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A SADDLEPOINT APPROXIMATION TO THE DISTRIBUTION
OF THE k-CLASS ESTIMATOR OF A COEFFICIENT IN A
SIMULTANEOUS SYSTEM!

By A. HorLLy AND P. C. B. PHILLIPS

A new approximation based on the saddlepoint method of approximating integrals is
derived for the probability density of the k-class estimator in the case of the equation with
two endogenous variables. The two tails of the density are approximated by different
functions, each of which bears a close relationship with the exact density in the same region
of the distribution. Corresponding approximations are also derived for the distribution
function and the method of derivation should be useful in other applications. Some brief
numerical results are reported which illustrate the performance of the new approximation.

1. INTRODUCTION

SEVERAL AUTHORS HAVE RECENTLY OBTAINED approximations to the dis-
tributions of coefficients of a single equation in a simultaneous system. The case of
an equation with two endogenous variables has been intensively studied by
Anderson and Sawa [3, 4], Anderson [1, 2], and Mariano [18, 19]. The approxi-
mations used in these studies have been based on the first few terms of Edgeworth
type asymptotic expansions of the distribution function of the estimator under
consideration. This type of approximation has the appealing property that, if the
series expansion from which it is derived is valid (i.e., the series is a proper
asymptotic series in the mathematical sense), then the error on the approximation
tends to zero as a key parameter (usually the sample size or the concentration
parameter’) tends to infinity at a faster rate then the corresponding error on the
asymptotic normal distribution.

One difficulty that has been experienced with approximations based on the
Edgeworth expansion is that they can sometimes be unsatisfactory in the tail
area.” In this region the errors on the approximation can be as large as the density
ordinates or the tail probabilities themselves and the approximating density can
well take on negative values. An alternative approach explored by Daniels [7, 8] is
the use of the saddlepoint approximation, which is always positive and has the
same accuaracy (in terms of the order of magnitude of the error on the approxi-
mation) as the first two terms of the Edgeworth expansion. Moreover, the
saddlepoint approximation is itself the first term in an asymptotic series expansion

! This research was in part supported by CORDES contract number 56/75 with the Laboratoire
d’Econométrie de I'Ecole Polytechnique and by the SSRC under grant number HR 3432/1. We are
grateful to Roger Bloxsom and Ralph Bailey for programming the computations recorded in Tables
II-V.

The second author wishes to thank the Ecole Polytechnique for their support and members of the
Laboratoire d’Econométrie for their hospitality during the summer of 1977 when work on this study
commenced.

We are grateful to an editor and referees for their helpful comments on the first draft of the paper.

2 Anderson [2] relates the expansions obtained for a number of different parameter sequences in
the case of the LIML and 2SLS estimates.

3 The results on Phillips [20, 21] provide some recent evidence of this.
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of the true probability density and can, therefore, be modified to take account of
higher order terms. An important difference between the asymptotic series for
which the saddlepoint approximation is the first term and the Edgeworth series
from which the Edgeworth approximation is derived is that successive terms of the
former have a smaller order of magnitude as the key parameter tends to infinity
than corresponding terms of the latter. Thus, in the saddlepoint expansion (2)
below we see that the first term is the saddlepoint approximation itself and the
second term in the series is of O(u ~2) relative to the first where p.2 is the
concentration parameter (defined in (8)); whereas in the Edgeworth expansion
the first term is the asymptotic normal approximation and the second term is of
O(n™") (see, for instance, [3, equation (8.3)]). These features make the saddle-
point approximation an interesting alternative when it is available.

Since the saddlepoint approximation has not been used in previous econometric
work* we provide some discussion of the principles underlying the method in
Section 3 of the paper.’ In the same section we derive the new approximation to
the probability density of the k class estimator (k nonstochastic) in the case of an
equation with two endogenous variables. Our approximation in the general case is
based on the hypothesis that x> becomes large when the sample size T is fixed,®
but, in the special case of the two stage least squares (2SLS) estimator, it is valid
also in situations where the sample size may increase with the concentration
parameter.

The new approximation has the useful features just mentioned of being
everywhere nonnegative and possessing an error of order s 2 (equal to that of the
first two terms of the Edgeworth expansion). Moreover, the order of magnitude of
the error on the saddlepoint approximation holds in the relative sense, so that if
f(r) is the true density and A(r) is the approximation we have f(r)=
h(r)[1+O0(x?] as in (20) from which we can deduce that (f(r)—h(r))/f(r) =
O(r ™). This makes the saddlepoint approximation an attractive candidate for
approximating the tail of the distribution, where f(r) is small.

One new feature of the approximation in the present case that may be of
interest is that the right hand and left hand tails of the exact density are
approximated by different functions. In technical terms, this results from the fact
that the saddlepoint we select (when approximating the integral representing the
exact density) itself depends on the region of the density we are considering. In
practice, this latter feature means that we can establish a very simple relationship
between the exact density and our approximation.

For, the exact density can be written as a doubly infinite series in the case of the
OLS-and 2SLS estimators. This series can be written as a single infinite series of
confluent hypergeometric functions in two different ways; and, as we show in
Section 4 of the paper, the series can then be summed if we take the first term (or

* However, some recent work on saddlepoint approximations in simple time series models has been
done by Durbin [11] and Phillips [21, 24].

> And in Appendix A also.

® Mariano also considers this case and discusses various situations in which this type of sequence is
relevant [19, p., 720, footnote 6].
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first few terms) of an asymptotic expansion of the confluent hypergeometric
function. However, in order to obtain a convergent series we must select the
appropriate representation of the double series and this choice depends on the tail
of the distribution we are censidering. Moreover, the two convergent series we
obtain are defined precisely in the same regions of the distribution as those
considered in the application of the saddlepoint method. Furthermore, the
summed series that we derive for each of these regions correspond almost exactly
with our saddlepoint approximations. ‘
In the final section of the paper we report some brief numerical results to
illustrate the performance of the saddlepoint approximation in relation to the
interesting numerical comparisons between the Edgeworth approximation and
the exact distribution that have already been carried out by Anderson and Sawa
[3, 4]. Our computations in this section suggest that the new approximation
performs very well relative to the Edgeworth approximation. In all cases we have
considered, the saddlepoint approximation is uniformly better in the tails of the
distribution than the Edgeworth approximation (to O(x ") and to O(u™?)).
Moreover, the saddlepoint approximation does well when the Edgeworth
approximation (including that based on the first four terms, i.e., up to O(u">))
does not, namely when the degree of overidentification in the equation is large.

