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THE EXACT DISTRIBUTION OF INSTRUMENTAL VARIABLE
ESTIMATORS IN AN EQUATION CONTAINING
n+1 ENDOGENOUS VARIABLES

By P. C. B. PHILLIPS'

This paper derives the exact probability density function of instrumental variable
estimators of the coefficient vector of the endogenous variables in a structural equation
containing n + 1 endogenous variables and N degrees of overidentification. This general-
izes the presently known results for the special cases where n =1 or 2 and N = 0. The usual
classical assumptions [19] are made of nonrandom exogenous variables and normally
distributed disturbances. Some numerical computations are reported for the case n =2.

1. INTRODUCTION

INTHELATE 1960’s, Richardson [18] and Sawa [20] derived the exact distribution
of the two-stage least squares (2SLS) estimator in a structural equation (of a
simultaneous system) that contained two endogenous variables and an arbitrary
number of degrees of overidentification. Their results refer to the 2SLS estimator
of the coefficient of the endogenous variable included on the right hand side of the
equation and were obtained under the classical assumptions (to use the term
employed by Sargan [19]) of normally distributed disturbances and nonrandom
exogenous variables.

Very little exact finite sample theory has been published so far for estimators in
structural equations containing more than two endogenous variables. Basmann
et al. [4] extract the joint probability density function (p.d.f.) of the 2SLS
estimator in a just identified equation containing three endogenous variables.
Basmann [3] quotes a result due to Richardson for the same set up but with an
arbitrary number of degrees of overidentification’. In Basmann’s notation, this
last result characterizes the subclass

(s o)
U Hon
N=1

where H, n denotes the joint distribution on R" of the 2SLS estimators of the
coefficients of the n right-hand side endogenous variables in an equation with N
degrees of overidentification. More recently, Sargan [19] (Appendix B) has

! I am grateful to the referees for their helpful comments on the original version. One referee has
very kindly brought my attention to the recent work by Davis [7, 8] on invariant polynomials of two
matrix arguments. These polynomials extend the zonal polynomials of James [12] and provide an
alternative means of reducing the n(n +1)/2 dimensional integral that is the main obstacle in
extracting the exact density of the instrumental variable estimator dealt with in the present paper. The
alternative approach and the alternative form of the joint density function is sketched in Appendix B.

The computations reported in Section 3 of the paper were carried out by Ralph Bailey to whom I am
very grateful.

2 Working with the same model, Ullah and Nagar [22] have derived an expression for the exact
mean of the 2SLS estimator.
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characterized the class U -0 H, o corresponding to a just identified equation
containing n +1 endogenous variables; and in the same set up, in the overi-
dentified case, Sargan represents the p.d.f. as an integral over a matrix space of
dimension n(n +1)/2, which is not reduced.

The present paper is concerned with deriving the p.d.f. in the latter case and so
characterizing in Basmann’s notation, the class

H= U U Hn,N
n=1N=0

corresponding to a structural equation containing any number of endogenous
variables and an arbitrary number of degrees of overidentification. This general-
izes all presently known results for single equation instrumental variable estima-
tors in the simultaneous equations setting.

2. THE MODEL AND NOTATION

We will work with the structural equation
(1) yvi=YB+Ziy+u

where y,(T x 1) and Y,(T X n) are an observation vector and observation matrix,
respectively, of n+1 included endogenous variables, Z; is a T X K; matrix of
included exogenous variables, and u is a random disturbance vector. The reduced
form of (1) is given by

i I,

@  [niYs=[z szz][m s

}‘F[Ul Vz]:ZH‘f‘V,

where Z,isa T X K, matrix of exogenous variables excluded from (1). The rows of
the reduced form disturbance matrix V are assumed to be independent,
identically distributed, normal random vectors. We assume that the usual
standardizing transformations (Basmann [2,3] and Richardson [18]) have
been carried out so that the covariance matrix of rows of V is the identity matrix
and T°'Z'Z =1Ix where K=K+ K, and Z =[Z, : Z,]. We also assume that
K> =n and the matrix I1,>(K> X n) in (2) has full rank, so that (1) is identified. We
use the parameter N = K, —n as in Sargan [19, Appendix B] to measure the
degree of overidentification.

