to partially reparameterize a first-stage Padé approxi-
mant so that we can achieve good global behavior by sacrificing some
degree of contact at the points of local expansion. But with the new
family of approximating rational fractions (46), we have the opportunity
to adjust the parameters to take account of any additional information
about the distribution that has not already been used in the equations
(43) that define the original coefficients (perhaps less precise informa-
tion based on Monte Carlo work with the same distribution).

An obvious alternative procedure for modifying the Padé approxi-
mant (45), but one I have not yet tried in application, is to use splines to
bridge the intervals in which singularities and zeros occur. This method
may be particularly useful in cases in which zeros and singularities occur
together in close proximity.

8 An application to a simultaneous-equations estimator

We consider the single structural equation

(47) N=p6y+Zivt+tu

where y; and y, are vectors of 7 observations on two endogenous vari-
ables, Z; is a Tx K| matrix of observations on K| exogenous variables,
and u is a vector of random disturbances. The reduced-form equations
for y, and y, are
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(48) [xiya] =12, 2] [ T le} + [vi0,]
Ty T2

where Z, is a 7X K, matrix of observations of K, exogenous variables
excluded from (47). We assume that the usual standardizing transforma-
tions have been carried out, so that () T~'Z"'Z=1I,, where [Z=2Z,! Z,],
k=k, +k,, and (ii) the rows of [v,} v;] are independent and identically
distributed normal vectors with zero mean and covariance matrix equal
to the identity matrix. We also assume that (47) is identified so that
Kz 1.

The two-stage least-squares estimator 2SLS of 8 in (47) is given by the
ratio 8=y;Ry,/y5Ry,, where R=Z,Z;. The exact density function of
B is known to be the doubly infinite series (Richardson, 1968)

exp[—(#%/2)(1+89)] & [(K+1)/2];
B(1/2,K,/2) (1+x2)E*D2 2 (K, /2); !

x{u_z (1+6X)2]j1F1<K2~1 . Kz,u252>

49) pdf(x) =

2 1+x? , Yt

which depends on the three parameters 8, K,, and p?= T4, 7ss-

The extensive tabulations of Anderson and Sawa (1979) show that
(49) may be adequately approximated by the asymptotic normal only
when p? is very large; the size of u? required for the asymptotic distribu-
tion to provide an adequate approximation is itself contingent on the
size of 8 and K,. Even for moderate values of 8 and K, the computa-
tions of Anderson and Sawa (1979) show that extremely large values of
u? (well over 1,000) are required to secure a satisfactory approximation.

As discussed in the introduction, other approximations to (49) that
perform satisfactorily for a range of parameter values are the Edgeworth
(Anderson & Sawa, 1973, 1979) and saddlepoint (Holly & Phillips, 1979)
approximations. But, when w? is small, both these approximations
become inadequate.

In Figures 5.1, 5.2, and 5.3 we illustrate the inadequacy of these three
different methods of approximation in the case in which §=0.6, x>=4.0,
and K=4,10. This is rather an extreme case in which p? is very low
(around the lower limit of u? values found by Anderson and associates
(1978) in their numerical computations of key parameters for actual
econometric models). It has been chosen to test the adequacy of the new
method of approximation discussed in the earlier sections of this chapter
specifically in a case in which the existing methods break down.

Figures 5.4 to 5.8 detail the approximants obtained at each stage of
the procedure outlined in the previous sections of this chapter.” In the
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Figure 5.1. (@) Asympiotic normal approximation: (A) exact density; (B)
asymptotic normal.