2. THE MODEL AND ASSUMPTIONS

The model, notation and assumptions we will use for our main development will
be based on that of Sawa [28] and closely related to that of Anderson [1] and
Anderson and Sawa [3]. We consider the single structural equation:

(1) y1=By2+Ziyi1tu,

where y; and y, are vectors of T observations on two endogenous variables, Z; is
a T X K; matrix of observations on K; exogenous variables, and u is a vector of
random disturbances. The structural coefficients are the scalar parameter 8 and
the parameter vector y;. The reduced form for the two endogenous variables in
(1) is given by

(2) Y=Z7+V

where Y =[yiiy.], Z=[Z::Z,]is a T XK (K = K; +K,) matrix of exogenous
variables, and V =[v;:v,]is a matrix of reduced form disturbances. We partition
7 so that we can write (2) in the form

mi1  T12

(3) [)’15)’2]‘—'[21522][ ]‘*‘[01502]

=Zi[mi1 i mRl+ Zo[ 7o i man]+ v i va).

m21  T22

We assume: that each row of [v; : v5] is independently and identically distributed
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as a normal vector with zero mean and nonsingular covariance matrix

0= [wll w12];

w21 W22

that equation (1) is identified by zero restrictions in the structural coefficients; that
the observation matrix Z is nonstochastic, of rank K, and 7 > K ; and that, for
ssimplicity, Z1Z,=0. The last assumption is a convention which is used by Sawa
[27] and causes no real loss of generality. When it is not satisfied, equation (3) can
readily be transformed so that it is true and this transformation will affect our
results below only through the definition of the concentration parameter w’ (see
(8) and the associated footnote).

We will concentrate on the k class estimator B of B in equation (1) which has
the form (see Sawa [28, equation (2.11)])

A YﬁAkY1
4 =g
4) Bk viAkys

where
) Av=1-kWI-Z(Z1Z) ' Z1—Zo(Z32,) ' Z3} + Z2(Z32,) " Zs.

We will confine ourselves to the case where k is nonstochastic.

As in Sawa [28] and Anderson and Sawa [3] we will work on the assumption
that the covariance matrix (2 of the endogenous variables has been transformed to
an identity matrix. This implies a transformation of (1) in which the parameter B is
replaced by

0 a2
wu‘“wlz/wzz w22

(see Sawa [26, p. 657], and Anderson and Sawa [3, p. 692] where 8* is denoted by

a). An equivalent transformation of (4), i.e.

4 w22 5 W12
M A= (h-22),
w11—w12/w22 w22
gives us the k-class estimator of 8* in the transformed system. In what follows,
unless explicity stated, we will deal with the transformed system and, for con-
venience, drop the asterisk on B¥.

3. DERIVATION OF THE SADDLEPOINT APPROXIMATION TO THE DISTRIBUTION
OF Pk

We let L(w;, wy) denote the Laplace transform of the joint density of y;A.y-
and y3A,y; and note that, from Lemma 4 of Sawa [28, p. 664],” L(w1, w,) is well
defined for 1—2Re (w1)— (Re (w2))>*>0 and 0 <k <1, where Re (-) denotes the

7 L(w1, w,) can alternatively be derived by writing y5Ary, and y3A,y as quadyatic for'ms in the
vector (y}, y5) and using the expression for the characteristic function of a quadratic form in normal
variates given in Lukacs and Laha [17, p. 55].
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real part of a complex number, and is given by

L(w1, wo)=(1—2w;—w3) *(1 = 2w, — h*w}) T 572

2 2
w” [ (1+Bw>) }]
: B2
exP[ 2 {1—2w1—w§
where®
(8) 2=12.ig_2_g£)_@3 and h=1-k.

w32

Since y;Ary>=0 (A, is positive semi-definite when 0= k<1, see Sawa [28,
Lemma 2, p. 658]) and has a finite mean, the density of ;. can be obtained directly
from the following formula for the density of a ratio:

1 (ML (u—rwy, wa)
(9) f(r)==— J- A e, W)

d
2mi W2

—ico ou u=0
where ¢ satisfies 1+ 2rc —c¢>>0.Cramér [6, p. 317] and Geary [12] gave the above
formula for f(r) when the path of integration is taken along the imaginary axis in
the w, plane. It is easy to show that the path of integration in (9) is an allowable
deformation when the stated condition on c is satisfied.’

Dropping the subscript on w,, we find after a little manipulation that

aL(u—rw,w

(10) ou

- {K2(1 20w = h?w?) + h(T —K)(1+2rw — w?)

u=0

»(1+2hrw —R*w?)(Bw + 1)2}
(1+2rw—w?)

(142w — w2 KD 2 (L 4 2w — BPw?) T TTETD2

exp {“_2 (w2(1 +B2)+2W(B—r))}

2 1+2rw—w?

+u

which we write in the form
2
(11)  B(w)exp {5‘2— W(w)}

and then

1 c+ico 2
(12) f(r)=—-—7J’ B(w)exp{“—tp(w)} dw.
2i c—ico 2
The essence of the saddlepoint method is to select the path of integration in (12) in
such a way that the major contribution to the value of the integral comes from the

8 Note _tlhat when Z|Z,#0, the definition of w? should be changed to w2Z5(I—
Z\(Z1Z,)" Z1)Zy 722/ w2
° Details are available in Appendix A of [15].
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value of the integrand (1) in a region of a saddlepoint on the real axis. We will
discuss later the question of the existence of a suitable saddlepoint and provide a
further explanation of the saddlepoint method in Appendix A. However, we note
now that in selecting the path of integration in (12) we must ensure that ¢ satisfies
the inequality

(13) 1+2rc—c*>0.