We let H =[Z,: Z], where Z5(T X K3) is a submatrix of Z, and K5;=n, be a
matrix of instrumental variables to be used in the estimation of (1). We concen-
trate on the estimation of the parameter vector 8 and, from the orthogonality of
the exogenous variables, we find that the estimator is the solution of

(Y'zHH' Y, Y,2Z1Z,l Yz)ﬁlv = Y’zHH')H - Y§Z1Z'1Y1
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or

(3) (lezazgyz)ﬁlv = YIZZSZgy1~

3. THE EXACT DISTRIBUTION OF B;v
We define

A=[all a,21]= ‘1[)"12323)’1 yllzszgyz]
a, Az Y32Z5Z5y1 Y2Z5Z3Y,

and then B;v = A>ras;. The starting point in our derivation of the joint p.d.f. of
Brv is to write down the joint distribution of the matrix A. This is noncentral
Wishart of order n + 1. Modern methods of multivariate analysis (based substan-
tially on [5, 10, and 13]) enable us to employ a convenient mathematical
representation of the joint density of the matrix A in terms of a matrix argument
hypergeometric function (see (4) below). To obtain the p.d.f. of 8;v we then
transform variates so that we are working directly with the function A>3a,;. The
final step in the derivation is to integrate over the space of (a1, A») leaving us
with the required density function for B;v.

We write A =T 'X'Z;Z5X where X =[y, : Y>]. The K5 columns of T* X" Z,
are independently distributed normal vectors with covariance matrix I,,; and,
from (2), E(T*Z5X) = TZ.ZIT=M', say. Thus, following James [13, p. 484],
we can write the distribution of A as

etr(—sMM")

, K
K+ ( 3)
L 2

-etr(—2A)(detA) K772

(4) p.df.(A)=

K
oF (3 M A)

where etr( ) denotes the operator exp(tr( )), I'.(a) is the multivariate Gamma
function,® and oF(;) is a matrix argument hypergeometric function (closely
related to the Bessel function of matrix argument discussed by Herz [10]).
Constantine [5] discovered that hypergeometric functions ,F, of matrix argument
have a series representation in terms of zonal polynomials (James [12, 13]) as
follows:

z (av)s.. (ap)l Ci(S)
07 (b)s...(bg)s !

M8

(5) Falar, ..., ap; b1, ..., b,

T.(a)= J etr(=S)(det §)° 1" *D 4g,

$>0

where the integration is over the set of all positive definite symmetric matrices; and in terms of the
univariate Gamma function

[o@)=m"""V[] Fa-%i—-1) (James [13, p. 483]).

i=1
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where J indicates a partition of the integer j into not more than m parts, when S is
an m X m matrix. If J ={ji, />, ..., jm}, then the coefficients appearing in (5) are
given by

m

(), =11 (a—3Gi-1),

i=1

where

A=AxA+)...A+j-1).

The factor C;(S) in (5) is a zonal polynomial and can be represented as a
symmetric, homogeneous polynomial of the latent roots of S of degree j. General
formulae for these polynomials are known only for the case m = 2 but tabulations
are currently available for values of j up to 12 (James [14]).*

We now introduce a matrix S which selects those columns of Z, which appear in
Z3,sothat Z; = Z,8. Then, using the orthogonality of the exogenous variables, we
have

M'=T3Z3ZIT = T'[O ST = T*S'[m2, IT15] = T S' 0B, 1]
in view of the relationship between (1) and (2). Writing IT5,SS'IT,, as IT5,1T5,

where IT,, is an n X n matrix (which is nonsingular since the structural equation (1)
is identified), we find that

T _
etr(—3MM’) = etr{ ) I+8B") 17'221722}.

Moreover, since the nonzero latent roots of MM'A are the latent roots of

B,

T2, I1A [ I ] T,

(4) becomes

erf —ET I+ 88" T3a1T2

1 + K
251(3(" 1)1—~n+1(__23)
K5 T - " o_
- oF (33, Z II[B, I1A [L;] ]]’22) . etl‘(—%A)(detA)g(KS_”"z)'

