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“One eminent statistician once said that a large part of the work in
statistics involves being clever with approximations. I think this is what we
need in sumultaneous equation estimation: clever approximations for some of
these five-line long formulas and tables for non-standard distributions to help
the people who do the real work in economics’’ Kmenta (1974, p. 275).

1. INTRODUCTION

In one of the pioneering papers of finite sample theory in econometrics Bergstrom' (1962)
made a comparative study of the small sample behaviour of two alternative estimators of
the marginal propensity to consume in the basic stochastic Keynesian model. The
estimators he considered were least squares (OLS) and maximum likelihood, the latter
being equivalent to two stage least squares (2SLS) in this just identified case.”> At the time
Bergstrom wrote the arguments for and against these estimators in small sample situations
were largely unresolved, and the lack of evidence® one way or another provided ample
motivation for the study. Bergstrom’s comparison was based on the exact finite sample
densities of the two estimators, which were derived mathematically on the hypothesis of a
normally distributed structural disturbance on the consumption function and a non-
random investment series. Numerical evaluation of these densities for various parameter
values (including the sample size) then made it possible to tabulate the probabilities with
which each estimator lay outside certain specified regions of the true value. These
calculations led to the important conclusion that

‘... the use of the maximum likelihood estimator gives the greater probability of
obtaining a very accurate estimate but the greater probability, also, of making a large
error” (p. 487)

and that

¢... for samples of 10 or more observations, generated by the basic, stochastic
Keynesian model (with realistic values of the parameters) the maximum likelihood
estimator of the marginal propensity to consume is the ‘better’ general purpose
estimator of this parameter” (p. 489).

Naturally, investigators are interested in the general question of which is the *better ”’
general purpose estimator in a given situation with realistic sample sizes, where we
interpret ‘“better” in terms of the distribution of an estimator being more concentrated
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about the true value of the parameter. This question can be adequately dealt with only
when an investigator has enough information about the sampling distributions of the
estimators he is considering to assess their relative merits, at least for parameter values in
the region within which he has to work. This assessment will necessarily involve an
element of personal judgement by the investigator, taking into account the importance to
him of errors of different magnitudes in estimates of the parameters in which he is
interested. Ideally this could be measured by a well specified loss function, which would
need to be constructed in the light of the intended applications of *he estimated model and
the consequences of sampling errors, perhaps even including the sign of such errors, in
these intended applications.

In a stimulating survey paper Basmann (1974) has recently pointed to another reason
why comparative studies of the distributions of various estimators are of value. Basmann
argues from the standpoint of research economy. Detailed information on the small
sample distributions of estimators can be used to help determine how accurate our data
needs to be before we can confidently express a preference for one estimator or another in
a given situation. This argument underlines our need for useful knowledge about the finite
sample effects of misspecification; in this context, measurement error misspecification. In
fact, the mathematical study of the effects of specification error on sampling distributions
in econometrics has only recently commenced. We will discuss some of the results that
have so far been obtained and the work that is under way in this particular area in Section 2
below.

For these and other important reasons it is of value to us to be informed about the
small sample behaviour of commonly used econometric estimators and test statistics and to
be guided by the results of comparative studies between various estimators in models
which correspond as closely as possible to those encountered in empirical research. It
therefore seems worthwhile to extend the range of realistic models to which our compara-
tive studies of econometric estimators refer and to develop techniques and the associated
computer software to enable an empirical researcher to extract information about the
small sample behaviour of various estimators and statistics he may be considering for use
and to do so explicitly in the context of the sample size, the particular model specification
and the exogenous series with which he may be working. The present paper is concerned,
in part, with such an aim. In Section 5 of the paper, we illustrate the approach by taking the
Keynesian model used by Bergstrom extended by the introduction of an adjustment lag in
the consumption function. A large proportion of empirical studies of the consumption
function incorporate such a lag, and it is of interest in itself to consider the extent to which
Bergstrom’s conclusions carry over to this case. The resulting model involves the two
complications of simultaneity and the presence of a lagged endogenous variable, but we
maintain the simplifying assumption of a normally distributed and serially independent
structural disturbance. Moreover, the approach we illustrate in this Section of the paper
together with some of the computer software we have developed can be applied in more
general econometric models.

The specific model we consider in Section 5 belongs to the class of models we refer to
as being non-classical. By a classical model in the context of the conventional simul-
taneous equations framework we mean a model with normally distributed disturbances
and non-random exogenous variables (this is the terminology introduced by Sargan
(1976a)). Almost all the finite sample theory that has been developed in econometrics
since the fundamental work of Basmann and Bergstrom has been founded substantially on
these two rather limiting assumptions. On the other hand, these classical assumptions do
enable us to derive a number of useful exact finite sample results. In Section 2 of the paper,
we will briefly review some of the developments in this particular area that seem most
relevant to the application we are considering later in the paper.* When we relax the
classical assumptions and allow, in particular, for the presence of lagged endogenous
variables in the regressor set, an exact theory is no longer within practical reach.’
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However, it seems likely that good approximations to the small sample distributions of
econometric estimators and test statistics can be obtained in such cases.® One approx1ma-
tion that offers interesting possibilities in this respect is based on the Edgeworth series
expansion of the exact distribution and the resulting approximation (which we call the
Edgeworth approximation) has already been applied with some success in dynamic models
(Phillips (1977a)).

Many economists and econometricians may not yet have had the opportunity to
familiarize themselves with the literature that has been emerging in this area. A further
aim of the present paper, therefore, is to provide some background on the nature of the
Edgeworth approximation and some associated asymptotic expansions and discuss the
results that are now available for us to use (Sections 3 and 4 of the paper). Ishould mention
at this point that the paper is not intended as a completely general survey. However, it is
hoped that the less formal and more wide ranging discussion of the early sections of this
paper will help to provide a useful introduction to this general area of current research.
The sections that follow Section 4 then provide an application of the theory to the
distribution of OLS and 2SLS estimators of the coefficients in a simple consumption
function that involves lagged consumption in the set of regressors.

2. SOME DEVELOPMENTS IN EXACT FINITE SAMPLE THEORY
IN ECONOMETRICS

Seven years after the publication of Bergstrom’s paper, Sawa (1969) continued the
comparison of OLS and 2SLS estimators, this time in the more general set up of a single
equation with two endogenous variables (and possibly some exogenous variables)
embedded in a system of structural equations.’ Concentrating on the coefficient of the
right hand side endogenous variable, Sawa derived the exact finite sample densities of the
two estimators® under the classical assumptions of normally distributed disturbances and
non-random exogenous variables. The numerical calculations of these densities that were
published by Sawa supported the general conclusion reached by Bergstrom in the simpler
model, and provide a good deal of additional insight into the way the shape of these
densities respond to changes in the values of key parameters.’

The shape of the densities turns out (not unexpectedly in the case of OLS) to be most
sensitive to the magnitude of the covariance between the right hand side endogenous
variable and the structural disturbance: the larger is this parameter, the more serious is the
bias of the OLS estimator compared with that of the 2SLS estimator. From the mathema-
tical form of the densities, Sawa notes also that, in the case of the OLS estimator, moments
of order less than T — 1 exist (where T is the sample size) and those of higher order do not;
whereas, in the case of the 2SLS estimator, moments of order less than K, exist (where K,
is the number of excluded exogenous variables) and those of higher order do not.'® Thus,
moments of the 2SLS estlmator in this context certainly exist up to the degree of
overidentification (i.e. K, —1).!' The result means, also, that in models where T is a good
deal larger than K, the OLS estimator will possess more moments and its distribution will,
therefore, be characterized by tails which are thinner than those of the distribution of the
2SLS estimator. In the Keynesian model used by Bergstrom K, =1, so that no integral
moments of the maximum likelihood estimator exist, which explains the phenomenon of
large errors having a greater probability of occurrence with the use of the maximum
likelihood estimator than with OLS.

The papers by Richardson (1968) and Sawa (1969) dealt with a single structural
equation containing two endogenous variables. The mathematical forms of the exact
densities of the OLS and 2SLS estimators in this case are similar and can be represented as
double infinite series. They can be simplified somewhat to single series by use of the
confluent hypergeometric function (Lebedev (1965)) and the leading term in the series
reveals the order to which moments exist. Otherwise, these series are not easy to interpret
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and are sometimes slow to converge (and hence are not as useful as might be expected for
numerical computations). In many situations, we are more interested in the distribution
functions than the densities and Anderson and Sawa (1973) obtain double series expres-
sions for the former with terms involving incomplete beta integrals. Anderson and Sawa
consider the distribution of k-class estimators (for non-stochastic k) in the same paper and,
for these estimators, the general expression for the densities and distribution functions
involve fourth order infinite series. In the same set up of a single equation containing two
endogenous variables, Mariano and Sawa (1972) obtained the exact density of the limited
information maximum likelihood estimator (LIML) of the coefficient of the right hand side
endogenous variable and verified that this density does not possess moments of any integer
order.'?

Very little work has been published so far for estimators-in structural equations
containing more than two endogenous variables. Basmann et al. (1972) extract the exact
joint density of 2SLS estimators in a just identified equation containing three endogenous
variables. Basmann (1974, pp. 251-252) quotes a result due to Richardson for the same
set up but with an arbitrary number of degrees of overidentification. In Basmann’s
notation this last result characterizes the subclass

U:=1 H2,N

where H, n denotes the joint distribution on R" of the 2SLS estimators of the coefficients
of the n right hand side endogenous variables in an equation with N degrees of
overidentification. In some more recent work, Sargan characterizes the class |, _; H,.o
corresponding to a just identified equation containing n + 1 endogenous variables (for any
n). In Appendix A(ii), I give the results I have obtained elsewhere (Phillips (19785)) which
characterize

H= U:uo=1 U:=0 Hn,N

corresponding to an equation containing n + 1 endogenous variables (for any #) and an
arbitrary number of degrees of overidentification N. The expression for the joint density is
an infinite series whose terms involve a matrix argument hypergeometric function (Herz
(1955), James (1975), Johnson and Kotz (1972)). The leading term in this joint density is
similar to a multivariate Cauchy distribution when N = 0 and a multivariate ¢-distribution
(Johnson and Kotz (1972, p. 134)) when N >0. From this expression we can verify
directly Basmann’s conjecture (Basmann (1961) and (1963a)) that integer moments of the
2SLS estimator exist up to the degree of overidentification (V). Mariano (1972) earlier
verified this conjecture in the case of even order moments and Hatanaka (1973) did so for
both odd and even moments. Ullah and Nagar (1974) have derived an expression for the
exact mean of the 2SLS estlmator 1n the special case of n =2 (i.e. for an equation
containing 3 endogenous varlables)