For, if (13) is satisfied, (—rc, ¢) will lie in the region of (w1, w,) space where
L(wi, w,) is well defined. The inversion formula (12) will then be valld

We see that (13) holds when c lies between the points r+(1+7r )2 on the real
axis. The functions B(w) and ¥(w) appearing in the integrand (11) are then
analytic in the strip of the imaginary axis lying between the points r + (1 +r )2, i.e.
for all complex w satisfying

(14)  r—(1+r)?<Re(w)<r+(1+r".

To obtain an approximate evaluation of the integral (12) we now select a path of
integration in which ¢ = w° is a suitable saddlepoint at which
(15)  ¥'w=o.

We refer the reader to Appendix A for a discussion of why the solutions of (15) are
saddlepoints. The path of integration in the vicinity of w° is now taken to be the
curve along which the absolute magnitude of the intergrand of (12) decreases most
rapidly (i.e., a curve of steepest descent from the saddlepoint). To find this curve
we proceed as follows.

Expanding ¥(w) in a region of w® we have, in view of (15),

(16)  w(w)= w<w>+ w"(w Yw—w?+0(lw—-w?)

=Y(w )+ ‘I’"(w Nx—x%2—y?+2i(x —x°)y}

+O((x—x%+y 29,

In the vicinity of w®=x° the behavior of ¥(w) is determined by the first two
terms of (16). In the cases we consider below ¥"(w® >0, so the Re (¥(w))
decreases most rapidly when x = x%and y # 0. Thus, in the vicinity of w°, the curve
of steepest descent becomes the straight line

a7 w=x"+iy

which crosses the real axis orthogonally at w® = x°. We note also that, on the path
defined by (17) and in the vicinity of x°, lexp {(u?/2) ¥(w)}| is dominated by

(18) exp {Ez—z 1If(w°)} exp { —-E; ‘I’"(wo)yz}.

As u’ becomes large it is clear that most of the contribution of this factor (i.e. of



THE k-CLASS ESTIMATOR 1533

exp {(u*/2) ¥(w)}) to the value of the integrand in (12) arises in the immediate
vicinity of the saddlepoint w°.

The other factor in the integrand (12) is B (w) We can see from its definition in
(10) and (11) that, when A = 0 (the case where Bk is the 2SLS estlmator) or when
h #0 and T is fixed, the factor B(w) is of O(p, ) in a region of w®. Hence, the
contribution of this factor to the integrand as u % becomes large is dominated by
the behavior of (18) on the path of integration given in (17).

Taking w° to be a suitable saddlepoint, we now utilize the inversion formula
(12) where the path of intergration corresponds to the lines of steepest descent
through w?, i.e. (17). Changing the variable of integration in (12) from w to y in
w= w°+iy, we have

19) h(_ir’ o, : w0
r)—2ﬂ B(w +ty)exp{ > Y(w +iy); dy.

Since B(+) and ¥ (-) are analytic on the path of integration, their Taylor expans1ons
exist and can be utilized in (19). It can then be verified that (19) reduces to'°

2

B(w?) exp {EZ_ W(wo)}

20 : :
20 7w u (P (W)

1 B"(w°) 1 TD (w0
[1+7{'B(w°)tp"(w°)+4 (W)

vOWOB' W% 5 (FPw)’ 4
T WOPBWY) 12 (#'(w >>3}+O(*‘ )

The first factor in (20) is the saddlepoint approximation and the series is
sometimes referred to as the saddlepoint expansion. The justification of the
expansion as a valid asymptotic series (in which the remainder has the same order
of magnitude in 1/ as the first neglected term) is obtained, as in Daniels [7], by
the use of Watson’s Lemma (see [7, p. 633)).

We now proceed to evaluate (20) in detail. First we must locate the appropriate
saddlepoint w® and verify that ¥"(w°)>0. Since w° satisfies (15), we derive

2B(Br+1)(w—wd)(w—w3)
(1+2rw—w?)?

1) Vi(w)=

where wi = (r—B)/(1+Br) and w3 = —1/B. Differentiating (21) again we obtain

28r+1)*

" o —_—
(22) V'(wi)= (1+2Br—82)(r2+1)2

and
28
B*-2m-1

10 Full details of the derivation are given in [15] which is available on request.

(23) P'(w3) =
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The signs of ¥"(w?) and ¥"(w3) both depend on the sign of 3% —2r8 —1. We can
distinguish the cases given in Table 1. It is clear from the table that, for many
values of B, we will need to utilize a different saddlepoint at different regions of the
distribution. Thus, when 8 = 1, we deform the path of integration to pass through
the saddlepoint w{ = (r—1)/(r + 1) for > 0 and through the saddlepoint wy=—
for r <0. We then obtain a different approximation for each tail of the distribution
of Bx. On the other hand, when B is close to zero but still positive, the inequality
r>(B*—1)/2B will hold for most values of interest of the argument r and in this
case we need only be concerned with the saddlepoint wi.

TABLE 1
B>0
Sign of Region of Saddlepont Sign of
B>-2pr-1 distribution w® ()
—-ve r>ﬁ;_3l W(;:[;r_+ﬁl &If”(w?)>0
+ve r<BZ;1 w‘2’= —E T'(wI >0
B<0
—ve r<B;;1 w?:[;r—+ﬁl T'(wH>0
+ve r>B:;1 W= -—é T'(w)>0

Our earlier argument leading to the expansion (20) relied on the functions
¥ (w) and B(w) being analytic in a strip of the imaginary axis containing w?. We
know that s(w) and B(w) are analytic in the region of the complex plane defined
by (14). Hence, for the validity of (20), we require that the saddlepoint w? (which
is, in both cases, real) satisfy the inequality (14). In fact w® will satisfy (14) if and
only if

(24) 1+2m°—w”>0.