4 For further discussion of zonal polynomials, see James [12, 13] and Johnson and Kotz [15]; and,
for a recent survey of known results on zonal polynomials, Subrahmaniam [21] is a useful reference.
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We now transform variables from the matrix variate A to w =a;,—r'A,,r,

r=Azas, and A2 = Aj;. The Jacobian of the transformation is det A, and we
have

T _
il -3 U+880ala)
p.d.f.(w,r, Ay)= - oF; ( 1 {Wszﬁﬁ e

4K+ D) . (K3> 2’
n+ 2

+ﬁ22(1+B")A22(I+’B')ﬁ§2}>

“exp(—3(w +r' Ayr)etr(—1A,,)
{w det Ay} K" DdetA,,

etr{ - g([ +BB ')17'221722}

K (n+ K
e (9

K; (T - =,
OFI( 23 {Z wil:BB' T3,
+ oI+ Br) AT + 18132} )
. exp(—%w) etr{—3(I + rr') A}
- wiKan2 (det A,y)* K™,

Define L = K; — n and introduce the new matrix variate B = (I + rr’)%Azz(I + rr’)%.
The Jacobian of this transformation is [det(I +rr')]"*"’? and we have

T _
etr{ —E(I + BB')H'nsz}
(6) p.df.(w,r,B)=

+
22(L+n)(n+1)1~.n+1 <L2 n) [det(I+rr,)][L+n+l)/2

L+n T

"Fl( 2 4

| WiTeapB s + oot + )1 + )

. B(I+rr')—%(l+rB')ﬁ'22}>

. (-:xp(—%w)etr(—%B)w’“/z_l (det B)™'2.

We now use the following inverse Laplace transform representation of the (F,;
function (James [13, p. 480]):

2" L, (b)

7 Fi(b; S :W‘I‘
(7 oF1( ) Qi) Re(R)= Xa0

etr(R)(det R) ®etr(R™'S) dR
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where the integral is taken over all matrices R = X, +iY with X, a fixed positive
definite matrix and Y ranging over all real symmetric matrices. Using this
representation in (6) we have

etr{ —ET (I+/33’)ﬁ§zﬁzz}
(8) p.df.(w,r,B)=

pHEemeanp <L + ”) [det(I + /)] "+ 1/2

2
1 L+n
sn(n—1)
2 (55)

-\ 1
(27ri)znin+D) J’Re(R)=X0>O

etr(R)(det R)~*+m/?

T _ _
: etr{TwR-‘nnﬁB’H'zz}

: eu{ZTR-lﬁnu +Br)I + )
“B(I+r') (I + rg')ﬁgz} dR

- exp(—3w)etr(—3B)w"/* "' (det B)"*

We now integrate out w(0 < w < 00) and the matrix variate B(B >0) in (8). We
have

T .- 1
J’ etr(—3B)(det B)~"? etr{zR YTo(I+BrYT +rr') 2
B>0

T - _
=2”%(%“)(1—53'17;21%“17223) Lz

and
1 L/2 T _i5 ’ n—s
I etr(—1B)(det B) etr{zR [oo(I +Br)(I + 1)
B>0
. B(1+rr')‘%(1+r3')ﬁ;2} dR

— 2n(L+n+1)/21—w

n

I+ rr’)—%

(L+n+1> F (L+n+1.1"
2 o 2 2

. (I+rB')ﬁ'zzR_lﬁzz(I+Brl)(1+”,)_%>~

The latter integral follows, for example, by transforming 3B - B and employing
the Laplace transform given by James [13, p. 480, equation (28)].
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Now we obtain

T -, = I +n+
ete] —3 1+ 88) Tl 2 (2 (FEE)

2

©  pdf()= . —
phaeminrup ( . )[det [+ )] ez

L+n
ln(n-1)
2 (5)

N1
(27ri)2nin+D) JRe(R)=X0>O

etr(R)(det R) " *+/?

+n+
Lrntl ’21 1I(I+rr)’

(I +1B) TR (I +Br')(1+rr')'%) dR

T , -, 1= i
'(1—53’17'2213 ',,8) L'ZlFo(

Noting that
L+n 2 (L+n> (I:>
F””( 2 ) L)1

and expanding the last two factors in the integrand in (9), we have the following
integral representation of the density:

etr{ —%(I +BB’)I7’221722} r, (

w"/z[det(I + rrl)](L+n+1)/2

L+n+1>
2

(10) p.df.(r)=

L\ .
% (5)’ © 1 _/L+n+1\ 2"V
S ek e\ 2 ) @myineey
—(L+n)/2 T R add -1 d
. [ etr(R)(det R) (—B IT5;R szB)
Re(R)=X0>0 2