(&) Asymptotic normal approximation: (A) exact density; (B) asymptotic
normal,

first stage of the procedure we need to select the coefficient function s(x),
as in equation (29). A crude choice would be s(x)=[1+|x/*2*!]7,
because this has the same asymptotic behavior as |x|~®2*D which in
this case is the coefficient function in the tail expansion (16), and
because this function is also well behaved elsewhere on the real line. An



Approximants to probability densities in econometrics 157

w=4 K=4 =06

(b)

Figure 5.2. (a) Edgeworth approximation: (A) exact density; (B) O(7 ~1/2y;
(C) (TN,
(&) Edgeworth approximation: (A) exact density; (B) O(T-1/2); (C) O(T-1).
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Figure 5.3. (a) Saddlepoint approximation: (A) exact density; (B) saddlepoint.
(b) Saddlepoint approximation: (A) exact density; (B) saddlepoint.
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Figure 5.4. Local density approximations at the origin and in the tails to pdf(x):
(A) exact density; (B) local approximations.
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Figure 5.5. First-step [4/4] Padé approximant to pdf(x): (A) exact density;
(B) Padé approximant.

alternative and better choice is the leading term in the density expansion
(49), namely,

-1
(50) s(x) = [BG 152_2>(1 + xz)(K2+1)/z]

This is, in fact, the pdf of 8 under the null hypothesis that 8=0 and
my2=0 (Basmann, 1974). As mentioned in the introduction, leading



160 P. C. B. Phillips

et s 0.00
T T T 1

[
-2.00 -1.50 -1.00 -0.50 0.00 050 1.00 150 2.00

Figure 5.6. Modified Padé approximant to pdf(x); first change of coefficients:
(A) exact density; (B) modified Padé approximants.
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Figure 5.7. Modified Padé approximant to pdf(x); second change of coeffi-
cients: (A) exact density; (B) modified Padé approximant.

terms such as (50) in multiple series representations of density functions
usually can be derived without much difficulty and often will be avail-
able even in cases in which an analytic form for the exact density has not
been obtained. In the present case, a few elementary manipulations
show that 8 takes the form of a standard normal variate divided by the
square root of a chi square with K, degrees of freedom, with the numer-
ator and denominator independent. The statistic 3 is therefore propor-
tional to a f-variate with K, degrees of freedom, leading to a pdf of the
form given by (50).



Approximants to probability densities in econometrics 161
~ 1.00

- 0.80

0.00

-2.00 -1.50 -1.00 -0.50 0.00 0.50 1.00 1.50 2.00

Figure 5.8. Modified Padé approximant to pdf(x) with renormalization:
(A) exact density; (B) modified Padé approximant.

Writing pdf(x) =s(x) pdf,(x), as in (29), we then extract the local
expansions (30) and (31) for pdf,(x). The expansions we use are for the
tails (x~'=0) and the origin (x=0). The coefficients that appear in
(30) and (31) are given by

. 28\ J
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<“7> (2= 1) =11 W(K, )
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where we have dropped the subscript on K, for convenience and where

. K—1 . K u*@?
W(K,Jj) = exp[—iu*(14+8%)] ,F, <T,J + 53 “—2—>
. . K up?
= exp(—3u°) 1F1<J+%3J+7; - >

by Kummer’s transformation (Slater, 1960).

Figure 5.4 details the local density approximations to pdf(x) based
‘on (30) and (31) with the coefficient function s(x) as in (50). The
approximations are good in the locality of the points of expansion, the
origin, and the tails, but they start to deteriorate rapidly as we move out
of the immediate vicinity. The right-hand tail expansion seems particu-
larly good.

Figure 5.5 shows the [4/4] Padé approximant to the density (49).
This has the form, in the notation of (44),

(51) Ry 4(x;5) = 5(x)[4/41(x)

= 5(x) ag(X—y ) (X—72) (X= 1) (X— %)
bq(x—=81)(x=8,)(x—8)(x=9)

where

a4 = 4.533619 by = 1.221628
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v = —1.158240 8 = —3.567599
v2 = —0.537379 8, = —0.485485

¥, ¥ = —2.133352+£0.732053/ 8, 6= 10.310396+0.613123i

As a first step, approximant R, ,(x) is rather good, with problems occur-
ring only in the left tail at the singularity x=4§, (i.e., x—f8=5,—f8=
—1.085485 for 8=0.6) and at the two zeros x= Y2, 1 (note that the
second pole occurs outside the region of immediate interest in the
distribution).