For w{, we find that the left side of (24) is (1+r*)(1+28r — B7)/(Br+1)* which is
positive when 1+28r— B*>0. Referring to Table I, this will be true for r>
(B*—1)/2B when 8 >0, i.e. in the right tail of the distribution. For w3 we find that
the left side of (24) is — (1 +28r — B2)/B> which is positive when 1+28r—B><0.
Referring to Table I again, we see that this is true for r < (B*—1)/2B when 8 >0,
i.e. in the left tail of the distribution. Thus, our condition on the selection of the
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saddlepoint (which depends on the sign of B>—28r—1 corresponds with the
condition under which the saddlepoint will lie within the region of the complex
plane defined in (14). Once we have selected the appropriate saddlepoint accord-
ing to the sign of B> —28r — 1, we can therefore be sure that this saddlepoint will lie
within the region in which ¥(w) and B(w) are analytic.

To specify the first factor of (20) we now need only evaluate B(w®) and ¥ (w°).
After some manipulation we find that in the case of B >0 the saddlepoint
approximation is given by"’

hir)= J;Tm{xz(ﬁz—2h3r—h2>+h(T—K>(Bz—23r—1)}
. ﬁT_K’(Bz—ZBr _ 1)_(K2+1)/2(32—2hﬁr— h2)—(T—K+2)/2 e_“2/2
when
B>-1
r< 2B , B>0,
and
h(r) = {Ko{(Br + 1+ 2rh(r = B)(Br + 1) — h(r— B)?}
«/271';4,
+h(T+K)1+2Br—B>(r*+1)
+u{(Br+1+2rh(r—B)(Br+1)—h*(r—B)*}(1+28r - g°)
C(P+D)TBr+ 1)1 +28r - g2 K2 (2 4 1) Ke/2
A(Br+1)2+2rh(r—B)(Br+1)—h*(r— )7y TK"2
2 2
uw” (r—pB)
-exp{—7 r’+1 }
when
r>32_1 B>0
28’ ’

Similar formulae can be readily obtained when 8 <0. Note that the approxima-
tion h(r) involves only elementary functions and can be readily computed

numerically.

11 Byl details of the derivations are available in [15].
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4. COMPARISON WITH THE EXACT DENSITY FUNCTION IN THE CASE OF 2SLS

The case of 2SLS corresponds to & =0. Hence, in that case, the saddlepoint
approximation is just

1 K23K2(32_2Br_1)—(1(2+1)/2 e—u2/2
27u

g-1
2B’

21+2p8r— B}
1+72

when r< B>0;

(25) h(r)= 1 [K2+ (Br+1)52(1 +28r — g2)~K2*1/2

\/277'14

2 2
. 2\-K,/2 u (r=B)
1+ e"p{ 2 147 }

B> -1
h > X
L when r 23

B>0.

Richardson [25] has shown that the exact probability density function of the
transformed 2SLS estimator (see (7)) is given, in our notation, by

- 1 —(12/2)(1+B2) 2\~ (K,+1)/2

(26) f(r) B(%’ 522) e 1+r)
F(K2+1 )/ (K22+ 1) 1 (u, ¢! +Br)>
S on(Fe)/r(3)

K2—1 . Kz M B)
. +____
lFl( 2 1T

1o~18

i

where B(a, b) is the beta function and 1 F;(a, b, x) is the confluent hypergeometric
function.

We will use later in this paper an alternative expression for f(r) which is
obtained as follows. We can write the summation in (26) as

- ( K22+ 1 +]_> /F<K22+ 1) r (Kzz— 1, l) F(Kzz— 1)
O rGea)nG) (S

Tal )

18
o8

i
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and interchanging the order of summation we obtain

27)

F<K22 H)/F(Ez—z—ll(p,zﬁ) (K2+1 Ko u® (1+pr)%
rmyroR Rl >'

2 72 72 1477
We will also use the fact that if x >0 and b is neither zero nor a negative integer,
then Fi(a, b, x) has the following asymptotic expansion, as x > (see Lebedev
[16, pp. 268-271] and Sawa [28, p. 667])"*

Tras

(b)xab
ra°

Now consider (26) where

F<Kz*1 ., K> MB)
1L 3 ) )

(28) Fi(a, b, x) =—— [1+(-a)1-a)x '+0(x)]

is replaced by the asymptotic expansion (28). We obtain, after some
simplification,

K;+1
r +
(29) fr )_ 1 "‘2/2(1+r2)—(1<2+1)/2 y ( 2 ) [ 1+pr )]
Vam ’T“B co (Ka+1\ . LB21+r?)
(=)

[ EE) o]

In order to wuse the negative binomial expansion (I—x)™"=
220l (m+7)/(j'I(m))x’, which is valid if |x| < 1 we require that

(1+r)?
BX(1+r)
If (30) is satisfied, then the terms on the expansion (29) sum to
K,-
—B
N2m

(-5l 5 g 0w )]

'2 Higher order terms in this expansion are given explicitly by Lebedev and Sawa and can readily be
used in what follows to obtain higher order terms in the corresponding expansion of the exact density.

(30) <1 or PB*-2Br—-1>0.

(31) K, e—y.z/2 (32_23’._1)—(K2+1)/2
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Note that the dominant term of (31) differs from the saddlepoint approximation
(25) only by the constant coefficient K, —1.

When we have 1+28r— 32 >( we use the alternative summation (27) in order
to obtain an expansion for (26). If we replace, in (27),

2 2
1F1(K2+1 Ky, & (1+Br)>

2 72 72 147

by its asymptotic expansion, we obtain after simplifications

2 1 2 _ 2
(32) f(r) = —'li— ((1;3'2—> exp— (HZ_ ("_B__)___)(l +r2)—(K2+1)/2

V2m\ 1472 1+7°
. (=) . B .
> F({(j_:l)ﬂ () (ot e
D
r(®2=14
S e Y

<u_2 (1 +Br)2>‘1( (1+pr*
2 1+r° BZ(1+1r%)
When 1+28r—B>>0 we see that B*(1+r%)/(1+Br)*<1 and the series in (32)

can be summed by using the negative binomial expansion. After some manipula-
tion we obtain

)_l+0(u‘4).