T \ - _ ,
CK(E (I+rr') (I +rB)T5R (I +Br)U + rr’)_’) dR

To find the joint density of B;v it remains to evaluate the inverse Laplace
transform that occurs in the right-hand side of (10). The problem is related to the
inverse Laplace transform of a zonal polynomial discussed by Constantine [5] but
is more complicated in view of the presence of both a zonal polynomial and a
power of a quadratic form involving R " in the integrand. However, this can be
overcome by introducing a matrix of auxiliary variables as shown in the Appendix,
where I give a procedure that enables us to evaluate the integral directly.
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In particl:u_lar, using (AS) in (110) by setting t=(L+n)/2, g= (T/2)%1722»3, and
G =(T/2)' IT,(I + Br')Y(I + rr')"*, we obtain

T _ -
etel ~ (1 + B8 TalTox T
7" [det(I +rr')] Y2

B L, -

g@fe Lo )
2 +
=0 Fn(L n+j,K)

L+n+1)

(11) p.d.f.(r)= 2

z

1
]! k=0 k!
2
. [(Iﬁlﬁ, (ad]i)ﬁ B)I (det(I+ W))(L+n)/2+j—(n+l)/2
2 22 aw) %

.C. (% (I + W)L +Br)(I + )T +rB’)I7'zz)]

w=0

where the constant I, ((L +1)/2)+j, k) appearing in (11) is defined in (A1) of the
Appendix. From Constantine [5] (equation (27)) we have the representation of

the generalized binomial coefficients as (a)« =Tu(a, k)/.(a), whichenables us to
write (11) as

T -, = +
ete] L 1+ ) Tallea) (S5 )
7Tn/2[det(1 +rr1)](L+n+1)/2

)

—ET;_)[(g '113:(adi177) ﬁzzﬂ)j

12)  pdf(rn=

(L_+_n+_1>

- (det(I + W))EHm/2+i-(ne /2 =1\ 2 J,
Zok! (L+n |

( 2 +’)

T B _
. cx( S+ W) IToo(I +Br )T +rr) (I + BT ’zz)]

wW=0

etr{ —%(I+ﬂﬂ')ﬁ§2ﬁ22}rn(

L+n+1)
2

7" [det(I + rr)] -T2
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)

‘1‘ ]!1_,"<L+n+j> [(531H22<ad1 )szﬁ),

IIM8

L+n+1 L+n
2 72

(det(I + W) =124,y (

T — _
+j; 5(I+ WHIL(I +Br')(I +rr’)_1(I+rB’)H'22>]

w=0

If we set L = N so that Z53 = Z,, By is the 2SLS estimator and the joint density
(14) generalizes the formula derived by Richardson [18] for the case where n = 1.
In this case, the matrix W appearing in (14) is a scalar, adj(8/dW) =1, and we
obtain

ool 4 0s) (5

() ey
2

(13)  p.df.(r)=

N

S <5) uw? N+2 N+1  u>(1+8r)?

B () (AL ey

~=]<N+l> 2 2 2 2 1+r
(=)

1

where ,u.2= TIT %z = TII5,11,,, the concentration parameter. Noting that N =
K> -1 where K is the number of exogenous variables excluded from (1), we see
that (13) corresponds with the known formula in this case [11, 18].

When L =0in (12) the series corresponding to the suffix j terminates at the first
term and we have

T N n+1
(14) L) = etr{ ) (I+pp )szsz} Fn( )

"I, (g) [det(I + rr')]""+V/?

F(

that is, a single term involving a matrix argument hypergeometric function as
obtained by Sargan [19] in this special case.

T -
§5 2T +Br)I +r') NI + 1B’ )1722)
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3. FURTHER COMMENTS AND SOME COMPUTATIONS FOR THE CASE n =2

While (12) gives us a general representation of the exact joint density function
of instrumental variable estimators in simultaneous equation models, this type of
series representation of the density is not as easy to interpret as we would like. It
can be said that the leading term in the density reveals the order to which finite
sample moments of the estimator exist (c.f. Basmann [3]). In the present case, we
see that when L=0 the leading term involves [det(J+r')] "*"/%2=
(1+7'r)" "2 which is proportional to the multivariate Cauchy density [15];
when L >0 the term involves [det(I + r')] =" V/2 = (1 4 ') " E+*1/2 which is
similar to a multivariate ¢ density [15]. These expressions enable us to verify
directly Basmann’s conjecture [1, 2] that integer moments of the 2SLS estimator
(L = N) exist up to the degree of overidentification.’ In other respects, the analytic
form of (12) is not very revealing. A similar comment applies to the alternative
representation of the density (B3) given in Appendix B, which gives an explicit
series representation of the density in terms of polynomials of two matrix
arguments (which we term the Davis polynomials). Moreover series represen-
tations such as (12), (14), and (B3) cannot be implemented for numerical
calculations as easily as might be expected. The formulae rely on matrix argument
functions and numerical evaluation depends on the available tabulations of zonal
polynomials and the Davis polynomials. In most cases these will be insufficient to
secure reliable numerical values for the density.®’