The usual approach taken in deriving the mathematical form of the exact density
functions of OLS and 2SLS estimators is to write these estimators first of all as functions of
non-central Wishart matrices. When we concentrate on the coefficients of the right hand
side endogenous variables these functions turn out to have a fairly simple form A typical
representation (compare (11) below and Mariano (1972)) takes the form A, a,; where the

matrix
_ [a21 as ]
a Axn
has a non-central Wishart distribution of order n+1 (ay; is a scalar and A,, is an
n X nmatrix); the covariance matrix of this Wishart distribution is the covariance matrix of

the endogenous variables included in the equation; the degrees of freedom depend on the
estimator being considered; and the means sigma matrix (the matrix of non-centrality
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parameters) is a matrix quadratic form in the reduced form parameters. Modern methods
of multivariate analysis (based in large part on the work of Herz (1955), James (1964) and
Constantine (1963)) enable us to employ a convenient mathematical representation of the
joint density of the matrix A above (in terms of matrix argument hypergeometric
functions). To obtain the joint density function of the estimator we first need to transform
variates so that we are working directly with the function A3, a»;. Then we are left with an
integration over the space of a;; and the matrix space of A, in order to extract the
required density. This integration turns out to be difficult in the case where n > 1. I give
the final result for the density in Appendix A(ii). When n =1 it turns out that an
alternative approach based on contour integration can be used to extract the density and I
outline the approach in Appendix A(i). The derivation of the distribution of the LIML
estimator involves similar techniques. So far no work has appeared on the distribution of
this estimator other than in the n = 1 case (Mariano and Sawa (1972), Anderson (1974)).
However, it should not be difficult to extract a formula for the density in the case of general
n and N using some recent extensions of the zonal polynomials of James (1964) and work
on this is currently under way.

All of the above work deals with correctly specified models. Naturally, we are also
interested in the effects of different types of misspecification on the form of the finite
sample distributions of estimators and test statistics. Earlier, in the Introduction, we
mentioned the importance of measurement error misspecification. We also wish to
discover the effect of standard forms of specification errors, such as omitted variables (both
exogenous and endogenous) and the inclusion of extraneous variables, on the small sample
behaviour of different estimators. The first systematic study of this latter type of question
has been done by Hale ez al. (1978) and Rhodes and Westbrook (1977). The exact results
of these authors deal with the case of two included endogenous variables. Their
conclusions, based partly on an analysis of the bias and mean squared errors of the
estimators, suggest that the comparative advantage held by 2SLS over OLS in correctly
specified equations can be considerably weakened when the equation is misspecified; in a
number of cases, the distribution of the OLS estimator was found to be the more
concentrated about the true value of the parameter. Clearly, these results need to be
borne in mind in making judgements about the appropriate use of estimators in simul-
taneous equations.

As suggested earlier, a major difficulty with multiple series representations of exact
density functions and exact moment formulae is that they cannot be implemented for
numerical calculations as easily as might be expected. Sometimes the series are slow to
converge and in the more general cases mentioned above the formulae rely on matrix
argument hypergeometric functions whose series representations are in terms of zonal
polynomials (see James (1975) and Subrahmaniam (1976) for recent surveys of work in
this area). These polynomials are currently tabulated up to order 12 and no general
formulae for them have yet been derived. In many cases, the available tabulations of the
polynomials will be insufficient to secure reliable numerical values for the density."*

Thus we may often need to rely on approximations of various types even when the
exact formulae are available. In the next section we turn to examine the Edgeworth
approximation which is currently attracting interest among econometricians and which
seems capable of providing good approximations under certain conditions even in quite
complicated models.'’

3. AN INTRODUCTION TO ASYMPTOTIC EXPANSIONS AND
SOME BACKGROUND OF THE EDGEWORTH APPROXIMATION'®

The present section is intended as an introduction to the theory of asymptotic expansions
of the Edgeworth type. As with other areas of research, it is helpful to see this theory in an
historical context alongside the development of closely related (and, sometimes, better
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known) work. As the first step in our discussion we, therefore, select an appropriate
setting for the theory. The most natural, in the present case, is the collection of limit
theorems which together comprise what we commonly refer to as asymptotic theory. To
help the reader maintain bearings in the ensuing discussion I have prepared a diagram (see
Appendix B) illustrating certain aspects of asymptotic theory, with branches leading to
refinements of central limit theory and useful asymptotic expansions which will be
discussed more fully in the text. These asymptotic expansions form the basis of certain
types of approximations we can use for small sample distributions in econometric work.

The Edgeworth approximation is based on a finite number of terms (usually the first
two or three terms) of an asymptotic series expansion of the distribution function (or
density) of the estimator of test statistic under consideration. We now regard this
particular asymptotic expansion (or Edgeworth expansion, as it is called) as a refinement of
the associated limit theorem which gives us the asymptotic distribution of the estimator or
test statistic. But, this is not the way in which the series was first discovered. Historically,
the Edgeworth series is closely related to another series which is known as the Gram-
Charlier series (or, more precisely, the Gram-Charlier A-series). The idea behind the
latter series is to represent the density fr(x) of some appropriately standardized statistic'’
as a linear combination of the standardized normal density and its successive derivatives.
That is

fr(x) =aoi(x)+%i’(x)+§i"(x)+... ()

wherethe a, (r =0, 1, 2, ...) are constant coefficients and i (x) = (271-)% exp (—3x?). Theidea
goes back to Tchebycheff ((1860), (1890)) as early as the mid-nineteenth century and was
pursued later by Gram (1879) and Charlier (1905).*® The derivatives of i (x) have the
simple representation

d'i(x)

iPx)=—==(-1)H,x)i(x) (=1,2,..)
dx

where H,(x) is a polynomial in x of degree r and the set {H,(x)|r=1,2,...} from an
orthogonal set of polynomials (called Hermite polynomials) with respect to the normal
distribution. In particular,

0

J H,(x)H;(x)i(x)dx =r! whens=r
0 otherwise

so that if we multiply both sides of (1) by H,(x) and, proceeding formally, integrate term by
term on the right hand side we obtain

[ <]

a =0 [ H@fr@ar )

Thus, the coefficients a, (r=1, 2, ...) become related to the moments of the underlying
distribution. In fact, since H,(x) is a polynomial, it is clear that a, will comprise a linear
combination of the moments of the underlying distribution.

Of course, the operations leading to (2) are, as they stand, purely formal and ignore
questions such as the convergence of the series (1). The latter question has, indeed, been
investigated in the mathematical literature and sufficient conditions found. But, these
impose severe restrictions on the tails of f(x) and in practice exclude most distributions of
interest.!

The fact that we cannot as a rule assert convergence of the series does not mean,
however, that a finite number of terms will not provide a good approximation. And what
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the Edgeworth series succeeds in doing is to break down the coefficients a, into
components and then reassemble the series so that it is a proper asymptotic series in the
mathematical sense. Such a series has the property that when we truncate the series after a
finite number of terms the remainder has the same order of magnitude (usually taken in
terms of powers of T2) as the first neglected term.?® In the Edgeworth series, terms of the
Gram-Charlier series are grouped according to their order of magnitude in termg of an
underlying parameter such as T~ 2. Let us take the underlying parameter to be T 2; then
the Edgeworth series has the form

fr() =i +50 -y BT 14 Ryr(x) e

where P;(x) is a polynomial in x and R,r(x) is the remainder in the series after » + 1 terms.
The series given by the right side of (3) will then be an asymptotic series if R,r(x)=
O(T~**"?), Sometimes, we can go further and say that the order of magnitude of R, +(x)
holds uniformly in x; clearly, this is a stronger result.

To take an example of (1) and (3) let us go back to the simplest case of the
standardized statistic '

Zr=VT{T ' X, +... + Xr)—m}/o (@)

where the X; (=1, ..., T) are independent and identically distributed random variables
with mean m, variance o and finite moments (and, hence, cumulants) up to order v +2.
We denote by k; the cumulant of X, of order j so that the jth cumulant of (X,—m)/c is

ki=kj/a' (j=1,..,v+2)
and the jth cumulant of Z7 is
kKi=k}/TY®t  (j=1,..,v+2)
=O(T W) ..(5)

(see, for instance, Cramér (1946, p. 225)). If fr(x) is the density of Zr the Gram-Charlier
series (1) becomes in this case?’

fr() = i) Ko oy LKy

1 k5 1(k_g 10(k5)*
3! T3 4T 51 T3

190) 4 T2+—T—)i‘6’(x)+...
.(6)

By simple rearrangement of (6) we obtain the first few terms in the Edgeworth series as
follows

_ 1 k3 . 11, ,.@ 10 ., 2.0 }
Frlx) = i) =37 7100+ k400 + g (k3)%O)
+ terms of higher order in T2
. 1 (kb 1 (kb 10 ., ]
=i 1+ 5 s} + {5 o) + 4 k8 Ho)
+terms of higher order in T, ..(7)

Clearly, (7) has the same general form as (3). We note that P;(x) is a polynomial of degree
3 in x and P,(x) is a polynomial of degree 6; in general, P;(x) in (3) is a polynomial of
degree 3j. We note that (7) can be written in the alternative form

1 k3 3 1 k4
T3P T4
and this is the form originally suggested by Edgeworth (1905).

fr(x)=exp {— D*+ ...}i(x), D =d/dx (7))
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By formal inspection of (6) and (7) we see that we may expect accuracy up to order
T ! with knowledge of cumulants of order six in (6) but only cumulants of order four in (7).
Although Edgeworth derived the form of (7) in 1905, a rigorous demonstration of the
order of magnitude of the remainder terms was not available until Cramér’s papers
appeared in 1925 and 1928. Cramér showed that (7) is indeed a proper asymptotic series
and his results were made more readily available with the publication of his monograph on
probability in 1937. Cramér also verified that the corresponding expansion for the
distribution function of Zr, obtained by formally integrating the series (7), is a proper
asymptotic series. Simpler proofs of the results came later and one of the most lucid
modern discussions is given by Feller (1970). Feller’s proof of the validity of the expansion
as an asymptotic series rests on two simple conditions. First, if ¢, (¢) is the characteristic
function of the component variates X,, then

[ oaorar<eo

for some r=1. This condition ensures the existence of the density fr(x). The second
condition requires that X, possess cumulants up to order »+2 for the validity of the
expansion up to » + 1 terms. Thus, if we continue the development (7) up to v + 1 terms,
writing the expansion as in (3) the error R, (x) on the first » + 1 terms of the expansions is
from Feller’s result

R,r(x)=0(T™"? uniformly in x.
That s, R,r(x) tends to zero as T - co faster than T~*/2. Note that we can now write 3) as
fre)=i1+X2; P(x)T "1+ R,_11(x) ..(8)

and R,_17(x) = O(T™"?) so that the error has the same order of magnitude as the first
neglected term.