33) £ =%(1 +Br)<a(1+ ) Kt D/2(1 1o gy — g2~/
ar

_zw) . {HL(Kz—l)( 1+r° )

2 1+/r° w2\ 2 J\1+8r)’
_ [1_ (K= 1)B*(1+r7)

(1+Br)*(1+2Br-B%)

It should be noted that (44) is equal to the dominant term (i.e., the term with a

coefficient order of w) in the saddlepoint approximation in the case where

1+2Br—B%>0. The relative difference between (33) and the saddlepoint
approximation in the right hand tail is of order u ~>.

-exp(

J+ow™)}.

5. BRIEF NUMERICAL RESULTS

We examine the performance of the saddlepoint approximation for the 2SLS
estimate in three cases considered by Anderson and Sawa [3] and in one heavily
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overidentified case (K, = 20). We report our numerical computations in Tables II,
III, IV, and V. We give the ordinates of the exact density,"> the Edgeworth
approximation up to O(u ") and O(x ), and the ordinates of the saddlepoint
approximation (25). The new density approximations have been renormalized so
that the area under the curve is unity. For the parameter values we have
considered, we find that 1+28r—B8>>0 for all values of r of interest and the
formulae for the extreme left hand tail of the distribution are not needed.

TABLE 1I

B=06, K,=4, u?>=80

-8 Exact Density A-Sto 0(n™") A-Sto O(n™%) Saddlepoint
1.00 0.0000 0.0000 0.0000 0.0000 ab
0.90 0.0000 0.0000 0.0000 0.0000 ab
0.80 0.0001 0.0000 0.0000 0.0001 ab
0.70 0.0004 0.0000 0.0002 0.0004 ab
0.60 0.0020 0.0004 0.0019 0.0020 ab
0.50 0.0099 0.0062 0.0120 0.0100 ab
0.40 0.0476 0.0492 0.0539 0.0478 ab
0.30 0.2049 0.2253 0.2212 0.2054 ab
0.24 0.4498 0.4663 0.4739 0.4504 ab
0.20 0.7219 0.7231 0.7469 0.7225 ab
0.18 0.8981 0.8900 0.9214 0.8985 ab
0.14 1.3336 1.3107 1.3500 1.3336 ab
0.10 1.8603 1.8363 1.8682 1.8596 ab
0.08 2.1401 2.1211 2.1445 2.1389 a,b
0.06 2.4153 2.4035 2.4172 2.4137 ab
0.04 2.6708 2.6664 2.6712 2.6688 a
0.02 2.8902 2.8912 2.8900 2.8878
0.00 3.0567 3.0597 3.0564 3.0542 a
—0.02 3.1554 3.1567 3.1551 3.1529
-0.04 3.1753 3.1718 3.1745 3.1729 a
-0.06 3.1108 3.1012 3.1089 3.1088 a
—0.08 2.9632 2.9484 2.9593 2.9617 a,b
—0.10 2.7409 2.7239 2.7343 2.7401 ab
-0.14 2.1370 2.1277 2:1231 2.1374 ab
—0.18 1.4605 1.4698 1.4393 1.4619 ab
-0.20 1.1461 1.1639 1.1221 1.1478 ab
-0.24 0.6331 0.6582 0.6064 0.6348 ab
-0.30 0.1960 0.2084 0.1749 0.1970 ab
-0.40 0.0128 0.0061 0.0089 0.0129 ab
—0.50 0.0003 —0.0022 —0.0002 0.0003 ab
—0.60 0.0000 —0.0003 —0.0004 0.0000 ab
-0.70 0.0000 —-0.0000 —0.0001 0.0000 ab
-0.80 0.0000 —-0.0000 —0.0000 0.0000 ab
-0.90 0.0000 —0.0000 -0.0000 0.0000 ab
-1.00 0.0000 —0.0000 —0.0000 0.0000 ab

2 Saddlepoint approximation as close or closer to exact density than A-S to 0(/4_').
® Saddlepoint approximation as close or closer to exact density than A-S to ow™).

A-S Edgeworth approximation derived by Anderson and Sawa [3].

'3 In an earlier draft of this article [15] we used the exact density ordinates given in the article by
Anderson and Sawa [3]. The further computations we have carried out for this version of our article
indicate that the ordinates given in [3] are in error. The exact density ordinates as well as the ordinates
of the Edgeworth approximation detailed in Tables II-V are based on our own computations.
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TABLE III