However, when n =2 an explicit representation of the matrix argument F,;
function (in terms of the univariate F; function and the elementary symmetric
functions of the matrix) has been given by Muirhead [17]. This should facilitate
computations in the n = 2 case. An alternative explored by Sargan [19]in the case
n =1 and by Holly and Phillips [11] in the case n = 1 is to simplify the formulae for
the joint density by replacing the ; F; function with an approximation based on the
first few terms of its asymptotic expansion.® The computations in Holly and
Phillips [11] indicate that this type of approximation attains a high level of
accuracy’ against the exact density, in both the tail areas as well as the body of the
distribution and for a wide range of parameter values. It may, therefore, be

5 This con jecture has, of course, been verified earlier by Mariano [16] for even order moments and
Hatanaka[9]in the case of both odd and even moments. Basmann [3] recently discussed the role of the
leading term in these series representations of density functions in determining the order to which
moments exist.

$ Zonal polynomials are currently tabulated up to order 12 and the Davis polynomials to order 6.
Experience with these series in the case n = 1 suggests that it may often be necessary to include as many
as 100 terms before achieving adequate convergence. Muirhead [17] has already made a similar
comment.

7 In the case of (12) we have the additional complication of applying the matrix differential operator
adj(3/d W) to the zonal polynomials appearing in the series representation of the ;F; function. When
n =2 the zonal polynomial C,(S) can be written in terms of the two elementary symmetric functions
tr(S), det(S) of the matrix S (James [13, equation (130)]). In this case, the operation should not be too
difficult. But when n >2, the camplexity of this operation will certainly increase.

® Muirhead and Constantine [6] give the general form of this expansion for the matrix argument | F;
function as well as other hypergeometric functions.

° The computations in [11] show that 3 decimal place accuracy can be obtained with this
approximation over a wide region of the distribution including tail areas.
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worthwhile to pursue this alternative in the present case for general n and
illustrate some numerical computations in the special case n = 2.

From Muirhead and Constantine [6, Theorem 3.2, pp. 377] we have the
approximation

I.(b)
I'.(a)

\Fi(a,b; TR)~ etr(TR)(det TR)* °[1+0(T ™ H].

We set
D(r)=ITo,(I +BrYI +r') "I + 18" T5»
and then we have
etr{ - %‘ I+ BB')ﬁ’zzﬁzz}
7" *[det(I + rr) ]2
- (5)

. —etr{ D(r)} det( D(r)))H

j=0

[z s

T
2

p.d.f.(r)~

- (det(I + W))“’etr{ WD(r)}]

=0
etr{ —g(I +BB’)ﬁ£2ﬁ22}etr{%D(r)} (det(gD(r)))%

" [det(I + rr')]FH Y2

~

L
2_

i B szD(’) szB)]

which, after a little simplification, is

T,,/zetr{ _ IM(r—B)(r—B)’}
2 1+r'r
2n/2 n/2(1+r1r)(L+n+2)/2

(det M) (1+7r'B)

L
E ) T+ B

where M =11 %»IT>,. The series converges and the approximation is valid with a
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relative error of 0(7 ") provided

' n—1 ' n—1 _B,B+(r,ﬁ)2
B'UI+rB") (I+r"YI+pr) B_——(1+"3)2 <1,

that is, provided
1+28'r—B'8>0.

For values of r satisfying this inequality we then have the approximation

way [ TMU=B)r=B) 7\
s) at )~T etr{ > T+/r7 }(detM) RS
p.a.r.(r 2n/27rn/2(l+r/r)(L+n+2)/2 (1+2B’r—B'B)L/2'

This formula corresponds with the dominant term of formula B14 of Sargan [19]
(in a somewhat different notation) and with formula (25) of Holly and Phillips [11]
(for the 2SLS case and where n =1).