The Edgeworth approximation to fr(x) is obtained by taking the first few terms in the
series on the right side of (8). From the asymptotic nature of the series we know that the
error on the Edgeworth approximation will tend to zero faster than the error on the normal
approximation (the very first term of the series) as T - c0. While this suggests that the
Edgeworth approximation may give useful results in many cases, it is important to stress
that this theory covers only the order of magnitude of the error as T - o; it says nothing
about the absolute magnitude of the error in particular cases. For this reason, although the
Edgeworth approximation is appealing in itself, the need for a theory which provides
explicit bounds on the error has long been recognized. Unfortunately, only a few results
have been obtained. The central result, which bounds the error on the normal approxima-
tion, was obtained by Berry and Esseen in the early 1940’s (Berry (1941), Esseen
(1945 )).2% This theorem tells us that if Fy- (x) is the distribution function of Zr and I (x) the
distribution function of a standard normal variate, then

C
Supx IFT(x)_I(xHéT]gZ_s ...(9)

where B3 is the third absolute moment of X, and C is an absolute, universal constant. The
inequality (9) has been shown to hold for values of C aslow as 2-031.>> The Berry-Esseen
Theorem has been extended to cover the case of non-identically distributed variates (see
Petrov (1975), chapter V) and has recently been generalized by Sazonov (1968), Bhat-
tacharya (1975) and Sweeting (1977) to include multivariate distributions. As yet there
are no extensions to cases of importance in econometrics, and this seems to be a
worthwhile area of future investigation.>*

On the other hand, the last seven or eight years have witnessed the emergence of a
good deal of literature concerned with the use of Edgeworth type approximations in
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econometrics. The first published paper in the area is by Sargan and Mikhail in 1971 but
the idea of using Edgeworth approximations in econometric work certainly goes back
somewhat farther. At least two papers in the area were presented at the 1970 World
Congress (Sargan (1970) and Mariano (1973)) and I have noticed an abstract by Sargan in
Econometrica as early as 1964, which reports the application of Gram—Charlier series to
the distribution of the 2SLS estimator. Isay as early as 1964 because the development of
this type of approximation theory in econometrics should be viewed in the light of
corresponding developments in mathematical statistics. At this point in time, there was no
theory in the statistical literature dealing with statistics whose moments may not exist, as is
the case with the 2SLS estimator. In a survey paper, Wallace had suggested in 1958 that
expansions could be constructed for quite general functions of sample moments,>* but no
rigorous theory was available. In 1967, Chambers published a paper which went a long
way towards filling this gap. He developed Edgeworth expansions for multivariate
statistics more general than standardized means, gave conditions for their validity and
algorithms for their computation; he also derived expansions for quite general vector
functions of other multivariate statistics (such as sample moments), and gave compu-
tational algorithms in this case as well.

A seminal paper in the area of econometric applications was published by Sargan in
1975. In this paper, Sargan proved a very general theorem on the validity of Edgeworth
expansions for sample distributions of quite general estimators and statistics with limiting
normal distributions (including all the usual simultaneous equations estimators and #-ratio
test statistics). The approach taken in this paper was to write the error in an estimator, say
B — B, as a function of a more basic set of statistics comprising the errors in the sample
moments of the data. Thus, writing 8 — 8 = er(p, w) in notation close to that of Sargan
(1975), the vector of more basic statistics is partitioned into a subvector p of normally
distributed variates, and a vector w, statistically independent of p. In addition to the
normality requirement on p, Sargan’s theorem imposes a smoothness and invertibility
condition on the function er(-) and demands that vV'Tw have bounded moments of all
orders. But, the important feature of this result is that whereas p and w have finite
moments of all orders, no similar condition is placed on the error function er(p, w) and,
hence, 8. Thus, the theorem applies to the important cases of econometric estimators
whose finite sample moments may exist only up to a certain order.

A simple example of the application of the Sargan result is given by the 2SLS
estimator of the coeflicient vector B in the single equation

vi=YB+Zyy+u . ...(10)

of a simultaneous equations model. y;(T X 1) and Y>(T X n) are an observation vector and
observation matrix, respectively, of the included endogenous variables, Z; is a T X K;
matrix of observations of included exogenous variables and u is a normally distributed
disturbance with zero mean and covariance matrix o°I. If Z is the T x K matrix of
observations of all K exogenous variables, then the 2SLS estimator of 3 is given by*® (c.f.
Mariano (1977, pp. 490-491))

B =(Y3RY») (Y5Ry:) ..(11)

where R=2Z(Z'Z)'Z'-Z.(ZZ,)"'Z. We take the reduced form equations for y; and
Y2 as

y1=Zm+v1; Y,=ZIL,+V,

and define

_Z'y1_<Z’Z) _Z’vl‘ Z’Yz_(Z’Z>l_I Z'V,
1= T T 1= T T 2
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and a selection matrix S for which Z; = ZS (i.e. S is a matrix which selects those columns of
Z occurring in Z;). Then

B =[(Pa+ MILYM (P, + MII,) — (P, + MIL,)'S(S'MS)~'S' (P, + MTI,)] ™
[(Pa+MILYM Y(py+ M) — (P, — MIL) S(S'MS)'S'(p1+ Mmy)]  ...(12)

where M = T~'Z'Z. We now let p be the vector formed from the components of p; and P,
and under the assumption of normally distributed disturbances and non-random exo-
genous variables it follows that p has a multivariate normal distribution. The error in some
linear combination of the estimator 4’3 (where h is a known constant vector) is then, from
(12), a simple rational function®’ in the components of p. This rational function satisfies
the smoothness and invertibility conditions required for the application of Sargan’s
theorem and, therefore, the distribution of v Th'(B —B) admits a valid Edgeworth
expansion.

While this theorem has great generality it does not extend to situations where there
are lagged endogenous variables as regressors. For, in this case, we cannot always assert
the normality of a subset of the sample moments® (such as p; and P, in the above example)
even if the disturbances are normally distributed; and a more general theory is needed to
establish the validity of the Edgeworth expansion in such cases. In another important
paper, Sargan (1976a) has specialized the results and algorithms given earlier by
Chambers to derive general formulae which apply to this case. In particular, Sargan details
the formulae for the Edgeworth approximation to the distribution function based on terms
up to O(T™"): that is, the first three terms of the expansion. An independent proof of the
validity of the Edgeworth expansion in this more general setting, together with a discussion
of the conditions under which the expansion applies, is contained in Phillips (19775). In
these more general situations, it is convenient to write the error in an estimator such as 8 as
a function of a single vector of underlying variates, . We then have 8 — B = er(q) and our
conditions for the validity of the Edgeworth approximation are of two types.*® First, some
general smoothness and invertibility conditions on the error function er( ) which broadly
parallel those in the earlier framework of Sargan (1975). Second, a set of conditions on the
stochastic properties of the vector of underlying variates q. These essentially require that

Tq has cumulants of the same order of magnitude in 1/v T as would a standardized mean
(compare (5), above) and that the distribution of JTq itself admits a valid Edgeworth
expansion. It should be pointed out at this point that, although this theorem has great
generality, the complete verification of the applicability of the result to regression models
with lagged endogenous variables requires that the conditions of the theorem be rigorously
checked out in this context. As yet, this has not been done.*®

In addition to the above results, a number of general theorems on the validity of
Edgeworth series expansions have recently been published in the probability literature.
Unfortunately, none of these are of sufficient generality to apply in time series models.
But since they have an important bearing on our subject matter in this section and are
related in other ways, which I will mention, to methods that have been used in
econometrics I will briefly discuss them here.

" Dealing with the case of standardized sums of independent, identically distributed
random variables, Ibragimov (1967), gave necessary as well as sufficient conditions for the
validity of the Edgeworth expansion. Chibisov (1972) has proved the validity of an
asymptotic expansion of the distribution of a multivariate statistic that can itself be
represented in the form of an asymptotic series whose terms are polynomial functions of
standardized means of independent identically distributed random vectors i.e. a statistic of
the form

Zr=ho(ST)+ X, T™"*hi(St) ...(13)

with St = T2 Z,T=1 X, and the X, independent, identically distributed random p-vectors
with zero mean vector and finite moments up to the rth order (r > 2) and where the A;(-)
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are vectors of polynomials of dimension s = p with the components of /(- ) being linear.>’
One interesting feature of Chibisov’s proof of the asymptotic expansion of the distribution
of Zr is the treatment of the change of dimension from the basic statistic Sz to the statistic
of interest Z7. The problems resulting from this change of dimension had not been dealt
with in the earlier literature (such as the article by Chambers (1967)), although the proofs
in Sargan (1975) and Phillips (1977b) provide an alternative way of overcoming this
problem.

The representation of a statistic in the form (13) often does not hold precisely but with
a remainder whose stochastic order is T-“*"/2 as T > . Chibisov (1973) gives some
conditions under which this will be so and in the 1972 paper establishes asymptotic
expansions for the distribution of Zr in this more general case.>® Expansions such as (13)
and their counterparts with remainders are important in econometrics because moments
of a finite number of terms of the expansion lead us to the Nagar approximations to the
moments of the estimators. The validity of these moment approximations has been
considered by Sargan (1974).

As yet there have been few published applications of Edgeworth approximations in
econometric work that enable us to evaluate the accuracy of the approximations in
different regions of the distribution.>* This is particularly true of time series models. In an
earlier study (Phillips (1977a)), I concentrated on the first order autoregression and found
that, when the model was very stable, the approximations based on the first two and three
terms of the series were very close to the exact distribution (computed by numerical
integration) even for quite small sample sizes (such as T = 10). The simple model used in
this article did not involve a constant term or exogenous variables. The fact that Orcutt
and Winokur (1969) in their sampling experiment discovered quite different sampling
behaviour between estimates of the constant and the coefficient in an autoregression
suggest that a parallel study on the same model with a fitted mean or the presence of an
exogenous variable would be of interest. The present paper goes somewhat further in
Sections 5-6 by considering the added complication of simultaneity.