B=0.6, K;=10, u*>=80

r—B Exact Density A-Sto O(u™") A-Sto O(n™3) Saddlepoint
1.00 0.0000 0.0000 0.0000 0.0000 ab
0.90 0.0000 0.0000 0.0000 0.0000 ab
0.80 0.0000 0.0000 0.0000 0.0000 ab
0.70 0.0001 0.0000 0.0001 0.0001 ab
0.60 0.0003 0.0003 0.0010 0.0004 ab
0.50 0.0029 0.0036 0.0093 0.0024 ab
0.40 0.0145 0.0199 0.0650 0.0148 ab
0.30 0.0826 0.0531 0.2628 0.0835 ab
0.24 0.2143 0.1091 0.4610 0.2155 ab
0.20 0.3845 0.2236 0.6282 0.3856 ab
0.18 0.5057 0.3278 0.7297 0.5065 ab
0.14 0.8389 0.6736 0.9943 0.8383 ab
0.10 1.3062 1.2327 1.3776 1.3030 ab
0.08 1.5871 1.5844 1.6210 1.5820 ab
0.06 1.8911 1.9663 1.8952 1.8840 a
0.04 2.2071 2.3573 2.1905 2.1979 ab
0.02 2.5199 2.7311 2.4911 2.5087 ab
0.00 2.8105 3.0597 2.7763 2.7979 ab
-0.02 3.0584 3.3168 3.0217 3.0449 ab
—0.04 3.2426 3.4809 3.2028 3.2291 ab
—0.06 3.3451 3.5383 3.2981 3.3328 ab
—-0.08 3.3533 3.4852 3.2928 3.3432 ab
-0.10 3.2622 3.3274 3.1815 3.2553 ab
-0.14 2.8076 2.7648 2.6724 2.8085 a,b
-0.18 2.1118 2.0319 2.9243 2.1199 ab
-0.20 1.7365 1.6634 1.5315 1.7470 ab
-0.24 1.0503 1.0154 0.8358 1.0624 ab
-0.30 0.3699 0.3805 0.1992 0.3784 ab
-0.40 0.0293 0.0354 —0.0259 0.0309 ab
-0.50 0.0009 0.0004 —0.0060 0.0010 ab
-0.60 0.0000 —0.0001 —0.0004 0.0000 ab
-0.70 0.0000 —0.0000 —0.0000 0.0000 ab
—0.80 0.0000 —0.0000 —0.0000 0.0000 ab
-0.90 0.0000 -0.0000 —-0.0000 0.0000 ab
-1.00 0.0000 -0.0000 —0.0000 0.0000 ab

2 Saddlepoint approximation as close or closer to exact density than A-S to O(u -1,
b Saddlepoint approximation as close or closer to exact density than A-S to O(u73).

A-S Edgeworth approximation derived by Anderson and Sawa [3).

From the ratings indicated in the final column of the tables it is clear that the
saddlepoint approximation performs very well compared with the Edgeworth
approximation. It is uniformly better in the tails than the Edgeworth for all
parameter values considered and in the heavily overidentified case (Table V) it
outperforms the Edgeworth over virtually the whole range of the distribution. In
the latter case, we note that the errors involved in the Edgeworth approximation
are so substantial that this approximation gives no reliable guide to the shape of
the density in any region of the distribution. To the extent that the saddlepoint
approximation is a good approximation in this case as well as the others it would
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TABLE 1V
B=06, K,=4, u?=40
r—B Exact Density A-Sto 0" A-Sto O(n™) Saddlepoint
1.00 0.0007 0.0000 0.0002 0.0008 ab
0.90 0.0017 0.0001 0.0014 0.0018 ab
0.80 0.0041 0.0010 0.0056 0.0043 ab
0.70 0.0103 0.0063 0.0160 0.0106 ab
0.60 0.0263 0.0269 0.0366 0.0268 ab
0.50 0.0669 0.0832 0.0845 0.0678 ab
0.40 0.1664 0.1951 0.2024 0.1677 ab
0.30 0.3911 0.3966 0.4421 0.3923 ab
0.24 0.6241 0.6028 0.6690 0.6248 ab
0.20 0.8304 0.7961 0.8648 0.8303 a,b
0.18 0.9491 0.9117 0.9772 0.9484 ab
0.14 1.2136 1.1787 1.2295 1.2116 ab
0.10 1.5031 1.4799 1.5093 1.4994 ab
0.08 1.6503 1.6348 1.6533 1.6458 a
0.06 1.7942 1.7862 1.7951 1.7889 a
0.04 1.9304 1.9285 1.9301 1.9243
0.02 2.0539 2.0562 2.0531 2.0473
0.00 2.1597 2.1636 2.1588 2.1526
—0.02 2.2428 2.2455 2.2419 2.2356
—0.04 2.2988 2.2980 2.2975 2.2916
—0.06 2.3238 2.3178 2.3218 2.3171
—0.08 2.3154 2.3037 2.3119 2.3093 a
-0.10 2.2724 2.2554 2.2666 2.2672 ab
-0.14 2.0861 2.0649 2.0746 2.0835 ab
-0.18 1.7892 1.7753 1.7675 1.7896 ab
-0.20 1.6131 1.6068 1.5860 1.6148 a,b
—-0.24 1.2393 1.2521 1.2015 1.2434 ab
—0.30 0.7211 0.7553 0.6697 0.7267 ab
—0.40 0.1956 0.2164 0.1464 0.1994 ab
—0.50 0.0326 0.0263 0.0121 0.0339 ab
—-0.60 0.0036 —0.0052 0.0005 0.0038 ab
-0.70 0.0003 —0.0031 —0.0010 0.0003 ab
—0.80 0.0000 —0.0007 —0.0013 0.0000 ab
-0.90 0.0000 —0.0001 —0.0006 0.0000 ab
-1.00 0.0000 —0.0000 —0.0001 0.0000 a,b

? Saddlepoint approximation as close or closer to exact density than A-S to O(u™").
b Saddlepoint approximation as close or closer to exact density than A-S to O(u’3)4
A-S Edgeworth approximation derived by Anderson and Sawa [3].

appear that this approximation is less sensitive to parameter variations in terms of
its performance than the Edgeworth approximation. Given that many equations
in large macromodels are heavily overidentified this is a useful feature of the new
approximation.