The approximate joint density (15) can be used quite readily for numerical
computations. Moreover, when n =2 marginal densities can also be computed
after a one-dimensional numerical integration. Some graphs which illustrate the
effect of changes in the parameters on the marginal density of the first component
of Brv (viz. Birv or r;) when n =2 are given in Figures 1-4. Figures 5 and 6
provide graphs of the density in the case of only two endogenous variables (i.e.
n = 1) and therefore help to illustrate the effect on the distribution of the estimator
of the inclusion of another endogenous variable in the equation.

Some of the features that emerge from the densities graphed in Figures 1 to 6
are as follows:

(i) For comparable parameter values such as those in Figures 1 and 5 we note
that the distribution of the estimator is more concentrated in the two endogenous
variable case (n = 1). The distribution also appears to concentrate more quickly as
T becomes large when n =1 than when n =2.

-0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

FIGURE 1.—Densities of 81y for various values of T when

B,=06, - [4.0 3.6]
- M= . L=3.
n=2 5 _os 3.6 4.0
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2.5
P
2.0 /'|_=l§\,
/- N
!y L=1l N\
1.5 /
.//
1.0
0.5
-0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
FIGURE 2.—Densities of 8,y for various values of L when
B1=0.6, - [4.0 3.6]
=2, M= s T =20.
" B,=0.6, 36 4.0
3.0 + P=0.0

=,

/
1 J/—/A.{‘ - 1 1 1 TS s — ——
-0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
FIGURE 3.—Densities of B,y for various degrees of correlation p in M when
=0.6, - 4.0 4.0
n=2, B =[ ° ] T=20, L=3.
B,=0.6, pd0 4.0

FIGURE 4.—Densities of B,y for various values of 8, when
_ [4.0 3.6

n=2, B;1=06, M= ] T=20, L=3.

3.6 4.0
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5.0
4.5
4.0
35
3.0
2.5

2.0

1 00
00

DG
-0.2 0.0 0.2 0.4 0.6 08 1.0

FIGURE 5.—Densities of By for various values of T when
n=1, B;=06, M=4, L=3.

3.5

3.0

o )
-0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0

FIGURE 6.—Densities of B,y for various values at L when
n=1, B;=06, M=40, T=20.
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(ii) From Figure 2 we see that the density of 81,y displays more bias as L, the
number of additional instruments used for the n right hand side endogenous
variables, increases in value. When L becomes small the distribution is more
centrally located about the true value of the parameter but also has greater
dispersion than when L is large. These properties seem to correspond fairly well
with the distribution in the two endogenous variable case (Fig. 6).

(iii) The density appears to be sensitive to the degree of correlation, p, in the
matrix of products of reduced form coefficients M = IT5,1T,,. The dispersion of
the density seems to increase with |p|. The density is well centered about the true
value of the parameter when p > 0 but biased downwards when p >0.

(iv) When B, # 8, the distribution of 81,1 becomes less well centered about the
true value of 8;. As B, — B increases in value the bias becomes positive and the
dispersion increases rapidly; as 8, — 81 decreases the bias becomes negative and
the distribution becomes more concentrated.

Yale University

Manuscript received June, 1978; revision received June, 1979.

APPENDIX A

We start with the following result due to Constantine [5§, p. 1273]:

LEMMA: If R is a complex symmetric matrix whose real part is positive definite and Q is an arbitrary
complex symmetric matrix, then

(A1) J' etr(— RS)(det $)"""*V2C,(SQ) dS
$>0

= I, (1, )(det R)"'C((QR™Y); [ (1, k) = w7V ﬁ [t+ki=3-1)
i=1

i

where the integration is over the space of positive definite n X n matrices and is valid for all complex t for
which Re(t)>(n—1)/2.

If we write
g(R) =TI, (1, k)(det R)™'C.(QR™")
and
£(S) = (det §)""*V2C,(SQ),

then according to (A1), g(R) is the Laplace transform of f(S).
We will be dealing with a case in which Q is positive definite. The inverse transform corresponding to
(A1) is then given by the relation®

in(n-1)

(A2) G etr(SR)(det R)‘C.(QR ') dR

J’Re(R)>Xo
=[Ia(t ©)] 7 (det §)'""V"2C, (SQ)

where X is a fixed positive definite matrix and, writing R = X +iY with X > X, the integration in
(A2) is taken over all real symmetric matrices Y.