4. LARGE DEVIATION EXPANSIONS

As discussed in the last section, series expansions of the Edgeworth type can be viewed as
extensions of the limit theorems which give us the asymptotic distribution of our estimators
and test statistics. They, therefore, belong to the same branch in the theory of probability
as the classical central limit theorem (see the diagram in Appendix B). Moreover, they
share a common limitation with classical central limit theory: namely, that they are often
not very informative about the tails or limiting tails of a statistic of interest. To clarify this
remark it is helpful to refer back to the case of a standardized sum Z7 of T independent
and identically distributed random variables {X,: =1, ..., T} with a common distribution
such that E(X;)=0 and E(X?)=o>. Then, classical theory tells us that

x

FT(x)=P(ZT§x)—>I(x)=J‘ e 1 qr ...(14)

-2
as T - oo, which is of interest when x =0O(1) as T > c0. But, when the argument x is
allowed to vary with T, the statement of the above theorem can be trivial. For instance, if
x - —co0 as T - oo then both sides of (14) tend to zero: the theory is uninformative about the
relative rate of convergence and this is why the relative error of the asymptotic normal
approximation can be large in the tails even for quite large T. In such cases, what we are
often really interested in is the behaviour of the limiting tails of Fr(—x) and 1— Fr(x) so
that it is more useful here to consider the ratios of tail probabilities

Fr(—x) and 1-Fr(x)
I(—x) 1-1I(x)
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under the assumption that x > co0 as T - 00. If the limiting tails are normal then these ratios
will converge to unity as T - 0. Clearly, the rate at which x - co with T determines how
deep in the tails we are concentrating. When x = o(«/ T) as T -» c0 a number of important
results have been obtained and these constitute the theory of large deviations.?>-¢

For instance the theorem for tail probabilities of standardized sums corresponding to
the classical result (14) tells us that if x =0 and x = o(¥T) as T > o then (Ibragimov and
Linnik (1971) and Petrov (1968))

P(Zr>x x> [ x x+1
1(+I(x)2=exp {TTW(JT)}(HO( \/T)) ..(15)
and
P(Zr=—x x> (—x x+1
(I(T—x) =exp {_ﬁw(ﬁ)}(l 0( JT)) -+-(16)
where
W(z)= o+ 1z + ¢z’ +... ...(17)
is a power series whose coefficients ¢; (i = , 7, .) depend on the cumulants of X; and

which converges in a nelghbourhood of z=
Although this theorem is clearly stronger than (14) it also depends on- the stronger
condition that

E{exp (a|X:|)} <0 ...(18)

for some a >0 so that the moment generating function of the component variates exists
and the corresponding characteristic function is analytic in a strip of the imaginary axis
(Lukacs (1970)). The main import of (15) and (16) is that the llmmng tails of Zr are
normal only if x does not tend to infinity too fast (to be precise x =o(T’s)). For if x tends to
infinity as fast or faster than a constant multlple of Ts then the limiting tails of Zr are not
normal hut will depend on the coefficients in the power series W(z). Thus, if x =0 and
x =0O(T*) as T - o it is easy to see that
3 4

P(Zr>x)=(1—-I(x)) exp {‘*OJ—* ¢1jT}(1 +o("j;)) ..(19)

and, more generally, if x =0 and x = O(T****?) for some positive integer k then

P(Zr>x)=(1 —I(x)){exp \/T\If["](\/T)Kl +o("j;>> ...(20)

where ¥¥(z) represents the first k terms of the series ¥(z) in (17) above. Similar results
hold for the negative tail.

In practice, we are frequently concerned with approximating the tails of the dis-
tribution of a test statistic whose exact distribution is unknown. Insuch cases, where x may
be quite large relative to ¥ T it is known that the Edgeworth approximation can lead to
unsatlsfactory results, mcludmg negative probabllltles An alternative which should be
available in many cases is to use the first few terms in a large deviation expansion such as
(19) or (20). Note that these expansions have the advantage that they are positive for all x
(although not necessarlly less than unity) and might be expected to do well at least for a
certain region in the tails. Some time ago, Chernoff (1956) pointed out the relevance of
this type of limit theory in statistical applications but, to my knowledge, there have as yet
been few applications.

One limitation to the immediate application in econometrics of large deviation limit
theory and its associated expansions is the fact that virtually all the results established so
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far in the probability literature apply only in the case of standardized sums of independent
random variables (or vectors). Intwo recent articles, I have explored the validity and form
of large deviation expansions such as (19) and (20) in a more general setting. The first
article (Phillips (1977c¢)) establishes a large deviation limit theorem for multivariate
statistics which are more general than standardlzed means but which depend on the sample
size T in much the same way as T - .> ® The second article (Phillips (1976)) derives
general formulae for large deviation expansions such as (19) and (20) when we are
interested in approximating the tails of the sampling distribution of statistics which can be
represented as quite general functions of the first and second sample moments of the data.
Thus, the setting is the same as that in Sargan (1976a) and Phillips (19775) dealing with
the Edgeworth expansion, so that the formulae derived should apply in a number of
different models including those with lagged endogenous variables and, in some cases,
non-normal errors. The expansion obtained is then applied to tail probabilities of the least
squares estimator of the coefficient in a first order autoregression. The numerical results
suggest that this new approximation can give good results in the region of the tail between
10 per cent and 1 per cent in this example but the performance of the approx1mat10n is
more sensitive to the stability of the model than the Edgeworth approximation.*® Both
these approximations, therefore, need to be used with care when approximating tail
probabilities in dynamic models.

5. ALTERNATIVE ESTIMATORS OF THE MARGINAL
PROPENSITY TO CONSUME

The model we use in our application of the theory in Section 3 is the system

C=aY,+BC_1+u, t=...,-1,0,1,2,..) ...(21)
Y. =C,+1, (t=...,-1,0,1,2,..) ...(22)
where the variables C, Y, and I, represent consumption, income and investment,
respectively. We assume that the disturbances u, (¢r=...,—1,0,1,2,...) are serially

independent and identically distributed as N (O, a2); and I, is taken to be a non-random
exogenous variable whose sample second moment converges to a finite positive constant as
the sample size tends to infinity. As Bergstrom argued in 1962, the model given by (21)
and (22) is, in spite of its simplicity, still the kernel of many macroeconometric models. The
lag in the consumption function lends an additional feature of realism and can be justified
on the basis of a number of theories. But, not all of these theories are consistent with a
serially independent disturbance, so our assumptlons about the stochastic properties of u,
narrow down the field of application of the model.*’ Nevertheless, it is hoped that the
model provides a useful starting point in the development of a small sample theory for
dynamic simultaneous equation models.

Writing 8 = 8/(1 — &) and under the stability condition |8| < 1 we derive from (21) and
(22) the final form equations

c,=< @ )z;’io 551,_s+(
l1-a

1 © o
1-_;) Yoo 8 U =m,+w, ...(23)

say, and
Y.=IL+m,+w.

We define the T x1 observation vectors ¢'=(Cy, Cs, ..., Cr), c.1 =(Cy, Cy, ..., Cr_1),
y'=(Yy, Ya, ..., Yr)andd' = (I, I, ..., Ir) so that the OLS estimators a* and B* of & and

B in (21) are given by

(y'y)(c'c—1) = (cl1y)(y'c)
(yIY)(C'—IC—l)_(ylc—l)z

o= (ctic-1)(y'c)— (y’c_l)(c,;IC) and B*=

(y'y)elic-1)—(y'c-1)
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But, using (22) we can write these formulae as

_ (clic_q)(c'c+d'c)—(c'c_1+d'c_1)(c 1c)
(CIC +2d'c+ d’d)(C,_1C_1) - (C,C_1 + d’C_1)2

*

...(24)

and

_(c'c_y)(c'c+2d'c+d'd)—(c'c_1+d'c_q)(c'c +d'c)
(c'c+2d'c+d'd)(cic_1)—(c'coi+d'c—1)

Our object now is to write a* and B* in terms of standardized sample moments of the
underlying data so that the functional representation of the estimators corresponding to
that described in Section 2 in connection with the papers by Sargan (1976a) and Phillips
(1977b). We let x'=(Cy, Cy, ..., Cr), define the (T + 1) X (T + 1) matrices

B* ...(25)

1 0 ... 0 O] 0 3 00
01 .. 00 3 0 00
A= « .. - - A,=|- .o
00 .. 10 00 0 3
(0 0 ... 0 O] 0 0 3 0
and
[0 0 0 0]
0 1 0 0
Asz=|- - o
0 0 10
0 0 ... 0 1]

and introduce the variables
q={x'Ax—Ex'Ax)})T (i=1,2,3)
q:={bix—E@®ix)}/T (i=4,5)

where b, =(d’,0) and b5=(0,d'). We note that c_,c1=x"A1x, c'cci=x"'Ayx, c'c=
x'Asx,d'c_i=bsx and d'c = bsx.-

By setting w=T"'d'd, wi=T 'E(x'Ax) (i=1,2,3) and pu,=T 'E(bix)
(p =4, 5) we find the representations

a*={(q1+p1)(q@s+qs+us+us)—(q2+qa+pa+pa)(g2+p2)}
+{(@3+2qs+u +p3+2u5)(@1+ 1) — @2+ et patpd)’}, ...(26)
B* ={(q2+u2)(q3+2qs+u +us+2us)—(q2+ qa+ua+ wa)(gs+qs+us+ us)}
+{(qs+2gs+pm + s +2us) @1+ 1) — (G2 + qa+ p2+pa)}. ...(27)

In a similar way we find the following representations of the 2SLS estimators & and é
of @ and B

(q1+p1)(qs+ pus)—(g2+w12)(qs+ pa)
(q1+ur1)@stus+u)—(qat+una(q2+qa+p2t+ps)

...(28)

A
a =

and
5 (q2+m2)(qs+us+u)—(qs+ums)(qa+qat+pat pa)
(@1+u)@s+tustu)—(qa+ua)g2+qatpztps)
The representations (26) to (29) express each estimator as a rational function of the

...(29)
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elements q;, (i =1, ..., 5), and are suitable for the application of the algorithm in Sargan
(1976a) to derive the Edgeworth approximation. The algorithm requires derivatives of
these functions up to the third order and cumulants of the elements q; up to the fourth
order. To compute the derivatives, a computer programme was written*? to obtain
analytical derivatives of polynomials and rational functions up to the third order. The
programme reads in only the form of the polynomials and the value of the coefficients; it
evaluates derivatives at any required point although, for the purposes of the present
application, derivatives are evaluated at the origin.*?