It may also be worth drawing attention to the numerical accuracy of the
saddlepoint approximation in the cases considered. From Table II we see that this
approximation gives three decimal place accuracy over a substantial part of the
tail regions. The improvement over the Edgeworth approximation in this respect
is very substantial.
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TABLE V

B=1.0, K,=20, x*=100

r—g Exact Density A-Sto O(n™1) A-Sto O(u_:’) Saddlepoint
1.00 0.0000 0.0000 0.0000 0.0000 ab
0.90 0.0000 0.0000 0.0000 0.0000 ab
0.80 0.0000 0.0000 0.0000 0.0000 ab
0.70 0.0000 0.0000 0.0012 0.0000 ab
0.60 0.0000 0.0000 0.0194 0.0000 ab
0.50 0.0002 —0.0061 - 0.1791 0.0002 ab
0.40 0.0017 —0.0827 0.8584 0.0018 ab
0.30 0.0121 —0.4386 2.1160 0.0123 ab
0.24 0.0369 —0.7849 2.6281 0.0368 ab
0.20 0.0748 —0.9340 2.6212 0.0738 ab
0.18 0.1050 -0.9339 2.4901 0.1032 ab
0.14 0.2011 —0.6937 1.9961 0.1963 ab
0.10 0.3678 —0.0549 1.3157 0.3570 ab
0.08 0.4879 0.4154 0.9782 0.4726 ab
0.06 0.6380 0.9678 0.6894 0.6170 ab
0.04 0.8216 1.5763 0.4830 0.7936 ab
0.02 1.0410 2.2069 0.3849 1.0047 ab
0.00 1.2960 2.8209 0.4090 1.2505 ab
—-0.02 1.5837 3.3788 0.5530 1.5285 ab
—0.04 1.8971 3.8443 0.7969 1.8325 ab
—-0.06 2.2249 4.1885 1.1050 2.1522 ab
—-0.08 2.5513 4.3923 1.4305 2.4731 ab
—0.10 2.8566 4.4488 1.7230 2.7768 ab
-0.14 3.3149 4.1510 2.0350 3.2475 ab
—0.18 3.4361 3.4438 1.8416 3.4041 ab
-0.20 3.3405 3.0095 1.5714 3.3327 ab
-0.24 2.8560 2.1216 0.8436 2.8992 ab
-0.30 1.7154 1.0332 —0.1483 1.8043 ab
—0.40 0.3170 0.1860 —0.4900 0.3662 ab
-0.50 0.0176 0.0170 —0.1553 0.0239 b
—0.60 0.0003 0.0007 —0.0196 0.0005 ab
-0.70 0.0000 —0.0000 —0.0012 0.0000 ab
—0.80 0.0000 —0.0000 —-0.0000 0.0000 ab
-0.90 0.0000 —0.0000 —-0.0000 0.0000 ab
-1.00 0.0000 —0.0000 —0.0000 0.0000 ab

2 Saddlepoint approximation as close or closer to exact density than A-S to ow™).
b Saddlepoint approximation as close or closer to exact density than A-S to O(u_z').
A-S Edgeworth approximation derived by Anderson and Sawa [3].

6. FINAL COMMENTS

For the parameter values used in the computations of the last section only one
of the approximating formulae in (25) was used. A problem arises in cases where we
may wish to use both formulae. For, when 1+28r — 2 = 0 neither formula applies
and the integrand of (12) has a singularity at the point (r—8)/(1+8r)=-1/8 on
the real axis. In other cases, both (r —8)/(1 + Br) and —1 /B are saddlepoints, as we
have seen, and the integrand of (12) has a branch point and essential singularity at
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the point r—(1+r7)} on the real axis between these two saddlepoints.’* When r
takes on values for which 1+28r—p” tends to zero, the two saddlepoints
converge and the behavior of the integrand is very irregular in this region of the
real axis (there is a path of steepest descent through —1/8 along the real axis and a
path of steepest descent through (r—B)/(1+ Br) orthogonal to the real axis).
When the saddlepoints coincide, they coalesce with the singularity at r — (1 + 2
and it is clear that the approximations cannot hold uniformly for values of r in this
neighborhood. A transitional form or uniform asymptotic approximation (see, for
example, Bleistein et al. [5] and Phillips [24]) is needed to secure a good
approximation in this region of the distribution.

The approximation to the density of the 2SLS estimator obtained in Section 4 is
related to the expansions derived by Sargan [26] of the exact density of the
instrumental variable (I'V) estimator in the case of an equation with n endogenous
variables (see Appendix B of [26]). Sargan reduces the joint density of the IV
estimator of the coefficients of the included endogenous variables to the integral
over a matrix space of a function involving a confluent hypergeometric function
with a single matrix argument."” The latter function has an asymptotic expansion
similar in form to (28) and when the dominant term of this expansion is used the
integral can be readily calculated. The resulting approximation given by Sargan
(equation (B14) in [26]) is then similar to our (31) and (33).
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APPENDIX A
SADDLEPOINTS AND CURVES OF STEEPEST DESCENT

For those readers not familiar with the saddlepoint technique we outline here some of the basic
principles of the method. Further details may be obtained from the references [5, 7, 9, and 10].

We start with equation (15) in the body of the paper, viz. ¥'(w") = 0. Solutions of this equation are
called saddlepoints because if we write w =x+iy and ¥(w)=a(x,y)+ib(x,y) then (xo, y°) is a
saddlepoint of the function a(x, y) and hence of the function

(A.1) exp {%2 'P(w)}‘ =exp {li; Re (lP(w))} = exp {&ia(x, y)}.

2

To see this we note that, since ¥(w) is analytic, a(-, -) and b(:, -) satisfy the Cauchy Riemann
conditions:

da b da ab

(A.2) =—, = ,
dx dy ay ox

s (; may also be of interest to point out that by computing the residue at the singularity or by
looping the integration path around the singularity (depending on the value of K,) it is possible to
extract the exact density. Details are given in [23].

!> A non-integral expression for the density on this case is obtained in [22].
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so that

a_ &b a_ b
ax? axay’ 6y2 ayax
and hence, from the continuity of the second derivatives of b,

ia &
A3  S5+2%-0
ax ay

for all values of x and y. Since the first derivatives of a(:, -) are zero at (x°, y°) it now follows from (A.3)

that

0%a\ (8°a o%a

(26

ax ay dxady

and (x°, y°) is a saddlepoint of a(x, y).
It also follows from (A.2) that the gradient vectors (da/dx, da/dy) and (9b/dx, db/dy) of a(:, -) and

b(-, -) are orthogonal. This means that a normal vector to the curve a(x, y) = const. is tangential to a
member of the family of curves {b(x, y) = const.}. We can deduce that the curve of steepest descent

along which a(x, y), and hence (A.1), decreases most rapidly on either side of the saddlepoint wis
such that

Im (¥(w)) =Im (¥(w°)
where Im(-) denotes the imaginary part. That is,
(A4) b(x, y)=b(x°, y°).