19(A2) can be verified directly from formula (21), p. 1275 of Constantine [5] by replacing S in
Constantine’s formula with Q*SQ*.
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The integral we need to evaluate in the paper (in (10)) is not directly of the form (A2). Instead, we
must consider integrals of the form

(A3) etr(R)(det R) '(g'R™'g)'C.(G'R™'G) dR

J’Re(R)>Xo

where j is aninteger, g is a fixed n-vector and G is a nonsingular matrix of order n. To evaluate (A3)we
note that

a
g’(adj m) g etr(RW)=etr(RW)(g'R _'g)(det R)

where W is an nxn matrix and adj(8/dW) denotes the adjoint of the matrix operator 9/9W.
Moreover, by repeated use of the operator g'adj(3/d W)g in the above equation, we obtain

{g’(adj %) g} et (RW) = etr(R W)(g'R"'g)(det Ry

and, thus,

(A4) etr(R) (det R) ('R 'g)'C.(G'R™'G) dR

J’Re(R)>Xo

Iw.

= “g’(adj -a—) g]j IRe(E>Xo etr((I + W)R) (det R) " 'C.(G'R™'G) dR] w

Now, using (A2), we deduce the following relationship:
2} n(n—1)

@) |
@miyinnth Re(n)>Xo

etr(R) (det R) '(g'R™'g)'C.(G'R™'G) dR

= H g’(adj %) g} i[F,.(t +J, K)] _1(det(1 + W) 2 e (14 W)GG’)] y

=0

- F,.(zi,', ) [{g’(adj %) g] i(det(I+ W)=+ D2 o (4 W)GG')]

w=0

APPENDIX B

One advantage of the representation (12) obtained in the paper for the p.d.f. of B;y is that this form
of the density in the general case closely parallels that which is already known for the case n =1 (see
(13)) and the latter can be simply deduced from it as a special case. However, the matrix differential
operator that occurs in (12) complicates the series representation of the density and will make
numerical computations of the exact density difficult even when extensive tabulations of zonal
polynomials become available. In fact, an explicit series representation is possible by making use of the
invariant polynomials of two matrix arguments that have recently been introduced by Davis [7, 8]. This
work has very kindly been brought to my attention by one of the referees. Since the derivations are
brief it seems worthwhile to give the alternativq representation of the density here.

We define g = (T/2)1H%ZB_ and G(r)=(T/2)* [T,,(I + Br') (I+rr’)7* as in the paper. We can now
write the product (g'R™'g)'C.(G(r)R™'G(r)’) that occurs in the integrand of (10) as a linear
combination of the invariant polynomials introduced by Davis. We have ((5.8) in Davis [7])

(B1) ('R 'g)CAG(NR'G(r))

= ¥ 0 Ci (R 'gg,R7'G(r)G(r)
deEjK
where Cf;;‘ (X, Y)is a polynomial in the elements of the two matrices X and Y which is invariant under
the simultaneous transformation X > H'XH and Y - H'YH for any orthogonal matrix H. The
partitions ¢ over which the summation in (B1) is taken is such that the representation of Gl(n) (the
general linear group of real nonsingular matrices of order n) indexed by 2¢ occurs in the Kronecker
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product 2j®2« of the representations indexed by 2j and 2«. The constants %= that occur in (B1) are
given by Davis [7, equation (5.1)]:
<= Cly (I, 1)/ CoI).
From Davis [8, p. 4 we can deduce the following inverse Laplace transform:
2 intn-1)

(B2) etr(R)(det R) ‘Ci(R™'gg’, R"'G(r)'G(r)) dR

. 'n(n+l)J
(2mi)* Re(R)=X0>0

=[I.(1, 617 Ch(gg', G(r) G(r).

Working from (10), (B1), and (B2) we obtain the alternative representation of the density in the paper
as

L+n+l>

etr{ —‘27:(1 +BB')I—T/22[—122}F,.( 2

7" [det(I + )] LD
I\ (L+n+1 )
()37
© o 2/ 2 «

Y X X -
j=0 k=0 dejx j!k!F,.(L+ ’

n ¢)

(I +8rYI + 1) T+ 1B )H22)

(B3) p.df.(r)=

: C@‘(Iﬁzzﬂﬂ'ﬁiz I
2 2
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