6. THE CHARACTERISTIC FUNCTION AND CUMULANTS OF THE
SAMPLE MOMENTS OF THE DATA

Under our assumption of a normally distributed disturbance it follows that the vector x is
normal with mean vector m and covariance matrix () where

mo 1 s ... &7

1 ..
m=|™), @=p® 1o ?
mr 5T ST_l 1

72=0‘i{(1—a)2—32}' and § =B/(1—a). The characteristic function of the vector
Q'=(Qy, ..., Qs) where Q;i=x'Ax (i=1,2,3) and Q,=bLx (p=4,5) is given by**

0(t) = I - 2iG(1)Q| 2 exp &(m +iQf (1)) (Q - 2iQG (1)Q) " (m +iQf (1) — 2m'Q ' m}
...(30)

where
G(t)=t1A1+t2A2+t3A3 and f(t)=t4b4+t5b5

Writing the second characteristic (or cumulant generating function) of Q as A (f) =
log (6(¢)) we_note from the relationship q; = T~ 'Q; — u: that the second characteristic of
the vector ﬁq, where q' = (q1, ..., qs) is

A(D)=X(¢/NT)—iT? Yoo Wity

— _Log det (1—% G(t)Q) +%(m +7i=TQf(t)) (Q—j—ine(t)n) 1(m +:/—%Qf(t))
—Im'Q7 m —iT? Y, ;. ...(31)

By differentiating (31) with respect to the elements of ¢ and evaluating these
derivatives at the origin we can extract the cumulants of J Tq. The resulting expressions
are detailed in Appendix C. These expressions are closely related to the formulae for the
expectation of products of quadratic forms in normal variables. Neudecker (1968)
obtained the appropriate formulae in the case of the product of three quadratic forms and
Kumar (1973) gives a procedure for extracting the required expression in the general case
but does not give explicit formulae. In fact, the recent results of Carlson (1972) (see also
Exton (1976)) enable us to write down such expectations explicitly in terms of the
Lauricella multiple hypergeometric function (Exton (1976)). An alternative solution to
the same problem based on the formulae for the cumulants has been given by Magnus
(1978).

The cumulant expressions given in Appendix C were programmed for calculation so
that the results could be directly combined with the derivative calculations dlscussed in
Section 5 to yield the coefficients in the Edgeworth approximation up to O(T ). The
cumulants depend not only on the values of the underlying parameters «, 8 and o butalso
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on the vectors b4 and bs which contain the sample period values of the exogenous variable
I, (t=1,...,T) as well as the mean vector m whose components m,, (¢1=0,1,...,T)
depend on the whole past history of the exogenous variable, as is clear from (23) above.
Thus, to calculate the Edgeworth approximations to the distribution of the OLS and 2SLS
estimators of « and B in (21) we need first to specify a series for I,. Clearly, a wide choice is
available, including real data series. To keep this study within manageable bounds and at
the same time enable us to measure the effect of different types of exogenous series on the
approximations the following two processes were selected for generation of the I, series:

L=pl_i+v; v iid N(O,0%) ...(32)

and
L=pd_1+pal,_2+v; v iid. N(O,c?2). ...(33)
Dataon [, (t=-50,...,-1,0,1, ..., T) were generated once and for all from (32) and

(33) with parameter values i) p=0: 2 0 5, 0-8 and o2 = 1-0 for (32); and (ii) p; =0-75,
p2=—0-5and o2 = 1-0for (33). These values give us n (i) various degrees of correlation in
the generated series and in (ii) a series with a cycle of approximately 6 years if the time unit
is a year. The remaining parameter o2 has been fixed at unity and, when we compute the
approximations, we consider various values of a2, the variance of the disturbance on the
consumption function (21); this enables us to measure the effect of changes in the
signal/noise ratio on the form of the approximations.

Once we have specified the process generating the series I, we can readily compute the
limits in probability of the OLS estimators of a and B. We illustrate some of these
computations in Appendix D for the case of (32).

7. NUMERICAL EVALUATION OF THE APPROXIMATE DISTRIBUTIONS

We concentrate on the small sample distributions of the OLS and 2SLS estimators of  and
B in (21). Numerical computations of the Edgeworth approximations to these dis-
trlbutlons are possible once we have spemﬁed values of the underlying parameters «, 8 and
a2 > in the model (21)—(22) as well as a series for the exogenous variable I over the relevant
sample period (corresponding to an assumed value for T') and enough of the past history of
I, to accurately compute the components m;, as in (23). Taking into account the additional
parameters that occur in the processes (32) and (33) that we have selected for the
generation of the I, series, we have a sizeable parameter space from which to sample
values. A selection of numerical results are given in the graph of Appendix E. These
graphs illustrate the effect on the distributions of some of the more important parameter
changes that have been found but are not in any way exhaustive.

The values of a and 8 do not seem greatly to influence the shape of the distributions
provided we keep within the region of stability. Most of the graphs (Figures 1-5),
therefore, refer to the values

«a=02 B=07

which give us a stability coefficient of § =0-87 and a long run marginal propensity to
consume of 0-73. We also fix the variance of the disturbance on (32) and (33) at a value of
o2 =1-0. With these values of the parameters fixed, we then consider the effect of the
different exogenous series

I, =pl,_1+u,; p=02,0-8
= 0'75[,-1 - 0‘51,_2'*' U
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and variations
02=10, 02=05

in the variance of the disturbance on the consumption function.

Rather than give a detailed account of individual figures it may be useful to summarize
some of the features that seem to emerge from these graphs. As in other cases, some
subjective judgement about the importance of errors of different magnitudes is required in
making an assessment. The following comments are, therefore, quite brief and readers
may wish to form their own views of the main implications of the results.

(i) The central location (measured, for instance by the approximate median) of the
2SLS estimator is closer to the true value of the parameter than OLS. In many
cases, the apparent bias of OLS is substantial, representing as much as 100 per
cent of the true parameter value (e.g. Figure 1(a)).

(ii) The bias of the OLS estimator seems to increase noticeably as a2/ o2 increases
in value and also as o>/var (I,) increases.

(iii) The OLS estimator of « is biased upwards (as in the case of the non-dynamic
consumption function treated by Bergstrom (1962)); while the OLS estimator
of B is biased downwards (as in the case of an autoregressive equation (Phillips
(1977a)).

(iv) The magnitude and direction of the bias apparent in the small sample dis-
tribution of the OLS estimator is compatible with the asymptotic bias given by
the calculations in Appendix D.

(v) The relative locations of the distributions of the OLS and 2SLS estimators seem
compatible with the numerical differences between these estimates that have
been observed in empirical work. For example, Klein (1969) gives the following
set of results for OLS and 2SLS estimates of the consumption function for
non-durable goods in the Klein-Goldberger model (with T =31):

0-332 0-616 0378]  OLS
169 9-2) 0-3)

Cu=l0.250| Y0723 |7 | =117 2SLS’
(4-0) (8-9) (0-8)

(vi) The sampling dispersion of the 2SLS estimators seems to be larger than that of
OLS, although for certain of the exogenous series the differences are not great.

(vii) In most cases, the smaller sampling dispersion of the OLS estimator does not
offset the bias of the estimator in terms of concentration about the true value of
the parameter. The graphs seem to the author to support the conclusion that
2SLS is still the better general purpose estimator in this model. However, the
probability of outliers (including negative short run marginal propensities)
appears to be substantial, particularly for the small sample size T = 10.

(viii) An important factor in determining the shape of the distribution appears to be
the process generating the exogenous series I, For data from the second order
process (33), the distributions display a greater degree of concentration and the
bias of the OLS estimator is reduced. This is true of estimates of both @ and 8
and it seems particularly relevant in the case T = 10.

(ix) The distributions show differing rates of convergence as T increases and this
feature seems to be related to the exogenous series being used. In general, the
convergence to a degenerate distribution seems more uniform when the data
are generated by the second order process.

(x) For the small sample size T = 10, there is some evidence that the approxima-
tions will be unreliable in the tails. In a number of cases for the 2SLS estimator,
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the approximation overshoots unity and is non-monotonic in the domain
considered (c.f. Phillips (1977a)).

8. FINAL COMMENTS

The analysis in Sections 5 and 6 can be applied directly to z-ratio statistics in the same
model. The cumulants as given in Appendix C remain unchanged but the form of the error
function, denoted er(q) in Section 3 of the paper, must be adapted to correspond to the
t-statistic. The function is now a ratio with a surd in the denominator, but this can be
handled with no difficulty in the analytic differentiation routine during the computation of
the approximation.*®

One limitation of the results in Sections 5-7 is the assumption of a normally
distributed disturbance on the consumption function. In this, as well as other situations in
econometrics, we may often wish to explore the effect of departures from normality on the
shape of the small sample distributions of our estimators. One possible procedure for
handling such departures is to work with an error distribution that includes the normal as a
special case (such as the exponential power distributions or a Gram—Charlier distribution).
The advantage of working with a Gram—Charlier error distribution is that the cumulant
formulae would be readily calculable along the same lines as the present paper but with
extra parameters included that measure the extent of the departure from normality. Some
preliminary work dealing with quadratic forms has been done along these lines by
Subrahmaniam ((1966) and (1968)). As yet there have been no applications of this idea in
econometrics.

Another potential application of the Edgeworth approximation in the present context
is to analyse the effects of specification error. It would be of interest, in particular, to see
how the recent results of this type of analysis in classical situations discussed in Section 2
are affected by the presence of lagged endogenous variables in the regressor set.

APPENDIX A: SOME EXACT THEORY IN THE CLASSICAL CASE

Our discussion will concentrate on the 2SLS estimator. Other instrumental variable
estimators and k-class estimators (non-stochastic k) can be treated in a similar way
although in the case of k-class estimators where 0 < k < 1 the analysis is more complicated.

A(i) An Equation with Two Endogenous Variables

We consider a single structural equation such as (10) in which there is one right hand side
endogenous variable (i.e. n =1). Then we have

y1=By2+Ziy+u. ...(A.1)
The reduced form equations for y; and y, are

Tl T12

Iyl =121 2 ]+t

M1 22
where Z, is a T X K, matrix of exogenous variables excluded from (A.1). We assume that
the usual standardizing transformations (Basmann (1963a) and (1974)) have been carried
out so that (i) T7'Z'Z = I, where Z =[Z, : Z,], K = K1+ K and (ii) the rows of [v; : v,]
are independent and identically distributed normal vectors with zero mean and covariance
matrix equal to the identity matrix. We assume that the equation (A.1) is identified so that
K>=1.
The 2SLS estimator of B8 in (A.1) is given by the ratio

B =y4Ry1/y5Ry» .(A2)
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where
R=2Z,(Z5Z,)"'Z5 =Z,Z5.
The joint Laplace transform of y3Ry, and y5Ry; is*®

2
- 1
L(w, wo)=(1-2w1—w3) "z/"-’-exp[”z {T(—;fT@‘ 1}]

where w?=Tmhma and where w; and w; satlsfy 1—-2Re(w1)— (Re(w,))*>>0.
The density function of £ is now given by the inversion formula (Cramér (1946))

...(A.3)

dw.

u=0

pdt(r) = 5 I ALl —1v, w)
277" —jo0 au

Following the analysis in Holly and Phillips (1977) this reduces to the integral

1 ico
ﬁj_in(w)exp{ t/r(w)}dw ...(A.4)
where
2
B(w)= [K2+{"+(21—Bw)](1 +2rw — w?) K72
and

w (1+3 )+2w(B—r)
142w —w?