In the present paper we find that the suitable saddlepoint w® is real, so that ¥(w°) is also real and (A.4)
becomes

(A.S) b(x,y)=0.

Since (A.1) decreases most rapidly as we move away from the saddlepoint w along the curve
defined by (A.5) and since (A.1) dominates the value of the integrand, at least as u 2 becomes large, we
find that the value of the integrand at the saddlepoint provides the dominant contribution to the value
of the integral if we select this path of integration through the saddlepoint. The integral itself can now
be evaluated approximately by expanding the components of the integrand in the Taylor series about
the saddlepoint. The dominant contribution then comes out of the integral as a multiplicative factor,
giving an asymptotic expansion of the integral in terms of 1/u 2 of the form of (20) in the body of the
paper.

APPENDIX B
AN APPROXIMATION TO THE DISTRIBUTION FUNCTION

We demonstrate here how a saddlepoint approximation can be derived for the distribution function
rather than the probability density of Bk The method is quite general and can be used in other
applications of the saddlepoint approximation.

From the work of Gurland [14] and Gil-Pelaez [13] we know that an inversion formula for the
distribution function can be obtained by using the Cauchy principal value of an integral involving the
characteristic function. Gurland has also considered ratios of random variables. In particular, from
his Theorem 1 [14, p. 228], the distribution function, F(x), of X;/X, where P(X,<0)=0 satisfies

F(o)+F(x—0)=1—— §>¢(’ —%) 4

where ¢ (-, *) is the joint characteristic function of (X}, X>) and ¢ denotes the Cauchy principal value
lim, .o R0 {|R+[&}. Applying this result in the case of the distribution of the k-class estimator Bi we
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have
1 [ L(—wr,
(B.1) F(r)+F(r—0)=1——,35———( ")
ks w
where, from Section 3 of the paper,
2
(B.2) L(—wr, w)=C(w) exp {“7 'I’(w)}

where
Cw)=Q1+2rw— WZ)_KZ/Z(I +2hrw —hzwz)“T-K)/z,
Y(w)=(1+2rw—w?) {w(1+B2) +2w(B -1},

and the integration in (B.1) is now taken along the corresponding paths on the imaginary axis, i.e.,
lim, .o, r o0 {Jis: +[ZiR}.

The integrand in (B.1) has a pole of order one at the origin. We complete the path of integration by -
taking a semi-circle of radius ¢ around the origin and deforming the path of integration to pass through
the saddlepoint w? on the real axis. If we include the pole within the contour we need to evaluate the
residue; if not, we can apply Cauchy’s theorem directly. Both paths give the same final result and we
illustrate with the path that includes the pole as in Figure 1.

Ly
iR wo+iR

wo-iR

FIGURE 1.—w-plane, with w" a saddlepoint of the integrand and the origin a pole.

We deduce from the residue theorem that

iR —ie —
(B.3) (I + J )w dw=-27i (residue of integrand at origin)
ie w

—iR
AL ] o )

To evaluate the right side we note that the residue of L(—wr, w)/w at the origin is just L(0, 0)=1 and

J’ L(—wr,w) dw= J’"/Z L(-¢ ew:;e ') ceidé.
c

w +3m/2 ge

Shrinking the semi-circle C to the origin we see that this integral becomes

w/2
iJ- dé = —mi.
3mw/2
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We now find the saddlepoint approximation to the integral that passes through w? on the real axis.
We have
R

WOHR (o
J (—wr, w) dw
w

wP—iR

=iD(w® exp {%2 W(wo)}J exp { —%—2 '1”’(w0)y2}

-R

2
- exp [_”‘2_{_% TO(wO)iy — 2 TO w0y + }]

D'w% . 1D'w% ,
'[1+D(w°) YT DWWy ] dy

where D(w)= C(w)/w. When R - we find, as in Section 3 of the paper, that the integral has the
expansion

V27 D(w®) exp {5‘—2 1,If(w°)}{-"~2 lIf”(wt’)}_%[l +0(™)]
2 2 '

Checking the order of magnitude of L(—wr, w)/w on the horizontal contours L, and L, in Figure 1, we
find that the last two integrals of (B.3) tend to zero as R - co. It now follows that

iR —ie.
L(=wr,
lim (J‘ +J. )——————( wr, ) dw
£—>00 i€ —iR w

R->oc0

V2miD(w° )exp{ Y(w )}

==2mi—\—mi—

{w?/2 w(wOP
_27*i DW°) {#2 0}
=i — — v .
T oy Pl Y
From (B.1) we deduce that

0 2
(B.4) F(r)+F(r—0)= 2——2——2(—‘”—)— p{ﬁz—llf(wo)}[l+0(y,_2)].

wu (e WO
When the saddlepoint w® is on the left side of the origin we find in a similar way the formula
2 D 2
BS5)  F()+F(r—0)= {W(W )}; exp { 5 W(w")}u +0(u™)]

Now consider the case where w° = (r—B)/(1+Br). We find from (B.4) and (B.5) and the continuity of
F(r) that (assuming 8 >0)

Flry= 1o (1+B) " 7 1 +28r— ) F V[ + B + 2rh(r = Br) — K (r =BT T2
r=1-———

27_,# (1+r2)(K2—2)/2(r_B)
2
xp{ “2(’1 }[1+0<u‘2)] r>8,
1 a0 a4 28r -8 TP (14 Br) + 2rh(r— B)(1+ Br) — P (r = B)*T TR
V2mu 1+ %22(g—r)
u? (r=8)° " B>-1
xp{ 2 1477 }[1+O o Sk

Differentiating the above we find that the dominant term agrees with the saddlepoint approx1mat10n to

the probability density function. For values of r<(B%-1)/2B we use the saddlepoint wl=-1/p,
as in Section 3.
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