The next stage in the procedure is to modify the Padé approximant
(51) along the lines suggested in Section 7. We note that in the denomi-
nator the quadratic x2—(6;4 6,)x+ 816, =x244.05344x+1.7333 has
discriminant 9.497176. To remove the real zeros, we propose to replace
this quadratic by

(52) 1.5x2+4x+3

where we have raised the constant and the coefficient of x2 and simply
rounded the coefficient of x. According to the ideas outlined in Sec-
tion 7, we now need to proportionately adjust the coefficient of x2 and
the constant term in one of the quadratics in the numerator. We select
the quadratic x2— (y;+v2)X+v17v, = x+1.695619x+ 0.622414, which
we need to modify in any case to remove the unwanted zeros of Ry 4(x).
Making the proportional adjustments recommended to this quadratic,
we get 1.5x241.695619x+1.077276. This gives us the following modi-
fied Padé approximant after one change of coefficients:

(53)  R{I(x) = s(x)
agf1.5x +1.695619x+1.077276) (X — v) (x—7)
bafL5x2+4x+3)(x—8) (x—9)

This function is graphed in Figure 5.6 against the exact density. We see
that the singularity and zero problems have been eliminated, and the
performance of the approximation is remarkably good. We note some
reduction in the order of contact at the points of local expansion, par-
ticularly the origin (or, taking into account the change of origin on the
graph, x— 3= -0.6).

As suggested in Section 7, it is worthwhile to modify at least one of
the remaining coefficients to improve the order of contact at the points
of local expansion. Note that the success of this procedure can be
measured against the original Padé approximant in the relevant locali-
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ties; so we do not need a graph of the exact density to do so. Comparing
the Padé and modified Padé approximants in Figures 5.5 and 5.6, it is
clear that the order of contact of the modified Padé at the origin will be
improved if we raise the derivative at this point (x=0, i.e., x—=-0.6).
This will be achieved by raising the coefficient of x in the quadratic in
braces in the numerator of (53). We make a change in this coefficient
from 1.69 to 2.0, giving the new modified Padé approximant

(4 R{®)(x) =s(x)
a,{1.5x24+2.0x+1.077} (x— ) (x— %)
byf1.5x24+4x+3) (x—08) (x—§)

This function is graphed in Figure 5.7. Even with the rather crude
adjustments we have made, (54) is really an exceptionally close approxi-
mation to the true density and is well behaved over the whole real axis. A
final adjustment can be made by renormalizing so that the area under
(54) is unity. The adjusted curve is shown in Figure 5.8.

9 Conclusion

This chapter has introduced a new technique of approximating proba-
bility density functions. The approximating functions belong to a family
of rational fractions and are sufficiently flexible to produce good
approximants to a very wide class of density functions. The theory
developed in Sections 3 and 4 indicates that this family of rational frac-
tions contains approximants that are best in a well-defined sense and
that will perform well in reproducing the form of the exact density func-
tions over the entire real axis. The practical procedure for finding good
approximants in this family is based on the use of multiple-point Padé
approximants to construct global approximations from purely local
information about the density. These multiple-point Padé approximants
are then modified to ensure that they have good global behavior and to
incorporate any additional information that may be available concern-
ing the density. The application in Section 8 to an already well-estab-
lished test area for density approximations illustrates that the procedure
can produce exceptionally good approximations even in cases in which
existing methods break down. Further refinement of the ideas laid out in
Section 7 on modifying the initial Padé approximant should lead to fine
approximations that are very close to the best uniform approximants
discussed in Sections 2 and 3.
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NOTES

1 The compact set must obtain at least in this region of the overall parameter
space I'. We can, for example, exclude as irrelevant in terms of equation (4)
those regions of T' for which the parameters yield unbounded rational
fractions.

2 The Weierstrass theorem (Meinardus, 1967, p. 7) established the same result
for polynomial approximants.

3 This work and others (Baker & Gammel, 1970; Saff & Varga, 1977) have pro-

vided systematic coverage of the extensive literature on the theory of Padé

approximants and their applications, particularly in mathematical physics.

Theorem 2.4 of Baker (1975).

Theorem 1.1 of Baker (1975).

These issues will be taken up at greater length in a later paper.

We deal specifically with the case u?>=4, k=4, =0.6. Another paper will de-

tail more fully some numerical experience with modified Padé approximants.
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