Y(w)=

We note that the integrand in (A.4) is analytic except for those values of w where
1+2rw—w?=0i.e. except for the following two points on the real axis

ar=r—(1+r* )2, ar=r+(1+r* )2.

When K is even, these two points are essential singularities; when K is odd, the points are
also branch points because of the fractional power that occurs in B(w). We, therefore,
deal with these two cases separately.

(i) K, even

We consider the contour illustrated in Figure A(a). The integral along the imaginary axis
[—iR, iR]together with the integral around the semx—cxrcle C is just 277i times the residue
of the integrand at the essential singularity r — (1+r )2 Moreover, if we let R - o0 it is easy
to see, from the behaviour of the integrand in (A.4) and the mequahty (see, for instance,
Miller (1960, p. 74))

[ 7n)aw| = 7R maxec |fow)

where f(w) = B(w) exp {3’y (w)}, that the integral around the semi-circle C tends to zero
as R » oo, Thus, we are left with the simple relationship

2
pdf (r) = residue, —,, [B(w) exp {%—w(w)}]. ...(A.5)
(A.5) is a simple relationship*’ and to extract the analytic form of the density we need

to compute the residue at a;. To do this we need only identify the coefficient of the term
1/(w —a,) in the Laurent series expansion of the integrand f(w) in an annulus around a;.
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/\Im(w)

| LR

_ +——Re(w)
r4 (142

w- plane

FIGURE A(a)

We can write 1+2rw —w?=—(w—a;)(w —a,) and expand ¢(w) and the first factor of
B(w) in partial fractions. This gives us the following representation:

ony=[ -2+ 200 _eAd) D)oy (g

w—a; w—al\(w—a) (w—ay)'

2 2
. e 1 2 (1 2
exp { 2a (w - az)BZ(r)} exp {Za (w —a1>B1(r)} ++(A.6)
where
I=(K2+2)/2, @ = (as—a:) ' =31+,
2
A0=w20+69)-BECEBD) 26,7 4 s
Ay =1+ 8D +2Bu*(1+Br)as,
1
Bl(r)=ﬁ%)—%——g (A7)
and
1
Ba(r) =§(1—++—‘j-%-%+§. .(A8)

The factors involving (w —a,)~' taken to some power can now be expanded using the
binomial expansion as

w—az) " =(-a)" {l1—a(w—a)} "
I'm+k)

W—ak(w —ay)*

=(—a)™ Z;’::o
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for wina neighbourhood of a;. We also expand the final exponential factor of (A.5)ina
power series. This glves us the required Laurent series for f(w). We now find the
coefficient of (w —a;) ', and hence the density, to be

(w?/2)"B3™(r)
m!

exp {—%2(1 +Bz)}[(K2—M232)6¥21_1 Yoo

l
TEEpemsin ),",ff"),k( Bi0))’

A e LB Oy Do ()

B ) 3y s 22 (820 ] ia9)

+a2!+1A2(r) ZC,:: -0 'k'n'

where (a), denotes I'(a +r)/I'(a). No doubt this can be simplified into the form given by
Richardson (1968).

(i) K> odd

We work from (A 4) above and note that, in this case, B(w) has a branch point at
=a; =r—(1+r%3. We, therefore, cut the real axis from —co to r — (1 +r )2 and consider
the contour illustrated in Figure A(b) below.

(R
Cs
4 Y
4 Re(w)
Y
C
-R
w- plane

FIGURE A(b)
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As in the previous case where K, was even, the integrals over C; and C, tend to zero as the
radius R - 00. Thus

ico

1 1
pdf (r) =m J _ f(w)aw =§;7 L* f(w)dw ...(A.10)

bt }
where

f(w)=B(w) exp {su>¢(w)} as before and y* is the contour shown in Figure A(c).

" Lon(w)

—y 1 >
\y Re(w)

w-plane

FIGURE A(c)

According to (A.10), the density function is given by a loop integral*® starting at minus
infinity passing around the branch point and receding to minus infinity. Many special
functions have integral representations similar to (A.10), of which perhaps the best known
is the Hankel integral defining the Gamma function (Erdéyli (1953, p. 13)). We now show
how to transform (A.8) into a form which is recognizable in terms of one of the

Pochhammer integral representations of the confluent hypergeometric function (Slater
(1960, pp. 38-41)).
We start by introducing a new complex variable ¢ defined by the equation

w—ai=c(1-0)/¢ ...(A.11)
where
c=a1—a,=-2(1 +r2)%.

This transformation takes w = a; into { =1 and w = —c0 into ¢ = 0 in the extended planes.
The contour y* in Figure A(c) is mapped into the contour n shown in Figure A(d).

1 xm()
/—4\"

7 -plane

FIGURE A(d)
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Under the transformation (A.11) we find that w —a, =c/¢{, dw/d¢ = —c/¢? and after a
little manipulation

1+8r B}2+{{ 1+ Br +§}2_ 1 { 1+ 8r B}z

20+,5% 2 2(1+r)3 2 —¢ L2+ 2

wow)=—(1+8% +
1

{)Blm

=—(14+BY)+Bi(r)+¢B3(r)— (

in the notation of (A.7) and (A.8). Moreover

( 1 >(K;+2>/2 (—1) Ko D/2p Ky 42

1+2w—w? - ck*?(1— {)(K2+2)/2

and

w(1+Bw) _ p{L(1+Baz)+ ey’

142rw—w? (:2(1—{)
Now

1 1
pdf (r)= i I fw)dw = Py J g(o)de

where

aw
g(£)=f(w({))zz

20014 +BCP (—1)ED2eK2 (L) 2
= [Kz“u {{(Cz(fi?) Be) ]C(K2+g(l_{)(£2+2)/2 : ({§ * €Xp {‘%(1 +62+B%(r))}
2 2
- exp {{%—B%(r)} exp {—1i—£ ’—;—-Bf(r)}.
Thus
_(cpfee w2 g2 g u*{{(1+Bay) +Be}’
pdf () =2 z1 exp {—7(1 +B +Bl(r)}L [Kz“ Z1-0) ]
2 o 2 2 mBZm sz
- exXp {{%B%(r)} Lm=0 W/ )m! () (1_§§(K2+i)/2+m
K,/2 #2 2 2
—1)™2 _
N exp{-4-(1+82+Bir)} o WrBO)
P 2mc Ko+l m=0 m!
_ I [ KU (1+3az)2+230(1+Ba2){+3202}]
WL c*(1-¢)

Ky
CXP{(—‘Bz( )}(l_{%lrfzm ...(A.12)
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We now note the following Pochhammer integral representation of the 1 F; function
(Slater (1960, p. 38), Erdéyli (1953, p. 272)):

_ _ y2(b—a)mi
J‘ enga_l(l_{)b—a_ld{=r(a)r(b a)[l 2 ]

. T®) 1Fi(a, b; x)

if Re (a)>0 and b —a is not a positive integer. Since K,>0 and —(K,/2+m) is not a
positive integer we can use the above integral in (A.12). We obtain

2
(-1y%" exp {21+ 7+ BY0)]

2 mp2m
pdf () = e Zm=ow
Tric m!
F(K2+1)F(—%—m) « .
X2 K2 1F1(K2+1,_2‘_m+1;‘#"—B%(r))
K, 2 2
I‘(T—m-%l)

K
(1 By F(K2+3)I‘(——72— m— 1)

2
¢ I‘(%-—m +2)

K, Mz 2
1F1(K2+3, —2-—m +2; 732(1‘)>

K,
_ 2Bc(1+Bay) F(K”z)r(_—é__m "1)
2

€ r(%ﬁ—mn)

K> P«z 2
1F1<K2+2, T—m +1; E—Bz("))

R )

&)

A(ii) An Equation With n+1 Endogenous Variables

K, w? o,
1F1(K2+1,———m;7B2(r)) .

_n2
A 2

We use the structural equation
V1= YzB +Z1y+u
given in (10) and we write the reduced form of the endogenous variables of this equation as

w1 1l

+ 1 V.
1 sz] [v1 2]

[yi1iY2]=[Z: 522][

where Il,, is a K, Xn matrix of rank n, (Kf =n). We assume that the exogenous
variables have been orthogonalized so that T~ Z'Z = Ix where Z =[Z,:Z,] and K =
K, + K, and that the rows of [v; } V,] are independent normal with mean vector zero and
covariance matrix I, (i.e. the usual standardizing transformations have been carried out).
We also write 115,115, = I15,I1,, where II,; is an n X n non-singular matrix.
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The joint probability density function of the 2SLS estimator (see (11) in the paper) is

given by (Phillips (1978b))
T = N+n+1
etr {—E(I +Bﬁ ’)Héznzz}rn(Tn)

" ?[det (I + )N Hn+D/2

(3)
2/ [(I st ( . 0 >_ )I'
N~ L\g A Tz\adi S T8
- (det (I + W)) N +m/2+i=(n+1)

N+n+1 N+n

pdf (r) =

0
'Zf:O

+j; %(I'f‘ W)ﬁzz(["‘ﬂf’)(I'f‘ rr’)"l(I+ I'B’)ﬁ122>]

wW=0

where N = K, —n = degree of overidentification of the structural equation. As pointed
out in Section 2 of the paper, the leading term of this density reveals the order to which
moments are finite. The term involves the factor [det(I+r')] N+ +V/2=
(14 ') N+ D2 which is similar in form to the principal factor of a multivariate r-density
when N >0 and a multivariate Cauchy-density when N =0.

When n = 1, the above multivariate density reduces to the univariate density function
for the 2SLS estimator in the two endogenous variable case, i.e.

wli-Gass} )

(52
1 N+1 =0 IN+1\ \ 2
B(—, ) 14 2)N+2)/2 .!< )
> 2 (1+r79) M=),

P (N+2 N+1+ u’ (1+Br)2>

Y\ T T T 1R
where uz = T#r3, = Tmhamas is the concentration parameter and N = K, —1 in this case.

An asymptotic expansion of the joint probability density function in the case of

general n and N can be derived from the formula given above. Marginal density functions
can then be approximated by the numerical integration of this approximate joint density
for low values of n. Some numerical computations are reported in Phillips (19785) for the
case n =2.

2

pdf (r)=

APPENDIX B: DIAGRAMMATIC STRUCTURE OF CERTAIN ASPECTS
OF ASYMPTOTIC THEORY

This diagram on p. 208 is not intended to be in any way comprehensive but should indicate
the main branches of asymptotic theory which lead to interesting asymptotic expansions.
We use the following notation:

Fr(x)=finite sample distribution function of statistic of interest.

1= i)dy.

fr(x) = finite sample probability density of statistic of interest.
i(x)=(1/vV2m) exp (-x%/2).
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APPENDIX C: CUMULANTS OF \/7"q UP TO THE FOURTH ORDER

We use the following notation for the derivatives of the second characteristic (or cumulant
generating function): subscripts a, b, ¢ and d denote valuesin {1, 2, 3} and subscripts p, g, r
and s denote values in {4, 5}. For instance,

3
Aabc = TAO (a,b,c=1,2,3)
0t, 08,01,
abp — 3°A(0) (a,b=1,2,3)
P = ot at,01, (p=4,5)
and
3*A(0) (a,b=1,...,3)

Aabpq =—>22 =
aopq 31,31,01,01, (p,q=4,5)

All first derivatives are zero, since q is standardized about its mean, and higher order
derivatives are as follows:

4
Aab = —ztr (A QA Q) ——m'A QA,m
T T
2,
Aap = —?b,,QAam
1,
Apq = —FbPQb,,

4i
Aabc = —F;—[tr (A.QA,QA,Q)+tr (A,0A.QA,0)]

- % m'[A QA QA + A QA QA+ A QA QA Im
2

Aabp = —;,—;-m'[AbQ.AaQ +A,QA,Q1b,
2

Aapq = —%;—b;,QAaqu
Apgr=0
Aabcd = %[tr (A QA QAL QA Q) +tr (A QANAQAQ) + tr (A QA QAL QA,Q)
+tr (AgQA, QA QA,)+tr (A, QAL QA QA Q)
+tr (A, QA QAL QA Q)]+ ;_,—62 m' A QA QAQA,

+ANAQA QA +A QA QA QA +ANAQAQA,
+ A QA QA QA+ A QA QAL QA Im

+;—-—62 m'[AcQAdQAbQAa + AcﬂAbQAdQAa

+ A, QAL QA QA+ A QA QAQA, +AQANAQA,
+A,QA,QA; QA Im
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8

Aabcp = Fm’[ACQ.AbQAaQ +A,QA QA Q0+ A QA QA Q+A QA QA,Q
+A QA QA0+ A QA,QA.Q)D,
4

Aabpq = Y b,[QA,QA,Q+QA,QA,Q)b,

Aapgr=0
Apgrs =0.

APPENDIX D: LIMITS IN PROBABILITY OF
THE LEAST SQUARES ESTIMATORS

If we take a simple parametric model as the process determining the exogenous series I,
then we can readily calculate the limits in probability of the least squares estimators of «
and B in (21). Suppose we have, as in (32) in the main body of the paper,

I,=pl,_1+v, lol<1

with the v, i.i.d. N(0, ') and independent of the u, in (21). Then, conditional on a given
realization of this I, series, we have the following expectations for finite T':

poe=T 'E(x'Ax)=T tr (A, Q)+m'A,m}, (a=1,2,3)
uw,=T'E(bjx), (p=4,5)
w=T7'dd.
Now, using bars to indicate limits of the above as T - 00, we extract by routine manipula-
tions the following limits in probability of the least squares estimators:
13+ @s)— i+ xa) (D.1)
f1( + s +21s) = (2 + fa)”’ T
B2+ k3 +24s) — (B2 + fa) (3 + iis)
A+ 23 +24s) — (@2 + @)’

plimT—)oo a * =

plimr_o B* = , ...(D.2)

where

2

1=<1_a>‘5<"1_azﬁ<f-‘l">2(ifﬁf§)(1—152)(1—1#)’

I

- ol 4 a’a2(p+9)

2 1-aP(1-8) " (1-a)(1-po)1-8)(1-p")

o i=02/(1-p° - apa’ (1)
A=, p=0,/(1-p°), A= a1 —p\1=ps)’

2
o aoy, ( 1 )
-0 -p)\1-ps)°
The following Tables show the numerical values of the above probability limits (D.1)
and (D.2) in certain cases. The values in the Table approximate moderately well the
general location of the approximate small sample distributions of the least squares

estimators illustrated in Figures 1-6 of Appendix E. These results support the view held
by Hendry ((1973), (1974), (1976)) based on experimental methods concerning the
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relevance of asymptotic theory in helping to characterize finite sample distributions in
dynamic models.

Both Tables D(a) and D(b) make it ¢lear that a critical parameter in determining the
magnitude of the asymptotic bias of the estimators is the signal to noise ratio. When
var (I,)/var (u;) = 2/{(1—p?o2} =10-416 (¢%=0-1, 2=1-0, p =0-2) we have a 21 per
cent asymptotic bias for a* and a 12 per cent bias for 8*; when var (I,)/var () =1-0416
the corresponding figures are a 1145 per cent bias for a* and a 52-7 per cent bias for B*.
The values in the third column of Tables D(a) and D(b) help to give us some idea of the
effect of the system dynamics on the asymptotic bias. (We change the value of a to bring it
closer to that of the long run marginal propensity to consume «/(1 — ) in the cases where
B #0). When 02=0-1,02=1-0and p = 0-2, for instance, we now find an asymptotic bias
for a* of 6 per cent.

TABLE D
(@) p=0-2
a=03 a=02 a=06 True parameter
B=0-4 B=017 B=0-0 values
0-3622 0-2703 0-6361 a2=0-1 a2=1.0
plim a* 0-5278 0-4596 0-7312 a2=05 o2=10
0-6434 0-5919 0-7970 a2=10 a2=1.0
0-3509 0:6333  —0-0095 a2=01 a2=10
plim Bg* 0-2523 0-4673  —0-0188 a2=05 a2=1.0
0-1892 0-3527  —0-0179 a2=10 a2=10
(b) p=0-8
a=03 a=02 a=0-06 True parameter
B=04 B=0-7 B=0-00 values
0-3449 0-2368 0-6317 a2=0-1 a2=10
plim a* 0-4452 0-3417 0:6956 a2=05 a2=10
0-5208 0-4311 0-7385 a2=1-0 a2=1.0
0-3263 0-6503 —-0-0384 a2=01 a2=10
plim g* 0-2145 0-5324  —0-0850 a2=05 a2=10
0-1645 0-4486  —0-0923 d2=10 o2=10

APPENDIX E: FIGURES 1-6

Approximate distributions are graphed for 2SLS (displayed by the broken line: - —--) and
OLS (displayed by the unbroken line: ) estimators of a (Figures 1-3) and 8 (Figures
4-6)for various values of the sample size T and the true values of the parameters as well as
the two types of exogenous series given by (32) and (33) in the paper. The sub-
classifications (a) and (b) in the numbering of the Figures refer to the different values of a2,
the variance of the disturbance on the consumption function (21). Thus (a) is associated
with o2 = 1-0 and (b) with o = 0-5.

To facilitate reading of the figures the parameter values and type of exogenous series
are listed at the foot of each figure.




212 1.2 ~

FIGURES 1A and 1B
Distributions of OLS and 2 SLS estimators of «
(A) a=02 B=07 02=1-0 L=pl_1+v, p=02
B) a=02 B=07 02=05 L=pl,_1+v, p=0-2
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FIGURES 2A and 2B
Distributions of OLS and 2SLS estimators of «
(A) a=02 B=07 ¢2=10 IL=pl,_;+v, p=08
B) =02 B=07 02=05 L=pl,_1+v, p=08
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FIGURES 4A and 4B
Distributions of OLS and 2SLS estimators of 8
(A) =02 B=07 02=10 IL=pl_+v, p=048
B) a=02 B=07 02=05 L=pl,_+v, p=08
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FIGURES 5A and 5B
Distributions of OLS and 2SLS estimators of 8
7 04=10 L=piL_1+psl, 2+, p1=075 py=—0-50
7 0%=05 L=pil_1+paliz+v, p1=075 pp=—0-50



1.2

-0.4
1
-0.4
FIGURES 6A and 6B
Distributions of OLS and 2SLS estimators of 8
(A) a=03 B=04 02=1-0 IL=pd,_1+pl, 2+v, p1=075 py=-0-50
B) a=03 B=04 05=05 L=p L, 1+p2L,2+v, p1=075 p=-0-50

217



218 REVIEW OF ECONOMIC STUDIES

A preliminary version of this paper was first prepared in early 1976 and has formed the basis of a number of
seminars that I have given over the last two years. Many people have commented on the paper and/or the
seminars and I have benefited particularly from discussions with W. C. Brainard, H. E. Daniels, J. Hartigan, A.
Holly, E. Maasoumi and J. D. Sargan. Mervyn King made some helpful comments on the presentation of the
paper, for which I am grateful. I am particularly indebted to Ralph Bailey for extensive work in programming the
computations in the paper; without his help the numerical results reported in Section 7 of the paper would not
have been obtained. I also thank Michael Prior for some programming help in the early stages of this project and
Roger Bloxsom for some research assistance. The research was supported by the SSRC under Grant Number
HR 3432 and the paper was prepared, in part, while I was a visitor at the Cowles Foundation for Research in
Economics, Yale University.

NOTES

1. Bergstrom’s paper can be taken with the important and fundamental paper by Basmann (1961) as
initiating the mathematical study of the small sample behaviour of various estimators of the parameters in
simultaneous equations systems. The other important landmark in the emergence of studies in this area was the
work of Nagar (1959) on moment approximations.

2. Basmann (1963b) derived the exact density function and mean of the 2SLS estimator of the marginal
propensity to consume in an overidentified case.

3. As Bergstrom remarks in his paper (p. 480) a number of useful Monte Carlo studies were available but
the natural disadvantages of these studies made an exact, mathematical study appealing.

4. A more complete survey of exact theory up to the early 1970’s is contained in Basmann (1974).

5. It may be relevant to mention here that the exact distributions of least squares estimators in simple time
series models such as the non-circular first order autoregression are still not known in analytic form.

6. Just as we have discussed earlier that personal judgement is often necessary in assessing the relative
merits of different estimators, so too is an element of personal judgement involved in the decision as to what
constitutes a good approximation. Partly, this decision will rest on an investigator’s view of what amounts to an
acceptable error of approximation and, partly, his decision will be influenced by the region of the distribution
over which he is relying on the errors of the approximation being small. Thus, a certain approximation may
involve acceptable errors in the body of the distribution amounting to as much as 95 per cent but involve quite
unacceptable errors in the remaining tail areas.

7. Working with a similar model, Richardson and Wu (1971) also carry out a comparison of OLS and 2SLS
estimators. Their comparison is based on the analytic expressions for the bias and mean squared errors (when
these exist) of the two estimators. They consider all coefficients in the equation under study and a wide range of
different parameter values. Expressions for the exact finite sample moments of OLS and 2SLS estimators in the
same situation have also been given by Takeuchi (1970).

8. Working independently and a little earlier Richardson (1968) had derived the exact density of the 2SLS
estimator in the same context.

9. However Sawa’s numerical results revealed that, in certain cases, the superiority of 2SLS over OLS may
be slight. This is particularly relevant when the degree of overidentification (N) becomes large and the
distribution of the 2SLS estimator is markedly skewed towards that of the OLS estimator. This feature hasled to
the development of certain combined estimators (based on a linear combination of OLS and 2SLS) designed to
improve the location of the estimator when N is large (see, in particular, Sawa (19734, 1973b). A comparison of
the degree of concentration of 2SLS and LIML estimators recently carried out by Anderson (1974) (see also
Phillips and Wickens (1978, ch. 6, Question 6.19)) and based on the first three terms of the Edgeworth expansions
of the finite sample distributions suggests that the distribution of the LIML estimator is the more concentrated in
such cases (i.e. when N is large), provided we exclude most of the tail areas of the distribution when we measure
concentration. The latter condition is related to the fact that LIML estimators possess no integral small sample
moments, whereas 2SLS estimators possess moments up to order N (see the ensuing discussion in the paper).

10. This statement refers to the case where there are no exogenous variables in the equation other than a
constant. If there are K; exogenous variables included in the equation as well as a constant then moments of the
OLS estimator of order less than T — 1 — K exist; while, in this case, moments of the 2SLS estimator of order less
than K still exist (i.e. integral moments up to order K, — 1 exist, as before, in this case). For detailed analysis in
the case of an equation with included exogenous variables, see Richardson and Wu (1971), whose numerical
results appear consistent in their general implication with those of Sawa.

11. If there are n equations in the model n —1 independent restrictions are necessary for identification.
The actual number of restrictions is, from the form of the equation (with two endogenous variables and K,
excluded exogenous variables), n —2+ K, =(n—1)+(K,—1). The degree of overidentification is, therefore,
taken as K, —1. ‘

12. The same result has been verified by Sargan (1970) for full information maximum likelihood (FIML)
estimators and conjectured by Basmann (1974) to apply generally to LIML and FIML estimators of structural
coefficients.

13. In addition to the above exact theory in cases where n > 1, Rhodes (1977) has obtained a multiple
series representation of the density function of the likelihood ratio identifiability test statistic for an equation with
n+1 endogenous variables. This generalizes the result of McDonald (1972) for the case n = 1.
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14. Muirhead (1975) quotes Sugiyama (1972) as requiring over 100 terms of this type of series before
achieving adequate convergence.

15. Of course many other types of approximations can be developed, and some of these are more closely
linked to the exact density functions than the Edgeworth approximation (see, for example, Sargan (1976a) and
Holly and Phillips (1977)). Animportant area of research now and in the future is the development of alternative
methods of approximation and the determination of the conditions under which the different approximations can
be expected to do well.

16. This section does not attempt to provide a comprehensive treatment and the interested reader is
strongly recommended to consult the survey paper of Wallace (1958), which contains an excellent introduction to
this area and a valuable list of references. The recent survey paper by Bhattacharya (1977), the book by
Bhattacharya and Rao (1976) and the review paper by Bickel (1974) also contain some useful discussion of the
material in this section.

17. We write fr(x) because it is implicitly assumed that the statistic is computed from a sample of
observations of size T, so that T is a parameter of the resulting distribution.

18. More details of the history of the series expansion (1) and the related Edgeworth series are given by
Cramér (1972, 1976).

19. See, for instance, Cramér (1946, p. 223).

20. For a complete discussion of asymptotic series the reader is referred to the books by Copson (1967) and
De Bruijn (1958).

21. Smce E(Z;)=0 and E(Z%)=1, and the first three Hermite polynomials are Hy(x)=1, H;(x)=x,
H,(x) = x2—1, we have for the first three coefﬁc1ents in (1)

a=| frtde=1

a1=—J xfr(x)dx=0
and
az=J (xz—l)fr(x)dx=1—1=0.

The remaining terms in (6) are most easily obtained by considering the characteristic function of Zr. A full
discussion is given by Cramér (1946, pp. 224-227).

22. A somewhat weaker result had been given by Cramér in 1923 (see Cramér (1976, pp. 514-515)).

23. This value is quoted in Petrov (1975, p. 321). A value of 2-05 was obtained by. Wallace (1958). The
value of 3-00 is given by Feller (1970, p. 542) in a simple proof of (9).

24. However, Bhattacharya (1977) gives a result similar to (9) for statistics which can be represented as
smooth functions of standardized sums of independent identically distributed random variables.

25. T have recently mentioned elsewhere (Phillips (1978a)) that the idea of such general expansions was
even considered in the second part of the seminal paper by Edgeworth (1905). This fact is of some relevance to
the reappraisal of Edgeworth’s contribution to mathematical statistics that is currently in progress (see, for
example, Stigler (1978) and Seal (1967)). Many economists may not be aware that Edgeworth published more
than 70 articles on probability and statistics. A review of his contribution to mathematical statistics and a list of
publications are given by Bowley (1928).

26. It is assumed that the equation is identified and the matrices Z and Z, have full rank.

27. In this simple case we have h' (B B) = er(p) and we need not introduce the extra variates w that were
mentioned earlier.

28. For an example see Phillips (1977a). Even in cases where we can do this (when, for instance, there are
first order sample moments from a normally distributed population), we cannot always go on to assert the
statistical independence of these moments and the higher order sample moments (which are not, in such cases,
normally distributed).

29. These conditions enable us to transform, subject to an error which is small as T - oo, probability
statements involving 8 — B into probability statements involving one of the components of q. The remaining
conditions ensure that the distribution of q is itself sufficiently well behaved (with moments of a high enough
order and the right order of magnitude) to admit a valid series expansion. The latter expansion is obtained
essentially in terms of the cumulants of q (c.f. (7) above). These terms are then combined with the terms of the
Taylor series expansion of er(q) about the origin to obtain the corresponding series expans1on for VT T(B B).
Details of the formulae are given in Sargan (1976a) and Phillips (1977a) (the latter in a slightly different
notation).

30. One line of approach in verifying these conditions would be to take the general form of the joint
characteristic function of linear and quadratic forms that arises in autoregressive models (see equation (30)) and
use this form to check the conditions on the distribution of v Tq.

31. Bhattacharya (1977) gives a theorem similar to that of Chibisov but under slightly weaker conditions.

32. The problem is briefly discussed by Pfanzagl (1973), but seems otherwise to be seldom mentioned.
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33. Some further work on this type of expansion of the underlying statistic has been done by Gusev (1976).
An asymptotic expansion for the distribution of maximum likelihood estimators is given by Michel (1975).

34. The main works to date (dealing with classical models) are Sargan and Mikhail (1971) and Anderson
and Sawa ((1973), (1977)). One interesting application to non-linear regression models (but which does not
provide tabulations of the exact and approximate distributions) has recently been published by Ivanov (1976).

35. The best single teference work in this area is the treatise by Ibragimov and Linnik (1971) which
contains an extensive survey of research on large deviations up to the late sixties. The seminal paper by Richter
(1957) is also a useful reference.

36. This theory is sometimes distinguished from the theory of very large deviations where the argument x is
not restricted to a zone of o(~'T). Ibragimov and Linnik report some results on very large deviations for
standardized sums showing how the limiting tails can be represented as the sum of a rational function in x and the
normal integral. This type of expansion seems likely to be useful only on the extreme tail of a distribution. Itis
interesting to note that Sargan and Mikhail (1971) derive from the integral defining the exact distribution of an
instrumental variables estimate in a simultaneous equations model an expansion in powers of 1/x which is closely
related to this.

37. The first two coefficients in (17) are: o = k3/60°> and /; = (62ks— 3k3)/240° where k; represents the
jth cumulant of X, (see, for instance, Feller (1970, p. 553)).

38. See, for example, the numerical computations in Phillips (1978a).

39. This theory then applies to the random vectors VTq discussed in Section 3.

40. In Phillips (1977a) it was discovered that the Edgeworth approximation becomes unreliable, par-
ticularly in the tail areas, as the autoregressive coefficient approaches unity.

41. We have also assumed that there is no constant term in the consumption function. This is justified by
the hypothesis that in steady state growth the ratio C/ Y is approximately constant.

42. T acknowledge with thanks the help of Ralph Bailey and, in the early stages, Michael Prior in writing
this programme. Advice from Clifford Wymer on the principles of programming analytic derivatives is also
appreciated.

43. Note that the Edgeworth approximation is derived from an expansion of the distribution of a suitably
normalized statistic. In the case of the parameter a we are then working with the statistic VT(& — &) for the 2SLS
estimator; and it is easy to show that a is the value assumed by the right hand side of (28) when g; =
0 (i=1,...,5). Thus, when the sample moments take on their expected values, there is no error in the estimator
&. A minor complication occurs in the case of the OLS estimators, for which the same result does not hold. In this
case we standardize by considerin fi‘(a* —a) where a is the value taken by the right side of (26) when the g; are
all zero. This is logical, because v T{a* — &) has the same limiting distributions as VT{a* — plim a*). To see this,
we need only observe the plim a* is the limit of & as T - co and & differs from its limit by a quantity of oT™h).

44. This can be derived after some manipulation from the result given by Lukacs and Laha (1964, p. 55).

45. An Edgeworth approximation to the distribution of a t-ratio statistic in a first order autoregression is
derived in Phillips (1977a).

46. Itis easy to derive (A.3) from the general formula (30) I have given in the paper: An explicit derivation
for this special case is given by Sawa (1972).

47. In the case of k-class estimators with 0 < k <1 we have two singularities in the left half plane and the
density function is then just the sum of the residues of the integrand at these points.

48. See, for instance, Miller (1960, p. 161).
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